posts - 195, comments - 34, trackbacks - 0, articles - 1

zz:Java AIO初探(异步网络IO)

Posted on 2009-09-21 22:22 小强摩羯座 阅读(276) 评论(0)  编辑  收藏 所属分类: Java
Java AIO初探(异步网络IO) 

  按照《Unix网络编程》的划分,IO模型可以分为:阻塞IO、非阻塞IO、IO复用、信号驱动IO和异步IO,按照POSIX标准来划分只分为两类:同步IO和异步IO.如何区分呢?首先一个IO操作其实分成了两个步骤:发起IO请求和实际的IO操作,同步IO和异步IO的区别就在于第二个步骤是否阻塞,如果实际的IO读写阻塞请求进程,那么就是同步IO,因此阻塞IO、非阻塞IO、IO服用、信号驱动IO都是同步IO,如果不阻塞,而是操作系统帮你做完IO操作再将结果返回给你,那么就是异步IO.阻塞IO和非阻塞IO的区别在于第一步,发起IO请求是否会被阻塞,如果阻塞直到完成那么就是传统的阻塞IO,如果不阻塞,那么就是非阻塞IO.

    Java nio 2.0的主要改进就是引入了异步IO(包括文件和网络),这里主要介绍下异步网络IO API的使用以及框架的设计,以TCP服务端为例。首先看下为了支持AIO引入的新的类和接口:

    java.nio.channels.AsynchronousChannel标记一个channel支持异步IO操作。

    java.nio.channels.AsynchronousServerSocketChannel ServerSocket的aio版本,创建TCP服务端,绑定地址,监听端口等。

    java.nio.channels.AsynchronousSocketChannel面向流的异步socket channel,表示一个连接。

    java.nio.channels.AsynchronousChannelGroup异步channel的分组管理,目的是为了资源共享。一个AsynchronousChannelGroup绑定一个线程池,这个线程池执行两个任务:处理IO事件和派发CompletionHandler.AsynchronousServerSocketChannel创建的时候可以传入一个AsynchronousChannelGroup,那么通过AsynchronousServerSocketChannel创建的AsynchronousSocketChannel将同属于一个组,共享资源。

    java.nio.channels.CompletionHandler异步IO操作结果的回调接口,用于定义在IO操作完成后所作的回调工作。AIO的API允许两种方式来处理异步操作的结果:返回的Future模式或者注册CompletionHandler,我更推荐用CompletionHandler的方式,这些handler的调用是由AsynchronousChannelGroup的线程池派发的。显然,线程池的大小是性能的关键因素。AsynchronousChannelGroup允许绑定不同的线程池,通过三个静态方法来创建:public static AsynchronousChannelGroup withFixedThreadPool(int nThreads,

    ThreadFactory threadFactory)

    throws IOException

    public static AsynchronousChannelGroup withCachedThreadPool(ExecutorService executor,

    int initialSize)

    public static AsynchronousChannelGroup withThreadPool(ExecutorService executor)

    throws IOException

    需要根据具体应用相应调整,从框架角度出发,需要暴露这样的配置选项给用户。

    在介绍完了aio引入的TCP的主要接口和类之后,我们来设想下一个aio框架应该怎么设计。参考非阻塞nio框架的设计,一般都是采用Reactor模式,Reacot负责事件的注册、select、事件的派发;相应地,异步IO有个Proactor模式,Proactor负责CompletionHandler的派发,查看一个典型的IO写操作的流程来看两者的区别:

    Reactor:  send(msg) -> 消息队列是否为空,如果为空  -> 向Reactor注册OP_WRITE,然后返回 -> Reactor select -> 触发Writable,通知用户线程去处理 ->先注销Writable(很多人遇到的cpu 100%的问题就在于没有注销),处理Writeable,如果没有完全写入,继续注册OP_WRITE.注意到,写入的工作还是用户线程在处理。

    Proactor: send(msg) -> 消息队列是否为空,如果为空,发起read异步调用,并注册CompletionHandler,然后返回。 -> 操作系统负责将你的消息写入,并返回结果(写入的字节数)给Proactor -> Proactor派发CompletionHandler.可见,写入的工作是操作系统在处理,无需用户线程参与。事实上在aio的API中,AsynchronousChannelGroup就扮演了Proactor的角色。

    CompletionHandler有三个方法,分别对应于处理成功、失败、被取消(通过返回的Future)情况下的回调处理:

    public interface CompletionHandler {

    void completed(V result, A attachment);

    void failed(Throwable exc, A attachment);

    void cancelled(A attachment);

    }

    其中的泛型参数V表示IO调用的结果,而A是发起调用时传入的attchment.

    在初步介绍完aio引入的类和接口后,我们看看一个典型的tcp服务端是怎么启动的,怎么接受连接并处理读和写,这里引用的代码都是yanf4j 的aio分支中的代码,可以从svn checkout,svn地址: http://yanf4j.googlecode.com/svn/branches/yanf4j-aio

    第一步,创建一个AsynchronousServerSocketChannel,创建之前先创建一个AsynchronousChannelGroup,上文提到AsynchronousServerSocketChannel可以绑定一个AsynchronousChannelGroup,那么通过这个AsynchronousServerSocketChannel建立的连接都将同属于一个AsynchronousChannelGroup并共享资源:this.asynchronousChannelGroup = AsynchronousChannelGroup。withCachedThreadPool(Executors.newCachedThreadPool(),this.threadPoolSize);然后初始化一个AsynchronousServerSocketChannel,通过open方法:this.serverSocketChannel = AsynchronousServerSocketChannel。open(this.asynchronousChannelGroup);通过nio 2.0引入的SocketOption类设置一些TCP选项:this.serverSocketChannel。setOption(StandardSocketOption.SO_REUSEADDR,true);this.serverSocketChannel。setOption(StandardSocketOption.SO_RCVBUF,16*1024);

    绑定本地地址:

    this.serverSocketChannel。bind(new InetSocketAddress("localhost",8080), 100);其中的100用于指定等待连接的队列大小(backlog)。完了吗?还没有,最重要的监听工作还没开始,监听端口是为了等待连接上来以便accept产生一个AsynchronousSocketChannel来表示一个新建立的连接,因此需要发起一个accept调用,调用是异步的,操作系统将在连接建立后,将最后的结果——AsynchronousSocketChannel返回给你:

    public void pendingAccept(){

    if (this.started  this.serverSocketChannel.isOpen()) { this.acceptFuture = this.serverSocketChannel.accept(null,

    new AcceptCompletionHandler());

    } else {

    throw new IllegalStateException("Controller has been closed");

    }

    注意,重复的accept调用将会抛出PendingAcceptException,后文提到的read和write也是如此。accept方法的第一个参数是你想传给CompletionHandler的attchment,第二个参数就是注册的用于回调的CompletionHandler,最后返回结果Future.你可以对future做处理,这里采用更推荐的方式就是注册一个CompletionHandler.那么accept的CompletionHandler中做些什么工作呢?显然一个赤裸裸的AsynchronousSocketChannel是不够的,我们需要将它封装成session,一个session表示一个连接(mina里就叫IoSession了),里面带了一个缓冲的消息队列以及一些其他资源等。在连接建立后,除非你的服务器只准备接受一个连接,不然你需要在后面继续调用pendingAccept来发起另一个accept请求:

    private final class AcceptCompletionHandler implements

    CompletionHandler {

    @Override

    public void cancelled(Object attachment){

    logger.warn("Accept operation was canceled");

    }

  @Override

    public void completed(AsynchronousSocketChannel socketChannel,

    Object attachment){

    try {

    logger.debug("Accept connection from " + socketChannel.getRemoteAddress());

    configureChannel(socketChannel);

    AioSessionConfig sessionConfig = buildSessionConfig(socketChannel);

    Session session = new AioTCPSession(sessionConfig,AioTCPController.this.configuration。getSessionReadBufferSize(),AioTCPController.this.sessionTimeout);session.start();

    registerSession(session);

    } catch(Exception e){

    e.printStackTrace();logger.error("Accept error", e);

    notifyException(e);

    } finally {

    pendingAccept();

    }

    @Override

    public void failed(Throwable exc, Object attachment) { logger.error("Accept error", exc);

    try {

    notifyException(exc);

    } finally {

    pendingAccept();

    }

    注意到了吧,我们在failed和completed方法中在最后都调用了pendingAccept来继续发起accept调用,等待新的连接上来。有的同学可能要说了,这样搞是不是递归调用,会不会堆栈溢出?实际上不会,因为发起accept调用的线程与CompletionHandler回调的线程并非同一个,不是一个上下文中,两者之间没有耦合关系。要注意到,CompletionHandler的回调共用的是AsynchronousChannelGroup绑定的线程池,因此千万别在回调方法中调用阻塞或者长时间的操作,例如sleep,回调方法最好能支持超时,防止线程池耗尽。

    连接建立后,怎么读和写呢?回忆下在nonblocking nio框架中,连接建立后的第一件事是干什么?注册OP_READ事件等待socket可读。异步IO也同样如此,连接建立后马上发起一个异步read调用,等待socket可读,这个是Session.start方法中所做的事情:

    public class AioTCPSession {

    protected void start0(){

    pendingRead();

    }

    protected final void pendingRead(){

    if (!isClosed()  this.asynchronousSocketChannel.isOpen()) { if (!this.readBuffer.hasRemaining()) { this.readBuffer = ByteBufferUtils。increaseBufferCapatity(this.readBuffer);

    }

    this.readFuture = this.asynchronousSocketChannel.read(this.readBuffer, this, this.readCompletionHandler);

    } else {

    throw new IllegalStateException(

    "Session Or Channel has been closed");

    }

    }

    AsynchronousSocketChannel的read调用与AsynchronousServerSocketChannel的accept调用类似,同样是非阻塞的,返回结果也是一个Future,但是写的结果是整数,表示写入了多少字节,因此read调用返回的是Future,方法的第一个参数是读的缓冲区,操作系统将IO读到数据拷贝到这个缓冲区,第二个参数是传递给CompletionHandler的attchment,第三个参数就是注册的用于回调的CompletionHandler.这里保存了read的结果Future,这是为了在关闭连接的时候能够主动取消调用,accept也是如此。现在可以看看read的CompletionHandler的实现:

    public final class ReadCompletionHandler implements

    CompletionHandler {

    private static final Logger log = LoggerFactory

    。getLogger(ReadCompletionHandler.class);

    protected final AioTCPController controller;

    public ReadCompletionHandler(AioTCPController controller){

    this.controller = controller;

    }

    @Override

    public void cancelled(AbstractAioSession session){

    log.warn("Session(" + session.getRemoteSocketAddress()

    + ")read operation was canceled");

    }

    @Override

    public void completed(Integer result, AbstractAioSession session) { if (log.isDebugEnabled())

    log.debug("Session(" + session.getRemoteSocketAddress()

    + ")read +" + result + " bytes");

    if(result 0){

    session.updateTimeStamp();session.getReadBuffer()。flip();session.decode();session.getReadBuffer()。compact();

    }

    } finally {

    try {

    session.pendingRead();

    } catch(IOException e){

    session.onException(e);session.close();

    }

    controller.checkSessionTimeout();

    }

    @Override

    public void failed(Throwable exc, AbstractAioSession session) { log.error("Session read error", exc);session.onException(exc);session.close();

    }

    }

 如果IO读失败,会返回失败产生的异常,这种情况下我们就主动关闭连接,通过session.close()方法,这个方法干了两件事情:关闭channel和取消read调用:if (null != this.readFuture) { this.readFuture.cancel(true);

    }

    this.asynchronousSocketChannel.close();   在读成功的情况下,我们还需要判断结果result是否小于0,如果小于0就表示对端关闭了,这种情况下我们也主动关闭连接并返回。如果读到一定字节,也就是result大于0的情况下,我们就尝试从读缓冲区中decode出消息,并派发给业务处理器的回调方法,最终通过pendingRead继续发起read调用等待socket的下一次可读。可见,我们并不需要自己去调用channel来进行IO读,而是操作系统帮你直接读到了缓冲区,然后给你一个结果表示读入了多少字节,你处理这个结果即可。而nonblocking IO框架中,是reactor通知用户线程socket可读了,然后用户线程自己去调用read进行实际读操作。这里还有个需要注意的地方,就是decode出来的消息的派发给业务处理器工作最好交给一个线程池来处理,避免阻塞group绑定的线程池。

    IO写的操作与此类似,不过通常写的话我们会在session中关联一个缓冲队列来处理,没有完全写入或者等待写入的消息都存放在队列中,队列为空的情况下发起write调用:

    protected void write0(WriteMessage message){

    boolean needWrite = false;

    synchronized (this.writeQueue) { needWrite = this.writeQueue.isEmpty();this.writeQueue.offer(message);

    }

    if(needWrite){

    pendingWrite(message);

    }

    protected final void pendingWrite(WriteMessage message){

    message = preprocessWriteMessage(message);

    if (!isClosed()  this.asynchronousSocketChannel.isOpen()) { this.asynchronousSocketChannel.write(message.getWriteBuffer(),this, this.writeCompletionHandler);

    } else {

    throw new IllegalStateException(

    "Session Or Channel has been closed");

    }

    write调用返回的结果与read一样是一个Future,而write的CompletionHandler处理的核心逻辑大概是这样:

    @Override

    public void completed(Integer result, AbstractAioSession session) { if (log.isDebugEnabled())

    log.debug("Session(" + session.getRemoteSocketAddress()

    + ")writen " + result + " bytes");

    WriteMessage writeMessage;

    Queue writeQueue = session.getWriteQueue();

    synchronized(writeQueue){

    writeMessage = writeQueue.peek();if (writeMessage.getWriteBuffer() == null || !writeMessage.getWriteBuffer()。hasRemaining()) { writeQueue.remove();if (writeMessage.getWriteFuture() != null) { writeMessage.getWriteFuture()。setResult(Boolean.TRUE);

    }

    try {

    session.getHandler()。onMessageSent(session,writeMessage.getMessage());

    } catch(Exception e){

    session.onException(e);

    }

    writeMessage = writeQueue.peek();

    }

    if (writeMessage != null) {

    try {

    session.pendingWrite(writeMessage);

    } catch(IOException e){

    session.onException(e);session.close();

    }

    compete方法中的result就是实际写入的字节数,然后我们判断消息的缓冲区是否还有剩余,如果没有就将消息从队列中移除,如果队列中还有消息,那么继续发起write调用。

    重复一下,这里引用的代码都是yanf4j aio分支中的源码,感兴趣的朋友可以直接check out出来看看: http://yanf4j.googlecode.com/svn/branches/yanf4j-aio.在引入了aio之后,java对于网络层的支持已经非常完善,该有的都有了,java也已经成为服务器开发的首选语言之一。java的弱项在于对内存的管理上,由于这一切都交给了GC,因此在高性能的网络服务器上还是Cpp的天下。java这种单一堆模型比之erlang的进程内堆模型还是有差距,很难做到高效的垃圾回收和细粒度的内存管理。

    这里仅仅是介绍了aio开发的核心流程,对于一个网络框架来说,还需要考虑超时的处理、缓冲buffer的处理、业务层和网络层的切分、可扩展性、性能的可调性以及一定的通用性要求。




只有注册用户登录后才能发表评论。


网站导航: