hengheng123456789

  BlogJava :: 首页 :: 联系 :: 聚合  :: 管理
  297 Posts :: 68 Stories :: 144 Comments :: 0 Trackbacks
 

Concurrency

Computer users take it for granted that their systems can do more than one thing at a time. They assume that they can continue to work in a word processor, while other applications download files, manage the print queue, and stream audio. Even a single application is often expected to do more than one thing at a time. For example, that streaming audio application must simultaneously read the digital audio off the network, decompress it, manage playback, and update its display. Even the word processor should always be ready to respond to keyboard and mouse events; no matter how busy it is reformatting text or updating the display. Software that can do such things is known as concurrent software.

The Java platform is designed from the ground up to support concurrent programming, with basic concurrency support in the Java programming language and the Java class libraries. Since version 5.0, the Java platform has also included high-level concurrency APIs. This lesson introduces the platform's basic concurrency support and summarizes some of the high-level APIs in the java.util.concurrent packages.

Processes and Threads

In concurrent programming, there are two basic units of execution: processes and threads. In the Java programming language, concurrent programming is mostly concerned with threads. However, processes are also important.

A computer system normally has many active processes and threads. This is true even in systems that only have a single execution core, and thus only have one thread actually executing at any given moment. Processing time for a single core is shared among processes and threads through an OS feature called time slicing.

It's becoming more and more common for computer systems to have multiple processors or processors with multiple execution cores. This greatly enhances a system's capacity for concurrent execution of processes and threads — but concurrency is possible even on simple systems, without multiple processors or execution cores.

Processes

A process has a self-contained execution environment. A process generally has a complete, private set of basic run-time resources; in particular, each process has its own memory space.

Processes are often seen as synonymous with programs or applications. However, what the user sees as a single application may in fact be a set of cooperating processes. To facilitate communication between processes, most operating systems support Inter Process Communication (IPC) resources, such as pipes and sockets. IPC is used not just for communication between processes on the same system, but processes on different systems.

Most implementations of the Java virtual machine run as a single process. A Java application can create additional processes using a ProcessBuilder object. Multiprocess applications are beyond the scope of this lesson.

Threads

Threads are sometimes called lightweight processes. Both processes and threads provide an execution environment, but creating a new thread requires fewer resources than creating a new process.

Threads exist within a process — every process has at least one. Threads share the process's resources, including memory and open files. This makes for efficient, but potentially problematic, communication.

Multithreaded execution is an essential feature of the Java platform. Every application has at least one thread — or several, if you count "system" threads that do things like memory management and signal handling. But from the application programmer's point of view, you start with just one thread, called the main thread. This thread has the ability to create additional threads, as we'll demonstrate in the next section.

Thread Objects

Each thread is associated with an instance of the class Thread. There are two basic strategies for using Thread objects to create a concurrent application.

·       To directly control thread creation and management, simply instantiate Thread each time the application needs to initiate an asynchronous task.

·       To abstract thread management from the rest of your application, pass the application's tasks to an executor.

This section documents the use of Thread objects. Executors are discussed with other high-level concurrency objects.

Defining and Starting a Thread

An application that creates an instance of Thread must provide the code that will run in that thread. There are two ways to do this:

·       Provide a Runnable object. The Runnable interface defines a single method, run, meant to contain the code executed in the thread. The Runnable object is passed to the Thread constructor, as in the HelloRunnable example:

public class HelloRunnable implements Runnable {

    public void run() {

        System.out.println("Hello from a thread!");

    }

    public static void main(String args[]) {

        (new Thread(new HelloRunnable())).start();

    }

}

·       Subclass Thread. The Thread class itself implements Runnable, though its run method does nothing. An application can subclass Thread, providing its own implementation of run, as in the HelloThread example:

public class HelloThread extends Thread {

    public void run() {

        System.out.println("Hello from a thread!");

    }

    public static void main(String args[]) {

        (new HelloThread()).start();

    }

}

Notice that both examples invoke Thread.start in order to start the new thread.

Which of these idioms should you use?

The first idiom, which employs a Runnable object, is more general, because the Runnable object cans subclass a class other than Thread.

The second idiom is easier to use in simple applications, but is limited by the fact that your task class must be a descendant of Thread. This lesson focuses on the first approach, which separates the Runnable task from the Thread object that executes the task. Not only is this approach more flexible, but it is applicable to the high-level thread management APIs covered later.

The Thread class defines a number of methods useful for thread management. These include static methods, which provide information about, or affect the status of, the thread invoking the method. The other methods are invoked from other threads involved in managing the thread and Thread object. We'll examine some of these methods in the following sections.

Pausing Execution with Sleep

Thread.sleep causes the current thread to suspend execution for a specified period. This is an efficient means of making processor time available to the other threads of an application or other applications that might be running on a computer system. The sleep method can also be used for pacing, as shown in the example that follows, and waiting for another thread with duties that are understood to have time requirements, as with the SimpleThreads example in a later section.

Two overloaded versions of sleep are provided:

one that specifies the sleep time to the millisecond and one that specifies the sleep time to the nanosecond. However, these sleep times are not guaranteed to be precise, because they are limited by the facilities provided by the underlying OS. Also, the sleep period can be terminated by interrupts, as we'll see in a later section. In any case, you cannot assume that invoking sleep will suspend the thread for precisely the time period specified.

The SleepMessages example uses sleep to print messages at four-second intervals:

public class SleepMessages {

    public static void main(String args[]) throws InterruptedException {

        String importantInfo[] = {

            "Mares eat oats",

            "Does eat oats",

            "Little lambs eat ivy",

            "A kid will eat ivy too"

        };

        for (int i = 0; i < importantInfo.length; i++) {

            //Pause for 4 seconds

            Thread.sleep(4000);

            //Print a message

            System.out.println(importantInfo[i]);

        }

    }

}

Notice that main declares that it throws InterruptedException. This is an exception that sleep throws when another thread interrupts the current thread while sleep is active. Since this application has not defined another thread to cause the interrupt, it doesn't bother to catch InterruptedException.

Interrupts

An interrupt is an indication to a thread that it should stop what it is doing and do something else. It's up to the programmer to decide exactly how a thread responds to an interrupt, but it is very common for the thread to terminate. This is the usage emphasized in this lesson.

A thread sends an interrupt by invoking interrupt on the Thread object for the thread to be interrupted. For the interrupt mechanism to work correctly, the interrupted thread must support its own interruption.

Supporting Interruption

How does a thread support its own interruption? This depends on what it's currently doing. If the thread is frequently invoking methods that throw InterruptedException, it simply returns from the run method after it catches that exception. For example, suppose the central message loop in the SleepMessages example were in the run method of a thread's Runnable object. Then it might be modified as follows to support interrupts:

for (int i = 0; i < importantInfo.length; i++) {

    //Pause for 4 seconds

    try {

        Thread.sleep(4000);

    } catch (InterruptedException e) {

        //We've been interrupted: no more messages.

        return;

    }

    //Print a message

    System.out.println(importantInfo[i]);

}

Many methods that throw InterruptedException, such as sleep, are designed to cancel their current operation and return immediately when an interrupt is received.

What if a thread goes a long time without invoking a method that throws InterruptedException? Then it must periodically invoke Thread.interrupted, which returns true if an interrupt has been received. For example:

for (int i = 0; i < inputs.length; i++) {

    heavyCrunch(inputs[i]);

    if (Thread.interrupted()) {

        //We've been interrupted: no more crunching.

        return;

    }

}

In this simple example, the code simply tests for the interrupt and exits the thread if one has been received. In more complex applications, it might make more sense to throw an InterruptedException:

if (Thread.interrupted()) {

    throw new InterruptedException();

}

This allows interrupt handling code to be centralized in a catch clause.

The Interrupt Status Flag

The interrupt mechanism is implemented using an internal flag known as the interrupt status. Invoking Thread.interrupt sets this flag. When a thread checks for an interrupt by invoking the static method Thread.interrupted, interrupt status is cleared. The non-static Thread.isInterrupted, which is used by one thread to query the interrupt status of another, does not change the interrupt status flag.

By convention, any method that exits by throwing an InterruptedException clears interrupt status when it does so. However, it's always possible that interrupt status will immediately be set again, by another thread invoking interrupt.

Joins

The join method allows one thread to wait for the completion of another. If t is a Thread object whose thread is currently executing,

t.join();

causes the current thread to pause execution until t's thread terminates. Overloads of join allow the programmer to specify a waiting period. However, as with sleep, join is dependent on the OS for timing, so you should not assume that join will wait exactly as long as you specify.

Like sleep, join responds to an interrupt by exiting with an InterruptedException.

The SimpleThreads Example

The following example brings together some of the concepts of this section. SimpleThreads consists of two threads. The first is the main thread that every Java application has. The main thread creates a new thread from the Runnable object, MessageLoop, and waits for it to finish. If the MessageLoop thread takes too long to finish, the main thread interrupts it.

The MessageLoop thread prints out a series of messages. If interrupted before it has printed all its messages, the MessageLoop thread prints a message and exits.

public class SimpleThreads {

    //Display a message, preceded by the name of the current thread

    static void threadMessage(String message) {

        String threadName = Thread.currentThread().getName();

        System.out.format("%s: %s%n", threadName, message);

    }

    private static class MessageLoop implements Runnable {

        public void run() {

            String importantInfo[] = {

                "Mares eat oats",

                "Does eat oats",

                "Little lambs eat ivy",

                "A kid will eat ivy too"

            };

            try {

                for (int i = 0; i < importantInfo.length; i++) {

                    //Pause for 4 seconds

                    Thread.sleep(4000);

                    //Print a message

                    threadMessage(importantInfo[i]);

                }

            } catch (InterruptedException e) {

                threadMessage("I wasn't done!");

            }

        }

    }

    public static void main(String args[]) throws InterruptedException {

        //Delay, in milliseconds before we interrupt MessageLoop

        //thread (default one hour).

        long patience = 1000 * 60 * 60;

        //If command line argument present, gives patience in seconds.

        if (args.length > 0) {

            try {

                patience = Long.parseLong(args[0]) * 1000;

            } catch (NumberFormatException e) {

                System.err.println("Argument must be an integer.");

                System.exit(1);

            }

        }

        threadMessage("Starting MessageLoop thread");

        long startTime = System.currentTimeMillis();

        Thread t = new Thread(new MessageLoop());

        t.start();

        threadMessage("Waiting for MessageLoop thread to finish");

        //loop until MessageLoop thread exits

        while (t.isAlive()) {

            threadMessage("Still waiting...");

            //Wait maximum of 1 second for MessageLoop thread to

            //finish.

            t.join(1000);

            if (((System.currentTimeMillis() - startTime) > patience) &&

                    t.isAlive()) {

                threadMessage("Tired of waiting!");

                t.interrupt();

                //Shouldn't be long now -- wait indefinitely

                t.join();

            }

        }

        threadMessage("Finally!");

    }

}

Synchronization

Threads communicate primarily by sharing access to fields and the objects reference fields refer to. This form of communication is extremely efficient, but makes two kinds of errors possible: thread interference and memory consistency errors. The tool needed to prevent these errors is synchronization.

  • Thread Interference describes how errors are introduced when multiple threads access shared data.
  • Memory Consistency Errors describes errors that result from inconsistent views of shared memory.
  • Synchronized Methods describes a simple idiom that can effectively prevent thread interference and memory consistency errors.
  • Implicit Locks and Synchronization describes a more general synchronization idiom, and describes how synchronization is based on implicit locks.
  • Atomic Access talks about the general idea of operations that can't be interfered with by other threads.

Thread Interference

Consider a simple class called Counter

class Counter {

    private int c = 0;

    public void increment() {

        c++;

    }

    public void decrement() {

        c--;

    }

    public int value() {

        return c;

    }

}

Counter is designed so that each invocation of increment will add 1 to c, and each invocation of decrement will subtract 1 from c. However, if a Counter object is referenced from multiple threads, interference between threads may prevent this from happening as expected.

Interference happens when two operations, running in different threads, but acting on the same data, interleave. This means that the two operations consist of multiple steps, and the sequences of steps overlap.

It might not seem possible for operations on instances of Counter to interleave, since both operations on c are single, simple statements. However, even simple statements can translate to multiple steps by the virtual machine. We won't examine the specific steps the virtual machine takes — it is enough to know that the single expression c++ can be decomposed into three steps:

  1. Retrieve the current value of c.
  2. Increment the retrieved value by 1.
  3. Store the incremented value back in c.

The expression c-- can be decomposed the same way, except that the second step decrements instead of increments.

Suppose Thread A invokes increment at about the same time Thread B invokes decrement. If the initial value of c is 0, their interleaved actions might follow this sequence:

  1. Thread A: Retrieve c.
  2. Thread B: Retrieve c.
  3. Thread A: Increment retrieved value; result is 1.
  4. Thread B: Decrement retrieved value; result is -1.
  5. Thread A: Store result in c; c is now 1.
  6. Thread B: Store result in c; c is now -1.

Thread A's result is lost, overwritten by Thread B. This particular interleaving is only one possibility. Under different circumstances it might be Thread B's result that gets lost, or there could be no error at all. Because they are unpredictable, thread interference bugs can be difficult to detect and fix.

Memory Consistency Errors

Memory consistency errors occur when different threads have inconsistent views of what should be the same data. The causes of memory consistency errors are complex and beyond the scope of this tutorial. Fortunately, the programmer does not need a detailed understanding of these causes. All that is needed is a strategy for avoiding them.

The key to avoiding memory consistency errors is understanding the happens-before relationship.

Happens-before关系定义为:

-同一进程内a发生先于b,则a->b(箭头->表示happens-before关系)

-a是进程1发送消息的事件,而b是进程2接收到那个消息的事件,则a->b

-happens-before关系是可传递的,a->b and b->c则a->c

-如果以上都不能确定关系的x和y,称它们为并行的事件(a||b)

This relationship is simply a guarantee that memory writes by one specific statement are visible to another specific statement. To see this, consider the following example. Suppose a simple int field is defined and initialized:

int counter = 0;

The counter field is shared between two threads, A and B. Suppose thread A increments counter:

counter++;

Then, shortly afterwords, thread B prints out counter:

System.out.println(counter);

If the two statements had been executed in the same thread, it would be safe to assume that the value printed out would be "1". But if the two statements are executed in separate threads, the value printed out might well be "0", because there's no guarantee that thread A's change to counter will be visible to thread B — unless the programmer has established a happens-before relationship between these two statements.

There are several actions that create happens-before relationships. One of them is synchronization, as we will see in the following sections.

We've already seen two actions that create happens-before relationships.

  • When a statement invokes Thread.start, every statement that has a happens-before relationship with that statement also has a happens-before relationship with every statement executed by the new thread. The effects of the code that led up to the creation of the new thread are visible to the new thread.
  • When a thread terminates and causes a Thread.join in another thread to return, then all the statements executed by the terminated thread have a happens-before relationship with all the statements following the successful join. The effects of the code in the thread are now visible to the thread that performed the join.

For a list of actions that create happens-before relationships, refer to the Summary page of the java.util.concurrent package..

Synchronized Methods

The Java programming language provides two basic synchronization idioms: synchronized methods and synchronized statements. The more complex of the two, synchronized statements, are described in the next section. This section is about synchronized methods.

To make a method synchronized, simply add the synchronized keyword to its declaration:

public class SynchronizedCounter {

    private int c = 0;

    public synchronized void increment() {

        c++;

    }

    public synchronized void decrement() {

        c--;

    }

    public synchronized int value() {

        return c;

    }

}

If count is an instance of SynchronizedCounter, then making these methods synchronized has two effects:

  • First, it is not possible for two invocations of synchronized methods on the same object to interleave. When one thread is executing a synchronized method for an object, all other threads that invoke synchronized methods for the same object block (suspend execution) until the first thread is done with the object.
  • Second, when a synchronized method exits, it automatically establishes a happens-before relationship with any subsequent invocation of a synchronized method for the same object. This guarantees that changes to the state of the object are visible to all threads.

Note that constructors cannot be synchronized — using the synchronized keyword with a constructor is a syntax error. Synchronizing constructors doesn't make sense, because only the thread that creates an object should have access to it while it is being constructed.


Warning:  When constructing an object that will be shared between threads, be very careful that a reference to the object does not "leak" prematurely. For example, suppose you want to maintain a List called instances containing every instance of class. You might be tempted to add the line

instances.add(this);

to your constructor. But then other threads can use instances to access the object before construction of the object is complete.


Synchronized methods enable a simple strategy for preventing thread interference and memory consistency errors: if an object is visible to more than one thread, all reads or writes to that object's variables are done through synchronized methods. (An important exception: final fields, which cannot be modified after the object is constructed, can be safely read through non-synchronized methods, once the object is constructed) This strategy is effective, but can present problems with liveness, as we'll see later in this lesson.

Intrinsic Locks and Synchronization

Synchronization is built around an internal entity known as the intrinsic lock or monitor lock. (The API specification often refers to this entity simply as a "monitor.") Intrinsic locks play a role in both aspects of synchronization: enforcing exclusive access to an object's state and establishing happens-before relationships that are essential to visibility.

Every object has an intrinsic lock associated with it. By convention, a thread that needs exclusive and consistent access to an object's fields has to acquire the object's intrinsic lock before accessing them, and then release the intrinsic lock when it's done with them. A thread is said to own the intrinsic lock between the time it has acquired the lock and released the lock. As long as a thread owns an intrinsic lock, no other thread can acquire the same lock. The other thread will block when it attempts to acquire the lock.

When a thread releases an intrinsic lock, a happens-before relationship is established between that action and any subsequent acquisition of the same lock.

Locks In Synchronized Methods

When a thread invokes a synchronized method, it automatically acquires the intrinsic lock for that method's object and releases it when the method returns. The lock release occurs even if the return was caused by an uncaught exception.

You might wonder what happens when a static synchronized method is invoked, since a static method is associated with a class, not an object. In this case, the thread acquires the intrinsic lock for the Class object associated with the class. Thus access to class's static fields is controlled by a lock that's distinct from the lock for any instance of the class.

Synchronized Statements

Another way to create synchronized code is with synchronized statements. Unlike synchronized methods, synchronized statements must specify the object that provides the intrinsic lock:

public void addName(String name) {

    synchronized(this) {

        lastName = name;

        nameCount++;

    }

    nameList.add(name);

}

In this example, the addName method needs to synchronize changes to lastName and nameCount, but also needs to avoid synchronizing invocations of other objects' methods. (Invoking other objects' methods from synchronized code can create problems that are described in the section on Liveness.) Without synchronized statements, there would have to be a separate, unsynchronized method for the sole purpose of invoking nameList.add.

Synchronized statements are also useful for improving concurrency with fine-grained synchronization. Suppose, for example, class MsLunch has two instance fields, c1 and c2, that are never used together. All updates of these fields must be synchronized, but there's no reason to prevent an update of c1 from being interleaved with an update of c2 — and doing so reduces concurrency by creating unnecessary blocking. Instead of using synchronized methods or otherwise using the lock associated with this, we create two objects solely to provide locks.

public class MsLunch {

    private long c1 = 0;

    private long c2 = 0;

    private Object lock1 = new Object();

    private Object lock2 = new Object();

    public void inc1() {

        synchronized(lock1) {

            c1++;

        }

    }

    public void inc2() {

        synchronized(lock2) {

            c2++;

        }

    }

}

Use this idiom with extreme care. You must be absolutely sure that it really is safe to interleave access of the affected fields.

Reentrant Synchronization

Recall that a thread cannot acquire a lock owned by another thread. But a thread can acquire a lock that it already owns. Allowing a thread to acquire the same lock more than once enables reentrant synchronization. This describes a situation where synchronized code, directly or indirectly, invokes a method that also contains synchronized code, and both sets of code use the same lock. Without reentrant synchronization, synchronized code would have to take many additional precautions to avoid having a thread cause itself to block.

Atomic Access

In programming, an atomic action is one that effectively happens all at once. An atomic action cannot stop in the middle: it either happens completely, or it doesn't happen at all. No side effects of an atomic action are visible until the action is complete.

We've already seen that an increment expression, such as c++, does not describe an atomic action. Even very simple expressions can define complex actions that can decompose into other actions. However, there are actions you can specify that are atomic:

  • Reads and writes are atomic for reference variables and for most primitive variables (all types except long and double).
  • Reads and writes are atomic for all variables declared volatile (including long and double variables).

Atomic actions cannot be interleaved, so they can be used without fear of thread interference. However, this does not eliminate all need to synchronize atomic actions, because memory consistency errors are still possible. Using volatile variables reduces the risk of memory consistency errors, because any write to a volatile variable establishes a happens-before relationship with subsequent reads of that same variable. This means that changes to a volatile variable are always visible to other threads. What's more, it also means that when a thread reads a volatile variable, it sees not just the latest change to the volatile, but also the side effects of the code that led up the change.

Using simple atomic variable access is more efficient than accessing these variables through synchronized code, but requires more care by the programmer to avoid memory consistency errors. Whether the extra effort is worthwhile depends on the size and complexity of the application.

Some of the classes in the java.util.concurrent packagesprovide atomic methods that do not rely on synchronization. We'll discuss them in the section on High Level Concurrency Objects.

posted on 2007-09-03 15:20 哼哼 阅读(437) 评论(0)  编辑  收藏 所属分类: JAVA-Common

只有注册用户登录后才能发表评论。


网站导航: