guozhang

Java Beginner

Differential of matrix

Differential of matrix(1)

      This artical introduces the simplest theory of differential of matrix. Here, a matrix every element of which is a function of a variable is disscussed.(Quite simple, huh)

1. Definition

    Let A be a matrix each element of which is a function of variable t,

1.JPG

If t is defined at a range from a and b, i.e., t[a, b], A(t) is claimed to be defined within region [a, b];

If each element aij(t) is continuous, differentiable, integrable, A(t) is said to be continuous, differentiable, integrable respectively.

When A(t) is differentiable, its differential is defined as

2.JPG


    Similarly, the integral of A(t) when it’s integrable is defined as

                                       
3.JPG

2. Application

1). 4.JPG

Proof:
    5.JPG

                  6.JPG

2).7.JPG

Proof:
    Suppose 8.JPG, 9.JPG, the element at the ith row and jth

column of their product matrix A(t)B(t) is

                                       10.JPG
Therefore,
                11.JPG

                 12.JPG

                 13.JPG

                14.JPG

                 
                           15.JPG
 

Note

     The differential 
               16.JPG 
    is correct when A(t) and B(t) are multipliable, otherwise A(t)B(t) will become meaningless.  Another pitfall is that you cannot take it for granted that the following formula is right as well,
               
17.JPG

      As a matter of fact, it is incorrect indeed. There is a quick and simple way to acquire yourself. A(t) is an m×n dimensional matrix, and B(t) n×p, so 
                                           18.JPG 

is meaningless.

3). 19.JPG


Proof:
        The matrix tA=(taij)m
×n and the exponent function of tA is
                                    
20.JPG

According to the definition of the differential of matrix,   
                   21.JPG


4).  22.JPG

Proof:
        The matrix tA=(taij)m
×n and the sine function of tA is
                                 
23.JPG

According to the definition of the differential of matrix, 
              24.JPG
Applying the same approach, we can proof its counterpart,

                                 25.JPG


posted on 2005-12-29 17:37 Guo Zhang 阅读(421) 评论(0)  编辑  收藏 所属分类: 数理统计


只有注册用户登录后才能发表评论。


网站导航:
 
<2024年12月>
24252627282930
1234567
891011121314
15161718192021
22232425262728
2930311234

导航

统计

常用链接

留言簿(1)

随笔档案

文章分类

文章档案

收藏夹

搜索

最新随笔

最新评论

阅读排行榜

评论排行榜