2006年8月11日

今天在数值计算时碰到一个问题.程序如下:
  double a = (3.3-2.4)/0.1;
  System.out.println(a);
你可能认为结果很简单,不就是9嘛,是事实上,结果为:8.999999998,为什么呢?我翻阅了一些资料,终于找出了原因.
为什么浮点数会丢失精度? 
  1. 十进制数的二进制表示可能不够精确

    浮点数或是双精度浮点数无法精确表示的情况并不少见。浮点数值没办法用十进制来精确表示的原因要归咎于CPU表示浮点数的方法。这样的话您就可能会牺牲一些精度,有些浮点数运算也会引入误差。以上面提到的情况为例,2.4的二进制表示并非就是精确的2.4。反而最为接近的二进制表示是 2.3999999999999999。原因在于浮点数由两部分组成:指数和尾数。浮点数的值实际上是由一个特定的数学公式计算得到的。您所遇到的精度损失会在任何操作系统和编程环境中遇到。
    注意: 您可以使用Binary Coded Decimal (BCD)库来保持精度。BCD数字编码方法会把每一个十进制数字位单独编码。 
  2. 类型失配
    您可能混合了浮点数和双精度浮点数类型。请确定您在进行数学运算的时候所有的数据类型全部相同。
    注意:float类型的变量只有7位的精度,而double类型的变量有15位的精度。

如何进行浮点数精度计算?            
      Java中的简单浮点数类型float和double不能够进行运算。不光是Java,在其它很多编程语言中也有这样的问题。在大多数情况下,计算的结果是准确的,但是多试几次(可以做一个循环)就可以试出类似上面的错误。现在终于理解为什么要有BCD码了。
这个问题相当严重,如果你有9.999999999999元,你的计算机是不会认为你可以购买10元的商品的。
在有的编程语言中提供了专门的货币类型来处理这种情况,但是Java没有。现在让我们看看如何解决这个问题。
 
四舍五入
我们的第一个反应是做四舍五入。Math类中的round方法不能设置保留几位小数,我们只能象这样(保留两位):
public double round(double value){
    return Math.round(value*100)/100.0;
}
非常不幸,上面的代码并不能正常工作,给这个方法传入4.015它将返回4.01而不是4.02,如我们在上面看到的
4.015*100=401.49999999999994
因此如果我们要做到精确的四舍五入,不能利用简单类型做任何运算
java.text.DecimalFormat也不能解决这个问题:
System.out.println(new java.text.DecimalFormat("0.00").format(4.025));
输出是4.02
 
BigDecimal
在《Effective Java》这本书中也提到这个原则,float和double只能用来做科学计算或者是工程计算,在商业计算中我们要用java.math.BigDecimal。BigDecimal一共有4个够造方法,我们不关心用BigInteger来够造的那两个,那么还有两个,它们是:
BigDecimal(double val)
          Translates a double into a BigDecimal.
BigDecimal(String val)
          Translates the String repre sentation of a BigDecimal into a BigDecimal.
上面的API简要描述相当的明确,而且通常情况下,上面的那一个使用起来要方便一些。我们可能想都不想就用上了,会有什么问题呢?等到出了问题的时候,才发现上面哪个够造方法的详细说明中有这么一段:
Note: the results of this constructor can be somewhat unpredictable. One might assume that new BigDecimal(.1) is exactly equal to .1, but it is actually equal to .1000000000000000055511151231257827021181583404541015625. This is so because .1 cannot be represented exactly as a double (or, for that matter, as a binary fraction of any finite length). Thus, the long value that is being passed in to the constructor is not exactly equal to .1, appearances nonwithstanding.
The (String) constructor, on the other hand, is perfectly predictable: new BigDecimal(".1") is exactly equal to .1, as one would expect. Therefore, it is generally recommended that the (String) constructor be used in preference to this one.
原来我们如果需要精确计算,非要用String来够造BigDecimal不可!在《Effective Java》一书中的例子是用String来够造BigDecimal的,但是书上却没有强调这一点,这也许是一个小小的失误吧。
 
解决方案
现在我们已经可以解决这个问题了,原则是使用BigDecimal并且一定要用String来够造。
但是想像一下吧,如果我们要做一个加法运算,需要先将两个浮点数转为String,然后够造成BigDecimal,在其中一个上调用add方法,传入另一个作为参数,然后把运算的结果(BigDecimal)再转换为浮点数。你能够忍受这么烦琐的过程吗?下面我们提供一个工具类Arith来简化操作。它提供以下静态方法,包括加减乘除和四舍五入:
public static double add(double v1,double v2)
public static double sub(double v1,double v2)
public static double mul(double v1,double v2)
public static double div(double v1,double v2)
public static double div(double v1,double v2,int scale)
public static double round(double v,int scale)
附录
源文件Arith.java:
import java.math.BigDecimal;
/**
 * 由于Java的简单类型不能够精确的对浮点数进行运算,这个工具类提供精
 * 确的浮点数运算,包括加减乘除和四舍五入。
 */
public class Arith{
    //默认除法运算精度
    private static final int DEF_DIV_SCALE = 10;
    //这个类不能实例化
    private Arith(){
    }
 
    /**
     * 提供精确的加法运算。
     * @param v1 被加数
     * @param v2 加数
     * @return 两个参数的和
     */
    public static double add(double v1,double v2){
        BigDecimal b1 = new BigDecimal(Double.toString(v1));
        BigDecimal b2 = new BigDecimal(Double.toString(v2));
        return b1.add(b2).doubleValue();
    }
    /**
     * 提供精确的减法运算。
     * @param v1 被减数
     * @param v2 减数
     * @return 两个参数的差
     */
    public static double sub(double v1,double v2){
        BigDecimal b1 = new BigDecimal(Double.toString(v1));
        BigDecimal b2 = new BigDecimal(Double.toString(v2));
        return b1.subtract(b2).doubleValue();
    }
    /**
     * 提供精确的乘法运算。
     * @param v1 被乘数
     * @param v2 乘数
     * @return 两个参数的积
     */
    public static double mul(double v1,double v2){
        BigDecimal b1 = new BigDecimal(Double.toString(v1));
        BigDecimal b2 = new BigDecimal(Double.toString(v2));
        return b1.multiply(b2).doubleValue();
    }
 
    /**
     * 提供(相对)精确的除法运算,当发生除不尽的情况时,精确到
     * 小数点以后10位,以后的数字四舍五入。
     * @param v1 被除数
     * @param v2 除数
     * @return 两个参数的商
     */
    public static double div(double v1,double v2){
        return div(v1,v2,DEF_DIV_SCALE);
    }
 
    /**
     * 提供(相对)精确的除法运算。当发生除不尽的情况时,由scale参数指
     * 定精度,以后的数字四舍五入。
     * @param v1 被除数
     * @param v2 除数
     * @param scale 表示表示需要精确到小数点以后几位。
     * @return 两个参数的商
     */
    public static double div(double v1,double v2,int scale){
        if(scale<0){
            throw new IllegalArgumentException(
                "The scale must be a positive integer or zero");
        }
        BigDecimal b1 = new BigDecimal(Double.toString(v1));
        BigDecimal b2 = new BigDecimal(Double.toString(v2));
        return b1.divide(b2,scale,BigDecimal.ROUND_HALF_UP).doubleValue();
    }
 
    /**
     * 提供精确的小数位四舍五入处理。
     * @param v 需要四舍五入的数字
     * @param scale 小数点后保留几位
     * @return 四舍五入后的结果
     */
    public static double round(double v,int scale){
        if(scale<0){
            throw new IllegalArgumentException(
                "The scale must be a positive integer or zero");
        }
        BigDecimal b = new BigDecimal(Double.toString(v));
        BigDecimal one = new BigDecimal("1");
        return b.divide(one,scale,BigDecimal.ROUND_HALF_UP).doubleValue();
    }
};

posted @ 2006-08-31 11:16 曹青松 阅读(2939) | 评论 (4)编辑 收藏

    可以把普通的 Java 程序做成真正的 exe, 也就是单一个 exe 就可以在没有安装 JVM 的机器上运行。这样的工具常见的有 JET gcj. 前者是收费的,而且做出来的 exe 还是需要一堆 dll 。推荐使用 gcj. 他有 windows Linux 版,直接下载 zip 包,不需要安装,里面有不少例子,一些 build 的批处理文件。从原理来说 gcj 自己实现了 JVM 规范,也就是你编写一个 HelloWorld.java, 其中的 main 方法为 System.out.println("foo");
当使用 gcj 把它做成 exe( 大约 2M ) ,运行这个 exe 时,会启动里面的一个小型 jvm, 在这上面跑 HelloWorld

其实,把 Java 做成纯 exe 实在是吃力不讨好,有很多限制,文件又大。

我比较倾向另几种做法:

. 使用 InstallAnywhere 等工具,制作一个 exe 的安装包
用户可以选择使用他机器上的 JRE 或是这个安装包内的 JRE 来运行程序
这是很常见的一种做法,如 JBuilder 就是这么做的。
这样的好处是不要求对方机器上装有 JRE ,而且你原来的程序不需要任何改动。
InstallAnywhere
中一个压缩的 JRE 大概是 8M

. 制作成可执行的 jar, 也就是在 META-INF MANIFEST 文件制定 Main-Class
可以通过命令行 java -jar jarfile.jar 来执行, windows 默认的把 *.jar 使用 javaw -jar 打开,所以有些机器上可以直接双击 jar 运行。

. 制作伪 exe, 其实和上一种做法是一样的,只不过做成 exe, 调用系统的 java.exe 来运行它,这样的工具有 nativeJ,exe4j


其实 Java 不像 VB,Delphi 只是一个语言,而是一个平台。
jar
是最常用的部署单元,做成 exe 没什么意思。
一、 exe4j
   
说明: exe4j 可以将 Jar 文件制作成 exe 文件,但需 jre 支持,也可将 Jar 文件放在外面。
   
软件性质:共享软件
   
下载地址: http://www.ej-technologies.com/products/exe4j/overview.html
二、 JBuilder
   
说明:新版本的 JBuilder 可以直接把工程制作成各系统的可执行文件,包括 Windows 系统。
   
软件性质:商业软件
   
下载地址:略。我是从 eMule 下载的。
三、 NativeJ
   
说明:与 exe4j 功能类似。
   
软件性质:共享软件
   
下载地址: http://www.dobysoft.com/products/nativej/download.html
四、 Excelsior JET
   
说明:可以直接将 Java 类文件制作成 exe 文件,除 AWT Swing 及第三方图形接口外可不需 jre 支持( Java5.0 不行)。
   
软件性质:共享软件
   
下载地址: http://excelsior-usa.com/home.html
五、 jshrink
   
说明:可将 Jar 文件打包进 exe 文件。同时具有混淆功能(这才是它的主要功能)。
   
软件性质:共享软件
   
下载地址: http://www.e-t.com/jshrink.html
六、 InstallAnywhere
   
说明:打包工具,对 Java 打包最好用。可打包成各操作系统运行包。包括 Windows 系统。
   
软件性质:商业软件。
   
下载地址: http://www.zerog.com/
七、 InstallShieldX
   
说明:与 InstallAnywhere 类似,但比 InstallAnywhere 功能强大。相对的,比较复杂,不易上手,我现在还没学会。
   
软件性质:商业软件。
   
下载地址: http://www.installshield.com/

posted @ 2006-08-28 20:37 曹青松 阅读(1093) | 评论 (0)编辑 收藏

Ioc模式

  分离关注( Separation of Concerns : SOC)是Ioc模式和AOP产生最原始动力,通过功能分解可得到关注点,这些关注可以是 组件Components, 方面Aspects或服务Services。

  从GoF设计模式中,我们已经习惯一种思维编程方式:Interface Driven Design 接口驱动,接口驱动有很多好处,可以提供不同灵活的子类实现,增加代码稳定和健壮性等等,但是接口一定是需要实现的,也就是如下语句迟早要执行:

  AInterface a = new AInterfaceImp();

  AInterfaceImp是接口AInterface的一个子类,Ioc模式可以延缓接口的实现,根据需要实现,有个比喻:接口如同空的模型套,在必要时,需要向模型套注射石膏,这样才能成为一个模型实体,因此,我们将人为控制接口的实现成为"注射"。

  Ioc英文为 Inversion of Control,即反转模式,这里有著名的好莱坞理论:你呆着别动,到时我会找你。

  其实Ioc模式也是解决调用者和被调用者之间的一种关系,上述AInterface实现语句表明当前是在调用被调用者AInterfaceImp,由于被调用者名称写入了调用者的代码中,这产生了一个接口实现的原罪:彼此联系,调用者和被调用者有紧密联系,在UML中是用依赖 Dependency 表示。

  但是这种依赖在分离关注的思维下是不可忍耐的,必须切割,实现调用者和被调用者解耦,新的Ioc模式 Dependency Injection 模式由此产生了, Dependency Injection模式是依赖注射的意思,也就是将依赖先剥离,然后在适当时候再注射进入。

Ioc模式(Dependency Injection模式)有三种:

第一种类型 从JNDI或ServiceManager等获得被调用者,这里类似ServiceLocator模式。 1. EJB/J2EE
2. Avalon(Apache的一个复杂使用不多的项目)
第二种类型 使用JavaBeans的setter方法 1. Spring Framework,
2. WebWork/XWork
第三种类型 在构造方法中实现依赖 1. PicoContainer,
2. HiveMind

  有过EJB开发经验的人都知道,每个EJB的调用都需要通过JNDI寻找到工厂性质的Home接口,在我的教程EJB是什么章节中,我也是从依赖和工厂模式角度来阐述EJB的使用。

  在通常传统情况下,为了实现调用者和被调用者解耦,分离,一般是通过工厂模式实现的,下面将通过比较工厂模式和Ioc模式不同,加深理解Ioc模式。

工厂模式和Ioc
  假设有两个类B 和 C:B作为调用者,C是被调用者,在B代码中存在对C的调用:

public class B{
   private C comp;
  ......
}
 

  实现comp实例有两种途径:单态工厂模式和Ioc。

工厂模式实现如下:

public class B{
   private C comp;
  private final static MyFactory myFactory = MyFactory.getInstance();

  public B(){
    this.comp = myFactory.createInstanceOfC();

  }
   public void someMethod(){
    this.comp.sayHello();
  }
  ......
}
 

特点:

每次运行时,MyFactory可根据配置文件XML中定义的C子类实现,通过createInstanceOfC()生成C的具体实例。
使用Ioc依赖性注射( Dependency Injection )实现Picocontainer如下,B类如同通常POJO类,如下:

public class B{
   private C comp;
  public B(C comp){
    this.comp = comp;
   }
   public void someMethod(){
    this.comp.sayHello();
   }
  ......
}
 

假设C接口/类有有一个具体实现CImp类。当客户端调用B时,使用下列代码:

public class client{
   public static void main( String[] args ) {
    DefaultPicoContainer container = new DefaultPicoContainer();
    container.registerComponentImplementation(CImp.class);
    container.registerComponentImplementation(B.class);
    B b = (B) container.getComponentInstance(B.class);
    b.someMethod();
   }
}
 

  因此,当客户端调用B时,分别使用工厂模式和Ioc有不同的特点和区别:

  主要区别体现在B类的代码,如果使用Ioc,在B类代码中将不需要嵌入任何工厂模式等的代码,因为这些工厂模式其实还是与C有些间接的联系,这样,使用Ioc彻底解耦了B和C之间的联系。

  使用Ioc带来的代价是:需要在客户端或其它某处进行B和C之间联系的组装。

  所以,Ioc并没有消除B和C之间这样的联系,只是转移了这种联系。
  这种联系转移实际也是一种分离关注,它的影响巨大,它提供了AOP实现的可能。

Ioc和AOP
  AOP我们已经知道是一种面向切面的编程方式,由于Ioc解放自由了B类,而且可以向B类实现注射C类具体实现,如果把B类想像成运行时的横向动作,无疑注入C类子类就是AOP中的一种Advice

  通过下列代码说明如何使用Picocontainer实现AOP,该例程主要实现是记录logger功能,通过Picocontainer可以使用简单一行,使所有的应用类的记录功能激活。

首先编制一个记录接口:

public interface Logging {

  public void enableLogging(Log log);

}
 

有一个LogSwitcher类,主要用来激活具体应用中的记录功能:

import org.apache.commons.logging.Log;
public class LogSwitcher
{
  protected Log m_log;
  public void enableLogging(Log log) {
    m_log = log;
    m_log.info("Logging Enabled");
  }
}

一般的普通应用JavaBeans都可以继承这个类,假设PicoUserManager是一个用户管理类,代码如下:

public class PicoUserManager extends LogSwitcher
{
  ..... //用户管理功能
}
public class PicoXXXX1Manager extends LogSwitcher
{

  ..... //业务功能
}
public class PicoXXXX2Manager extends LogSwitcher
{

  ..... //业务功能
}
 

注意LogSwitcher中Log实例是由外界赋予的,也就是说即将被外界注射进入,下面看看使用Picocontainer是如何注射Log的具体实例的。


DefaultPicoContainer container = new DefaultPicoContainer();
container.registerComponentImplementation(PicoUserManager.class);
container.registerComponentImplementation(PicoXXXX1Manager.class);
container.registerComponentImplementation(PicoXXXX2Manager.class);
.....

Logging logging = (Logging) container.getComponentMulticaster();

logging.enableLogging(new SimpleLog("pico"));//激活log


 

  由上代码可见,通过使用简单一行logging.enableLogging()方法使所有的应用类的记录功能激活。这是不是类似AOP的advice实现?

  总之,使用Ioc模式,可以不管将来具体实现,完全在一个抽象层次进行描述和技术架构,因此,Ioc模式可以为容器、框架之类的软件实现提供了具体的实现手段,属于架构技术中一种重要的模式应用。

posted @ 2006-08-11 15:43 曹青松 阅读(235) | 评论 (0)编辑 收藏


posts - 4, comments - 8, trackbacks - 0, articles - 0

Copyright © 曹青松