朋的博客

MySQL资料,Java技术,管理思想,博弈论,Ajax,XP极限编程,H.264,HEVC,HDR
随笔 - 86, 文章 - 59, 评论 - 1069, 引用 - 0
数据加载中……

博弈论简介

转载自——董志强 1999-6

  对于一些非数学专业和经济学专业的人们来说,博弈论可能是一个极为陌生的概念。事实上,就是一些经济学专业毕业的学生,他们的博弈论知识也十分有限,我自己也是这样,略知皮毛而已(不,甚至连皮毛都未能真正了解)。因为国内学者把博弈论运用于经济学研究不过是近几年的事,也不普遍,而且它本身的内容也博大精深。但在国外,博弈论已成为占据主流的分析工具,如果你不懂得博弈论,那么你会被认为是没有真正懂得经济学。 博弈论的提法可能太过于学术化,容易让人们退避三舍。其实它有一个非常通俗的名字——游戏理论(博弈论的英文名字叫做“Game Theory”,如果直译,就是“游戏理论”)。博弈论在我国还有一个名字,叫对策论。这些名字都很好理解,博弈字面意思就是赌博、下棋,赌博和下棋当然是游戏了,赌博和下棋的时候常常要千方百计地应付对手,自然是要讲究对策了。

  如果我们要进行一场游戏,首先肯定要有参加游戏的人,没有人参加,游戏就不会进行下去,游戏活动的参与人有一个学术名称叫“局中人”;其次,每一个“局中人”都有自己的“行动”,或者叫做“策略”、“对策”,如果行动不是单一的,那么这个局中人所有的行动构成一个集合,称行动组合或策略组合;另外,还应该约定输家要付出什么代价,赢家可获得什么利益,这在术语上叫做“支付”(或“报酬”)。当然,一场游戏肯定结果不是唯一的,各个参与人分散决策采取不同的行动,会造成不同的结果。但是纳什证明出,在有限个局中人参加的有限行为对策中,至少存在一个所有参与人的最优战略的组合,这叫做“纳什均衡”。处于纳什均衡状态下,每个人都不能通过改变策略来得到更大的收益,所以谁也不存在改变现状的动力。

  举一个具体的例子来说明一下。这个例子叫“囚犯困境”,是被一些教材广泛引用的例子,并且西方经济学者围绕这个例子发表过不下百篇学术论文。它是这样的(有兴趣的读者可参见青年经济学家张维迎的《博弈论与信息经济学》,这本书几乎成了经济学研究生的必读书):两个嫌疑犯(A和B)作案后被警察抓住,隔离审讯;警方的政策是“坦白从宽,抗拒从严”,如果两人都坦白各判8年,如果一人坦白另一人不坦白,坦白的放出去,不坦白的判10年,如果都不坦白则因证据不足各判1年。

  在这个例子里,局中人就是两个嫌疑犯A和B,他们每个人都有两个策略即坦白和不坦白,判刑的年数就是他们的支付。可能出现的四种情况:A和B均坦白或均不坦白、A坦白B不坦白或者B坦白A不坦白,是博弈的结果。A和B均坦白是这个博弈的纳什均衡。我们可以用下面的表来表述这个博弈,表中,第一个数字是A的支付(因为是判刑是负效用,故以负号记之),第二个数字是B的支付。


          囚犯B
        坦白   抵赖
囚犯A  坦白 -8,-8  0,-10
     抵赖 -10,0  -1,-1

  我们看到,假定A选择坦白的话,B最好是选择坦白,因为B坦白判8年而抵赖却要判十年;假定A选择抵赖的话,B最好还是选择坦白,因为B坦白判不被判刑而抵赖确要被判刑1年。即是说,不管A坦白或抵赖,B的最佳选择都是坦白。反过来,同样地,不管B是坦白还是抵赖,A的最佳选择也是坦白。结果,两个人都选择了坦白,各判刑8年。在(坦白、坦白)这个组合中,A和B都不能通过单方面的改变行动增加自己的收益,于是谁也没有动力游离这个组合,因此这个组合是纳什均衡。

  张维迎指出,囚徒困境反映了个人理性和集体理性的矛盾。如果A和B都选择抵赖,各判刑1年,显然比都选择坦白各判刑8年好得多。当然,A和B可以在被警察抓到之前订立一个“攻守同盟”,但是这可能不会有用,因为它不构成纳什均衡,没有人有积极性遵守这个协定。

  “囚犯困境”在经济学上有很多应用,也有力地解释了一些经济现象。比如中东石油输出国组织(Organization of Petroleum Exporting Countries,简称OPEC)的成立,本身要限制各石油生产国的产量,以保持石油价格,以便获取利润。但成员国并不遵守组织的协定,每个成员国都这样想,只要他们不增加产量,我增加一点点产量对价格没什么影响,结果每个国家都增加产量,造成石油价格下跌,大家的利润都受到损失。当然,一些产量增加较少的国家损失更多,于是也更加大量生产,造成价格进一步下降——结果,陷入一个困境:大家都增加产量,价格下跌,大家再增加产量,价格再下跌……我们不妨考察一下历史:

  1960年,5个产油国成立欧佩克(OPEC)。1973年成员国扩大到13个。当时各国还少有产量欺骗行为。1973年,阿-以战争爆发,为了报复以色列和西方国家,OPEC突然大幅度削减石油出口,致使世界原油价格由$2.91/桶暴涨到1974年$10.77/桶。这一意外事件让OPEC看到了组建卡特尔的诱人前景。1978年伊朗发生革命,其石油生产一度陷于瘫痪,既而两伊战争爆发,许多石油设施受到破坏,世界石油价格进一步涨到80年代初的$40/桶。但是,高额的利润导致各个国家的产量欺骗行为(实际产量大于限产计划),即各国不再遵守产量协定,擅自提高产量以获取更大的市场和更多的利润,从而导致石油价格下跌——当然,价格下跌也与世界其他地区如墨西哥油田、阿拉斯加油田、北海油田等石油供给增加有关。1982年世界石油价格为$32/桶,1984年为$27/桶,1987年为$18/桶,以后基本上在$15-18/桶之间波动。

  理论上,几乎所有的卡特尔都会遭到失败,原因就在于卡特尔的协定(类似囚犯的攻守同盟)不是一个纳什均衡,没有成员有兴趣遵守。最近发生的一个案例再次证明了这一点。今年4月,长虹突然宣布彩电降价,对彩电业带来了巨大震动。随即,康价佳老总陈伟荣、TCL老总李东生、创维老总黄宏生达成默契:建立彩电联盟。直到4月20日下午,康佳仍表示不降价,但当晚陈伟荣突然改变主意,搞得李、黄措手不及。4月24日,本来三方准备坐下来商讨降价后的进一步策略,结果又是陈伟荣爽约。

  那么不可能有卡特尔合作成功了?理论上,如果是无限期的合作,双方考虑长远利益,他们的合作是会成功的。但只要是有限次的合作,合作就不会成功。比如合作10次,那么再第九次博弈参与人就会采取不合作态度,因为大家都想趁最后一次机会捞一把,反正以后我也不会跟你合作了。但是大家料到第九次会出现不合作,那么就很可能再第八次就采取不合作的态度。第八次不合作会使大家在第七次就不合作……一直到,从第一次开始大家都不会采取合作态度。

  当然,这只是理论上的分析。现实中影响人们决策和态度的因素很多,所以,有些博弈的结果并不体现为纳什均衡。在国外曾做过一个“囚犯困境”的实验,被实验者是素未谋面的一个男生和一个女生。开始,这个男生每次都选择“坦白”,这是符合纳什均衡的。后来实验者有意安排了一次喝咖啡的机会,使男生发现自己的对手是一个漂亮的女生。结果以后的测验中,男生每次都选择不坦白以获取女孩的好感。

  不过,不管怎样,博弈论都是一个强有力的分析工具。现在,它不仅在经济学领域得到广泛应用,在军事、政治、商业征战、社会科学领域以及生物学等自然科学领域都有非常重大的影响,工程学中如控制论工程也少不了它。我们举的例子,只是帮助大家形成博弈论的基本概念,实际上它是非常精深的。现在与它紧密联系的经济学分支是信息经济学。信号游戏、拍卖形式、激励机制、委托人—代理人理论和公共财政学是博弈论和信息经济学研究的重要课题。

  应该感谢美国数学家冯?诺依曼(Von Neumann)和摩根斯坦(Morgenstern),是他们在《博弈论和经济行为》(1944)一书中提出了博弈论的经济思想。冯?诺依曼在数学、计算机、经济学等领域都有奇才般的贡献,可惜英年早逝。1950-1954年,美国数学家统计学家纳什接连发表多篇论述对策论的文章,奠定了现代博弈论学科体系的基础。

posted on 2005-07-10 22:09 benchensz 阅读(1986) 评论(0)  编辑  收藏 所属分类: 博弈论资料转载


只有注册用户登录后才能发表评论。


网站导航: