[来自]http://java.ccidnet.com/art/3737/20050409/454831_1.html
一、反射的概念 :
Java中,反射是一种强大的工具。它使您能够创建灵活的代码,这些代码可以在运行时装配,无需在组件之间进行源代
表链接。反射允许我们在编写与执
行时,使我们的程序代码能够接入装载到JVM中的类的内部信息,而不是源代码中选定的类协作的代码。这使反射成为构建灵活的应用的主要工具。但需注意的
是:如果使用不当,反射的成本很高。
二、Java中的类反射:
Reflection 是 Java 程序开发语言的特征之一,它允许运行中的 Java
程序对自身进行检查,或者说“自审”,并能直接操作程序 的内部属性。Java
的这一能力在实际应用中也许用得不是很多,但是在其它的程序设计语言中根本就不存在这一特性。例如,Pascal、C 或者 C+ +
中就没有办法在程序中获得函数定义相关的信息。
1.检测类:
1.1 reflection的工作机制
考虑下面这个简单的例子,让我们看看 reflection 是如何工作的。
import java.lang.reflect.*;
public class DumpMethods {
public static void main(String args[]) {
try {
Class c = Class.forName(args[0]);
Method m[] = c.getDeclaredMethods();
for (int i = 0; i < m.length; i++)
System.out.println(m[i].toString());
} catch (Throwable e) {
System.err.println(e);
}
}
}
按如下语句执行:
java DumpMethods java.util.Stack
它的结果输出为:
public java.lang.Object java.util.Stack.push(java.lang.Object)
public synchronized java.lang.Object java.util.Stack.pop()
public synchronized java.lang.Object java.util.Stack.peek()
public boolean java.util.Stack.empty()
public synchronized int java.util.Stack.search(java.lang.Object)
这样就列出了java.util.Stack 类的各方法名以及它们的限制符和返回类型。
这个程序使用 Class.forName 载入指定的类,然后调用 getDeclaredMethods 来获取这个类中定义了的方法列表。java.lang.reflect.Methods 是用来描述某个类中单个方法的一个类。
1.2 Java类反射中的主要方法
对于以下三类组件中的任何一类来说 -- 构造函数、字段和方法 -- java.lang.Class 提供四种独立的反射调用,以不同的方式来获得信息。调用都遵循一种标准格式。以下是用于查找构造函数的一组反射调用:
Constructor getConstructor(Class[] params) -- 获得使用特殊的参数类型的公共构造函数,
Constructor[] getConstructors() -- 获得类的所有公共构造函数
Constructor getDeclaredConstructor(Class[] params) -- 获得使用特定参数类型的构造函数(与接入级别无关)
Constructor[] getDeclaredConstructors() -- 获得类的所有构造函数(与接入级别无关)
获得字段信息的Class 反射调用不同于那些用于接入构造函数的调用,在参数类型数组中使用了字段名:
Field getField(String name) -- 获得命名的公共字段
Field[] getFields() -- 获得类的所有公共字段
Field getDeclaredField(String name) -- 获得类声明的命名的字段
Field[] getDeclaredFields() -- 获得类声明的所有字段
用于获得方法信息函数:
Method getMethod(String name, Class[] params) -- 使用特定的参数类型,获得命名的公共方法
Method[] getMethods() -- 获得类的所有公共方法
Method getDeclaredMethod(String name, Class[] params) -- 使用特写的参数类型,获得类声明的命名的方法
Method[] getDeclaredMethods() -- 获得类声明的所有方法
1.3开始使用 Reflection:
用于 reflection 的类,如 Method,可以在
java.lang.relfect 包中找到。使用这些类的时候必须要遵循三个步骤:第一步是获得你想操作的类的 java.lang.Class
对象。在运行中的 Java 程序中,用 java.lang.Class 类来描述类和接口等。
下面就是获得一个 Class 对象的方法之一:
Class c = Class.forName("java.lang.String");
这条语句得到一个 String 类的类对象。还有另一种方法,如下面的语句:
Class c = int.class;
或者
Class c = Integer.TYPE;
它们可获得基本类型的类信息。其中后一种方法中访问的是基本类型的封装类 (如 Integer) 中预先定义好的 TYPE 字段。
第二步是调用诸如 getDeclaredMethods 的方法,以取得该类中定义的所有方法的列表。
一旦取得这个信息,就可以进行第三步了——使用 reflection API 来操作这些信息,如下面这段代码:
Class c = Class.forName("java.lang.String");
Method m[] = c.getDeclaredMethods();
System.out.println(m[0].toString());
它将以文本方式打印出 String 中定义的第一个方法的原型。
在下面的例子中,这三个步骤将为使用 reflection 处理特殊应用程序提供例证。
模拟 instanceof 操作符
得到类信息之后,通常下一个步骤就是解决关于 Class 对象的一些基本的问题。例如,Class.isInstance 方法可以用于模拟 instanceof 操作符:
class A {
}
public class instance1 {
public static void main(String args[]) {
try {
Class cls = Class.forName("A");
boolean b1 = cls.isInstance(new Integer(37));
System.out.println(b1);
boolean b2 = cls.isInstance(new A());
System.out.println(b2);
} catch (Throwable e) {
System.err.println(e);
}
}
}
在这个例子中创建了一个 A 类的 Class 对象,然后检查一些对象是否是 A 的实例。Integer(37) 不是,但 new A() 是。
1.4 找出类的方法
找出一个类中定义了些什么方法,这是一个非常有价值也非常基础的 reflection 用法。下面的代码就实现了这一用法:
import java.lang.reflect.*;
public class method1 {
private int f1(Object p, int x) throws NullPointerException {
if (p == null)
throw new NullPointerException();
return x;
}
public static void main(String args[]) {
try {
Class cls = Class.forName("method1");
Method methlist[] = cls.getDeclaredMethods();
for (int i = 0; i < methlist.length; i++) {
Method m = methlist[i];
System.out.println("name = " + m.getName());
System.out.println("decl class = " + m.getDeclaringClass());
Class pvec[] = m.getParameterTypes();
for (int j = 0; j < pvec.length; j++)
System.out.println("param #" + j + " " + pvec[j]);
Class evec[] = m.getExceptionTypes();
for (int j = 0; j < evec.length; j++)
System.out.println("exc #" + j + " " + evec[j]);
System.out.println("return type = " + m.getReturnType());
System.out.println("-----");
}
} catch (Throwable e) {
System.err.println(e);
}
}
}
这
个程序首先取得 method1 类的描述,然后调用 getDeclaredMethods 来获取一系列的 Method
对象,它们分别描述了定义在类中的每一个方法,包括 public 方法、protected 方法、package 方法和 private
方法等。如果你在程序中使用 getMethods 来代替 getDeclaredMethods,你还能获得继承来的各个方法的信息。
取得了 Method 对象列表之后,要显示这些方法的参数类型、异常类型和返回值类型等就不难了。这些类型是基本类型还是类类型,都可以由描述类的对象按顺序给出。
输出的结果如下:
name = f1
decl class = class method1
param #0 class java.lang.Object
param #1 int
exc #0 class java.lang.NullPointerException
return type = int
-----
name = main
decl class = class method1
param #0 class [Ljava.lang.String;
return type = void
-----
1.5 获取构造器信息
获取类构造器的用法与上述获取方法的用法类似,如:
import java.lang.reflect.*;
public class constructor1 {
public constructor1() {
}
protected constructor1(int i, double d) {
}
public static void main(String args[]) {
try {
Class cls = Class.forName("constructor1");
Constructor ctorlist[] = cls.getDeclaredConstructors();
for (int i = 0; i < ctorlist.length; i++) {
Constructor ct = ctorlist[i];
System.out.println("name = " + ct.getName());
System.out.println("decl class = " + ct.getDeclaringClass());
Class pvec[] = ct.getParameterTypes();
for (int j = 0; j < pvec.length; j++)
System.out.println("param #" + j + " " + pvec[j]);
Class evec[] = ct.getExceptionTypes();
for (int j = 0; j < evec.length; j++)
System.out.println("exc #" + j + " " + evec[j]);
System.out.println("-----");
}
} catch (Throwable e) {
System.err.println(e);
}
}
}
这个例子中没能获得返回类型的相关信息,那是因为构造器没有返回类型。
这个程序运行的结果是:
name = constructor1
decl class = class constructor1
-----
name = constructor1
decl class = class constructor1
param #0 int
param #1 double
-----
1.6获取类的字段(域)
找出一个类中定义了哪些数据字段也是可能的,下面的代码就在干这个事情:
例1:
import java.lang.reflect.*;
public class field1 {
private double d;
public static final int i = 37;
String s = "testing";
public static void main(String args[]) {
try {
Class cls = Class.forName("field1");
Field fieldlist[] = cls.getDeclaredFields();
for (int i = 0; i < fieldlist.length; i++) {
Field fld = fieldlist[i];
System.out.println("name = " + fld.getName());
System.out.println("decl class = " + fld.getDeclaringClass());
System.out.println("type = " + fld.getType());
int mod = fld.getModifiers();
System.out.println("modifiers = " + Modifier.toString(mod));
System.out.println("-----");
}
} catch (Throwable e) {
System.err.println(e);
}
}
}
这
个例子和前面那个例子非常相似。例中使用了一个新东西 Modifier,它也是一个 reflection
类,用来描述字段成员的修饰语,如“private int”。这些修饰语自身由整数描述,而且使用 Modifier.toString
来返回以“官方”顺序排列的字符串描述 (如“static”在“final”之前)。这个程序的输出是:
name = d
decl class = class field1
type = double
modifiers = private
-----
name = i
decl class = class field1
type = int
modifiers = public static final
-----
name = s
decl class = class field1
type = class java.lang.String
modifiers =
-----
例2:
import java.lang.reflect.*;
import java.awt.*;
class SampleGet {
public static void main(String[] args) {
Rectangle r = new Rectangle(100, 325);
printHeight(r);
}
static void printHeight(Rectangle r) {
Field heightField;
Integer heightValue;
Class c = r.getClass();
try {
heightField = c.getField("height");//取得height这个变量
heightValue = (Integer) heightField.get(r);//取得height这个变量的值
System.out.println("Height: " + heightValue.toString());
} catch (NoSuchFieldException e) {
System.out.println(e);
} catch (SecurityException e) {
System.out.println(e);
} catch (IllegalAccessException e) {
System.out.println(e);
}
}
}
输出: Height:325
和获取方法的情况一下,获取字段的时候也可以只取得在当前类中申明了的字段信息 (getDeclaredFields),或者也可以取得父类中定义的字段 (getFields) 。
1.7 根据方法的名称来执行方法
文本到这里,所举的例子无一例外都与如何获取类的信息有关。我们也可以用 reflection 来做一些其它的事情,比如执行一个指定了名称的方法。下面的示例演示了这一操作:
例1:
import java.lang.reflect.*;
public class method2 {
public int add(int a, int b) {
return a + b;
}
public static void main(String args[]) {
try {
Class cls = Class.forName("method2");
Class partypes[] = new Class[2];
partypes[0] = Integer.TYPE;
partypes[1] = Integer.TYPE;
Method meth = cls.getMethod("add", partypes);
method2 methobj = new method2();
Object arglist[] = new Object[2];
arglist[0] = new Integer(37);
arglist[1] = new Integer(47);
Object retobj = meth.invoke(methobj, arglist);
Integer retval = (Integer) retobj;
System.out.println(retval.intvalue());
} catch (Throwable e) {
System.err.println(e);
}
}
}
假如一个程序在执行的某处的时候才知道需要执行某个方法,这个方法的名称是在程序的运行过程中指定的 (例如,JavaBean 开发环境中就会做这样的事),那么上面的程序演示了如何做到。
上
例中,getMethod 用于查找一个具有两个整型参数且名为 add 的方法。找到该方法并创建了相应的 Method
对象之后,在正确的对象实例中执行它。执行该方法的时候,需要提供一个参数列表,这在上例中是分别包装了整数 37 和 47 的两个 Integer
对象。执行方法的返回的同样是一个 Integer 对象,它封装了返回值 84。
例2:
import java.lang.reflect.Method;
//Base.java 抽象基类
//Son1.java 基类扩展1
//Son2.java 基类扩展2
//Util.java
//Base.java 抽象基类只是一个定义
abstract class Base {
}
//Son1.java 是已经实现的Base
class Son1 extends Base {
private int id;
private String name;
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public void son1Method(String s) {
System.out.println(s);
}
}
// Son2.java 是已经实现的Base
class Son2 extends Base {
private int id;
private double salary;
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public double getSalary() {
return salary;
}
public void setSalary(double salary) {
this.salary = salary;
}
}
// Util.java 演示了如何根据指定的类名,类字段名和所对应的数据,得到一个类的实例
public class Util {
// 此方法的最大好处是没有类名Son1,Son2 可以通过参数来指定,程序里面根本不用出现
public static Base utilDo(String beanName,
String methodName, String paraValue) {
Base base = null;
try {
Class cls = Class.forName(beanName);//生成类
base = (Base) cls.newInstance();//生成类的对象
Class[] paraTypes = new Class[] { String.class};
Method method = cls.getMethod(methodName, paraTypes);// fieldSetter为方法的名称;paraTypes为该方法的参数数组,要用类的形式
String[] paraValues = new String[] { paraValue };
method.invoke(base, paraValues);//执行方法
} catch (Throwable e) {
System.err.println(e);
}
return base;
}
public static void main(String[] args) {
Son1 son1 = (Son1) Util.utilDo("test.Reflection.Son1",
"setName", "I am son1");// 表示类的字符串一定要是类的“全类名”,这里是test.Reflection.Son1
System.out.println("son1.getName() :" + son1.getName());
}
}
输出:son1.getName() :I am son1
1.8 创建新的对象
对于构造器,则不能像执行方法那样进行,因为执行一个构造器就意味着创建了一个新的对象 (准确的说,创建一个对象的过程包括分配内存和构造对象)。所以,与上例最相似的例子如下:
import java.lang.reflect.*;
public class constructor2 {
public constructor2() {
}
public constructor2(int a, int b) {
System.out.println("a = " + a + " b = " + b);
}
public static void main(String args[]) {
try {
Class cls = Class.forName("constructor2");
Class partypes[] = new Class[2];
partypes[0] = Integer.TYPE;
partypes[1] = Integer.TYPE;
Constructor ct = cls.getConstructor(partypes);
Object arglist[] = new Object[2];
arglist[0] = new Integer(37);
arglist[1] = new Integer(47);
Object retobj = ct.newInstance(arglist);
} catch (Throwable e) {
System.err.println(e);
}
}
}
根据指定的参数类型找到相应的构造函数并执行它,以创建一个新的对象实例。使用这种方法可以在程序运行时动态地创建对象,而不是在编译的时候创建对象,这一点非常有价值。
1.9 改变字段(域)的值
reflection 的还有一个用处就是改变对象数据字段的值。reflection 可以从正在运行的程序中根据名称找到对象的字段并改变它,下面的例子可以说明这一点:
import java.lang.reflect.*;
public class field2 {
public double d;
public static void main(String args[]) {
try {
Class cls = Class.forName("field2");
Field fld = cls.getField("d");
field2 f2obj = new field2();
System.out.println("d = " + f2obj.d);
fld.setDouble(f2obj, 12.34);
System.out.println("d = " + f2obj.d);
} catch (Throwable e) {
System.err.println(e);
}
}
}
这个例子中,字段 d 的值被变为了 12.34。
1.10 使用数组
本文介绍的 reflection 的最后一种用法是创建的操作数组。数组在 Java 语言中是一种特殊的类类型,一个数组的引用可以赋给 Object 引用。观察下面的例子看看数组是怎么工作的:
import java.lang.reflect.*;
public class array1 {
public static void main(String args[]) {
try {
Class cls = Class.forName("java.lang.String");
Object arr = Array.newInstance(cls, 10);
Array.set(arr, 5, "this is a test");
String s = (String) Array.get(arr, 5);
System.out.println(s);
} catch (Throwable e) {
System.err.println(e);
}
}
}
例中创建了 10 个单位长度的 String 数组,为第 5 个位置的字符串赋了值,最后将这个字符串从数组中取得并打印了出来。
下面这段代码提供了一个更复杂的例子:
import java.lang.reflect.*;
public class array2 {
public static void main(String args[]) {
int dims[] = new int[]{5, 10, 15};
Object arr = Array.newInstance(Integer.TYPE, dims);
Object arrobj = Array.get(arr, 3);
Class cls = arrobj.getClass().getComponentType();
System.out.println(cls);
arrobj = Array.get(arrobj, 5);
Array.setInt(arrobj, 10, 37);
int arrcast[][][] = (int[][][]) arr;
System.out.println(arrcast[3][5][10]);
}
}
例
中创建了一个 5 x 10 x 15 的整型数组,并为处于 [3][5][10] 的元素赋了值为
37。注意,多维数组实际上就是数组的数组,例如,第一个 Array.get 之后,arrobj 是一个 10 x 15
的数组。进而取得其中的一个元素,即长度为 15 的数组,并使用 Array.setInt 为它的第 10 个元素赋值。
注意创建数组时的类型是动态的,在编译时并不知道其类型。