精彩的人生

好好工作,好好生活

BlogJava 首页 新随笔 联系 聚合 管理
  147 Posts :: 0 Stories :: 250 Comments :: 0 Trackbacks

#

作者:cleverpig





版权声明:本文可以自由转载,转载时请务必以超链接形式标明文章原始出处和作者信息及本声明
作者:cleverpig(作者的Blog:http://blog.matrix.org.cn/page/cleverpig)
原文:http://www.matrix.org.cn/resource/article/44/44055_Java+Annotation+Reflect.html
关键字:java,annotation,reflect

前言:
在上篇文章《Java Annotation入门》中概要性的介绍了Annotation的定义、使用,范围涵盖较广,但是深度不够。所以作者在《Java Annotation入门》后,继续整理了Annotation的概念和知识点,与喜欢research的朋友们共享。

阅读提示:文中提到的程序成员或者程序元素是一个概念,指组成程序代码的单元:如类、方法、成员变量。

一、Annotation究竟是什么?

Annotation提供了一条与程序元素关联任何信息或者任何元数据(metadata)的途径。从某些方面看,annotation就像修饰符一样被使用,并应用于包、类型、构造方法、方法、成员变量、参数、本地变量的声明中。这些信息被存储在annotation的“name=value”结构对中。annotation类型是一种接口,能够通过java反射API的方式提供对其信息的访问。

annotation能被用来为某个程序元素(类、方法、成员变量等)关联任何的信息。需要注意的是,这里存在着一个基本的潜规则:annotaion不能影响程序代码的执行,无论增加、删除annotation,代码都始终如一的执行。另外,尽管一些annotation通过java的反射api方法在运行时被访问,而java语言解释器在工作时忽略了这些annotation。正是由于java虚拟机忽略了annotation,导致了annotation类型在代码中是“不起作用”的;只有通过某种配套的工具才会对annotation类型中的信息进行访问和处理。本文中将涵盖标准的annotation和meta-annotation类型,陪伴这些annotation类型的工具是java编译器(当然要以某种特殊的方式处理它们)。

由于上述原因,annotation在使用时十分简便。一个本地变量可以被一个以NonNull命名的annotation类型所标注,来作为对这个本地变量不能被赋予null值的断言。而我们可以编写与之配套的一个annotation代码分析工具,使用它来对具有前面变量的代码进行解析,并且尝试验证这个断言。当然这些代码并不必自己编写。在JDK安装后,在JDK/bin目录中可以找到名为“apt”的工具,它提供了处理annotation的框架:它启动后扫描源代码中的annotation,并调用我们定义好的annotation处理器完成我们所要完成的工作(比如验证前面例子中的断言)。说到这里,annotation的强大功能似乎可以替代XDoclet这类的工具了,随着我们的深入,大家会更加坚信这一点。
注:详细描述请参看jsr250规范:
http://www.jcp.org/aboutJava/communityprocess/pfd/jsr250/

二、Annotation的定义:

这段文字开始介绍annotation相关技术。在此大家将看到java5.0的标准annotation类型,这种标准类型就是前文中所说的“内建”类型,它们可以直接被javac支持。可喜的是,在java6.0beta版中的javac已经加入了对自定义annotation的支持。

1。Annotation的概念和语法:

首先,关键的概念是理解annotation是与一个程序元素相关联信息或者元数据的标注。它从不影响java程序的执行,但是对例如编译器警告或者像文档生成器等辅助工具产生影响。

下面是常用的annotation列表,我们应该注意在annotation和annotation类型之间的不同:

A.annotation:
annotation使用了在java5.0所带来的新语法,它的行为十分类似public、final这样的修饰符。每个annotation具有一个名字和成员个数>=0。每个annotation的成员具有被称为name=value对的名字和值(就像javabean一样),name=value装载了annotation的信息。

B.annotation类型:
annotation类型定义了annotation的名字、类型、成员默认值。一个annotation类型可以说是一个特殊的java接口,它的成员变量是受限制的,而声明annotation类型时需要使用新语法。当我们通过java反射api访问annotation时,返回值将是一个实现了该annotation类型接口的对象,通过访问这个对象我们能方便的访问到其annotation成员。后面的章节将提到在java5.0的java.lang包里包含的3个标准annotation类型。

C.annotation成员:
annotation的成员在annotation类型中以无参数的方法的形式被声明。其方法名和返回值定义了该成员的名字和类型。在此有一个特定的默认语法:允许声明任何annotation成员的默认值:一个annotation可以将name=value对作为没有定义默认值的annotation成员的值,当然也可以使用name=value对来覆盖其它成员默认值。这一点有些近似类的继承特性,父类的构造函数可以作为子类的默认构造函数,但是也可以被子类覆盖。

D.marker annotation类型:
一个没有成员定义的annotation类型被称为marker annotation。这种annotation类型仅使用自身的存在与否来为我们提供信息。如后面要说的Override。

E.meta-annotation:
meta-annotation也称为元annotation,它是被用来声明annotation类型的annotation。Java5.0提供了一些标准的元-annotation类型。下面介绍的target、retention就是meta-annotation。

F.target:
annotation的target是一个被标注的程序元素。target说明了annotation所修饰的对象范围:annotation可被用于packages、types(类、接口、枚举、annotation类型)、类型成员(方法、构造方法、成员变量、枚举值)、方法参数和本地变量(如循环变量、catch参数)。在annotation类型的声明中使用了target可更加明晰其修饰的目标。

G.retention:
annotation的retention定义了该annotation被保留的时间长短:某些annotation仅出现在源代码中,而被编译器丢弃;而另一些却被编译在class文件中;编译在class文件中的annotation可能会被虚拟机忽略,而另一些在class被装载时将被读取(请注意并不影响class的执行,因为annotation与class在使用上是被分离的)。使用这个meta-annotation可以对annotation的“生命周期”限制。

H.metadata:
由于metadata被广泛使用于各种计算机开发过程中,所以当我们在这里谈论的metadata即元数据通常指被annotation装载的信息或者annotation本身。

2。使用标准Annotation:
java5.0在java.lang包中定义了3种标准的annotation类型:

A.Override:
java.lang.Override是一个marker annotation类型,它被用作标注方法。它说明了被标注的方法重载了父类的方法,起到了断言的作用。如果我们使用了这种annotation在一个没有覆盖父类方法的方法时,java编译器将以一个编译错误来警示。
这个annotaton常常在我们试图覆盖父类方法而确又写错了方法名时发挥威力。

使用方法极其简单:在使用此annotation时只要在被修饰的方法前面加上@Override。
下面的代码是一个使用@Override修饰一个企图重载父类的toString方法,而又存在拼写错误的sample:
清单1:

@Override
public String toSting() {   // 注意方法名拼写错了
    return "[" + super.toString() + "]";
}


B.Deprecated:
同样Deprecated也是一个marker annotation。当一个类型或者类型成员使用@Deprecated修饰的话,编译器将不鼓励使用这个被标注的程序元素。而且这种修饰具有一定的“延续性”:如果我们在代码中通过继承或者覆盖的方式使用了这个过时的类型或者成员,虽然继承或者覆盖后的类型或者成员并不是被声明为@Deprecated,但编译器仍然要报警。
值得注意,@Deprecated这个annotation类型和javadoc中的@deprecated这个tag是有区别的:前者是java编译器识别的,而后者是被javadoc工具所识别用来生成文档(包含程序成员为什么已经过时、它应当如何被禁止或者替代的描述)。
在java5.0,java编译器仍然象其从前版本那样寻找@deprecated这个javadoc tag,并使用它们产生警告信息。但是这种状况将在后续版本中改变,我们应在现在就开始使用@Deprecated来修饰过时的方法而不是@deprecated javadoc tag。
清单2:

下面是一段使用@Deprecated的代码:
/**
* 这里是javadoc的@deprecated声明.
* @deprecated No one has players for this format any more.  Use VHS instead.
*/
@Deprecated public class Betamax { ... }


C.SuppressWarnings:
@SuppressWarnings被用于有选择的关闭编译器对类、方法、成员变量、变量初始化的警告。在java5.0,sun提供的javac编译器为我们提供了-Xlint选项来使编译器对合法的程序代码提出警告,此种警告从某种程度上代表了程序错误。例如当我们使用一个generic collection类而又没有提供它的类型时,编译器将提示出"unchecked warning"的警告。

通常当这种情况发生时,我们就需要查找引起警告的代码。如果它真的表示错误,我们就需要纠正它。例如如果警告信息表明我们代码中的switch语句没有覆盖所有可能的case,那么我们就应增加一个默认的case来避免这种警告。
相仿,有时我们无法避免这种警告,例如,我们使用必须和非generic的旧代码交互的generic collection类时,我们不能避免这个unchecked warning。此时@SuppressWarning就要派上用场了,在调用的方法前增加@SuppressWarnings修饰,告诉编译器停止对此方法的警告。
SuppressWarning不是一个marker annotation。它有一个类型为String[]的成员,这个成员的值为被禁止的警告名。对于javac编译器来讲,被-Xlint选项有效的警告名也同样对@SuppressWarings有效,同时编译器忽略掉无法识别的警告名。

annotation语法允许在annotation名后跟括号,括号中是使用逗号分割的name=value对用于为annotation的成员赋值:
清单3:

@SuppressWarnings(value={"unchecked","fallthrough"})
public void lintTrap() { /* sloppy method body omitted */ }


在这个例子中SuppressWarnings annotation类型只定义了一个单一的成员,所以只有一个简单的value={...}作为name=value对。又由于成员值是一个数组,故使用大括号来声明数组值。

注意:我们可以在下面的情况中缩写annotation:当annotation只有单一成员,并成员命名为"value="。这时可以省去"value="。比如将上面的SuppressWarnings annotation进行缩写:
清单4:

@SuppressWarnings({"unchecked","fallthrough"})

如果SuppressWarnings所声明的被禁止警告个数为一个时,可以省去大括号:

@SuppressWarnings("unchecked")


3。Annotation语法:

在上一个章节中,我们看到书写marker annotation和单一成员annotation的语法。下面本人来介绍一下完整的语法:

annotation由“@+annotation类型名称+(..逗号分割的name-value对...)”组成。其中成员可以按照任何的顺序。如果annotation类型定义了某个成员的默认值,则这个成员可以被省略。成员值必须为编译时常量、内嵌的annotation或者数组。

下面我们将定义一个annotation类型名为Reviews,它有一个由@Review annotation数组构成的成员。这个@Review annotation类型有三个成员:"reviewer"是一个字符串,"comment" 是一个具有默认值的可选的字符串,"grade"是一个Review.Grade枚举类型值。
清单5:

@Reviews({  // Single-value annotation, so "value=" is omitted here
    @Review(grade=Review.Grade.EXCELLENT,
            reviewer="df"),
    @Review(grade=Review.Grade.UNSATISFACTORY,
            reviewer="eg",
            comment="This method needs an @Override annotation")
})

annotation语法的另一个重要规则是没有程序成员可以有多于一个的同一annotation实例。例如在一个类中简单的放置多个@Review annotation。这也是在上面代码中定义@Reviews annotation类型数组的原因。

4。Annotation成员类型和值:

annotation成员必须是非空的编译时常量表达式。可用的成员类型为:primitive类型、, String, Class, enumerated类型, annotation类型, 和前面类型的数组。

下面我们定义了一个名为UncheckedExceptions 的annotation类型,它的成员是一个扩展了RuntimeException类的类数组。
清单6:

@UncheckedExceptions({
    IllegalArgumentException.class, StringIndexOutOfBoundsException.class
})


5。Annotation的目标:

annotation通常被放在类型定义和成员定义的前面。然而它也出现在package、方法参数、本地变量的前面。下面,我们来讨论一下这些不大常用的写法:

package annotation出现在package声明的前面。
下面的例子package-info.java中不包含任何的公共类型定义,却包含一个可选的javadoc注释。
清单7:

/**
* This package holds my custom annotation types.
*/
@com.davidflanagan.annotations.Author("David Flanagan")
package com.davidflanagan.annotations;

当package-info.java文件被编译时,它将产生名为包含annotation(特殊的接口)声明的package-info.class的类。这个接口没有成员,它的名字package-info不是一个合法的java标识,所以它不能用在java源代码中。这个接口的存在只是简单的被看作一个为package annotation准备的占位符。

用于修饰方法参数、catch参数、本地变量的annotation只是简单的出现在这些程序成员的修饰符位置。java类文件格式没有为本地变量或者catch参数存储annotation作准备,所以这些annotation总是保留在源代码级别(source retention);方法参数annotation能够保存在类文件中,也可以在保留到运行时。

最后,请注意,枚举类型定义中不允许任何的修饰符修饰其枚举值。

6。Annotation和默认值:
在Annotation中,没有默认值的成员必须有一个成员值。而如何理解默认值是如何被处理就是一个很重要的细节:annotation类型所定义的成员默认值被存储在class文件中,不被编译到annotation里面。如果我们修改一个annotation类型使其成员的默认值发生了改变,这个改变对于所有此类型的annotation中没有明确提供成员值的成员产生影响(即修改了该成员的成员值)。即使在annotation类型使其成员的默认值被改变后annotation从没被重新编译过,该类型的annotation(改变前已经被编译的)也受到影响。

三、Annotation工作原理:

Annotation与反射
在java5.0中Java.lang.reflect提供的反射API被扩充了读取运行时annotation的能力。让我们回顾一下前面所讲的:一个annotation类型被定义为runtime retention后,它才是在运行时可见,当class文件被装载时被保存在class文件中的annotation才会被虚拟机读取。那么reflect是如何帮助我们访问class中的annotation呢?

下文将在java.lang.reflect用于annotation的新特性,其中java.lang.reflect.AnnotatedElement是重要的接口,它代表了提供查询annotation能力的程序成员。这个接口被java.lang.Package、java.lang.Class实现,并间接地被Method类、Constructor类、java.lang.reflect的Field类实现。而annotation中的方法参数可以通过Method类、Constructor类的getParameterAnnotations()方法获得。

下面的代码使用了AnnotatedElement类的isAnnotationPresent()方法判断某个方法是否具有@Unstable annotation,从而断言此方法是否稳定:
清单8:

import java.lang.reflect.*;

Class c = WhizzBangClass.class;                          
Method m = c.getMethod("whizzy", int.class, int.class);  
boolean unstable = m.isAnnotationPresent(Unstable.class);

isAnnotationPresent()方法对于检查marker annotation是十分有用的,因为marker annotation没有成员变量,所以我们只要知道class的方法是否使用了annotation修饰就可以了。而当处理具有成员的annotation时,我们通过使用getAnnotation()方法来获得annotation的成员信息(成员名称、成员值)。这里我们看到了一套优美的java annotation系统:如果annotation存在,那么实现了相应的annotation类型接口的对象将被getAnnotation()方法返回,接着调用定义在annotation类型中的成员方法可以方便地获得任何成员值。

回想一下,前面介绍的@Reviews annotation,如果这个annotation类型被声明为runtime retention的话,我们通过下面的代码来访问@Reviews annotation的成员值:
清单9:

AnnotatedElement target = WhizzBangClass.class; //获得被查询的AnnotatedElement
// 查询AnnotatedElement的@Reviews annotation信息
Reviews annotation = target.getAnnotation(Reviews.class);
// 因为@Reviews annotation类型的成员为@Review annotation类型的数组,
// 所以下面声明了Review[] reviews保存@Reviews annotation类型的value成员值。
Review[] reviews = annotation.value();
// 查询每个@Review annotation的成员信息
for(Review r : reviews) {
    Review.Grade grade = r.grade();
    String reviewer = r.reviewer();
    String comment = r.comment();
    System.out.printf("%s assigned a grade of %s and comment '%s'%n",
                      reviewer, grade, comment);
}


四、如何自定义Annotation?

1.详解annotation与接口的异同:
因为annotation类型是一个非凡的接口,所以两者之间存在着某些差异:

A.Annotation类型使用关键字@interface而不是interface。
这个关键字声明隐含了一个信息:它是继承了java.lang.annotation.Annotation接口,并非声明了一个interface。

B.Annotation类型、方法定义是独特的、受限制的。
Annotation类型的方法必须声明为无参数、无异常抛出的。这些方法定义了annotation的成员:方法名成为了成员名,而方法返回值成为了成员的类型。而方法返回值类型必须为primitive类型、Class类型、枚举类型、annotation类型或者由前面类型之一作为元素的一维数组。方法的后面可以使用default和一个默认数值来声明成员的默认值,null不能作为成员默认值,这与我们在非annotation类型中定义方法有很大不同。
Annotation类型和它的方法不能使用annotation类型的参数、成员不能是generic。只有返回值类型是Class的方法可以在annotation类型中使用generic,因为此方法能够用类转换将各种类型转换为Class。

C.Annotation类型又与接口有着近似之处。
它们可以定义常量、静态成员类型(比如枚举类型定义)。Annotation类型也可以如接口一般被实现或者继承。

2.实例:
下面,我们将看到如何定义annotation类型的example。它展示了annotation类型声明以及@interface与interface之间的不同:
清单10:

package com.davidflanagan.annotations;
import java.lang.annotation.*;

/**
* 使用annotation来描述那些被标注的成员是不稳定的,需要更改
*/
@Retention(RetentionPolicy.RUNTIME)
public @interface Unstable {}


下面的另一个example只定义了一个成员。并通过将这个成员命名为value,使我们可以方便的使用这种annotation的快捷声明方式:
清单11:

/**
* 使用Author这个annotation定义在程序中指出代码的作者
*/
public @interface Author {
    /** 返回作者名 */
    String value();
}


以下的example更加复杂。Reviews annotation类型只有一个成员,但是这个成员的类型是复杂的:由Review annotation组成的数组。Review annotation类型有3个成员:枚举类型成员grade、表示Review名称的字符串类型成员Reviewer、具有默认值的字符串类型成员Comment。
清单12:

import java.lang.annotation.*;
        
/**
* Reviews annotation类型只有一个成员,
* 但是这个成员的类型是复杂的:由Review annotation组成的数组
*/
@Retention(RetentionPolicy.RUNTIME)
public @interface Reviews {
    Review[] value();
}

/**
* Review annotation类型有3个成员:
* 枚举类型成员grade、
  * 表示Review名称的字符串类型成员Reviewer、
  * 具有默认值的字符串类型成员Comment。
*/
public @interface Review {
    // 内嵌的枚举类型
    public static enum Grade { EXCELLENT, SATISFACTORY, UNSATISFACTORY };

    // 下面的方法定义了annotation的成员
    Grade grade();                
    String reviewer();          
    String comment() default "";  
}


最后,我们来定义一个annotation方法用于罗列出类运行中所有的unchecked异常(上文已经提到这种情况不一定是错误)。这个annotation类型将一个数组作为了唯一的成员。数组中的每个元素都是异常类。为了加强对未检查的异常(此类异常都是在运行时抛出)进行报告,我们可以在代码中对异常的类型进行限制:
清单13:

public @interface UncheckedExceptions {
    Class<? extends RuntimeException>[] value();
}


五、Meta-Annotation

Annotation类型可以被它们自己所标注。Java5.0定义了4个标准的meta-annotation类型,它们被用来提供对其它annotation类型作说明。这些类型和它们所支持的类在java.lang.annotation包中可以找到。如果需要更详细的信息可以参考jdk5.0手册。

1.再谈Target
作为meta-annotation类型的Target,它描述了annotation所修饰的程序成员的类型。当一个annotation类型没有Target时,它将被作为普通的annotation看待。当将它修饰一个特定的程序成员时,它将发挥其应用的作用,例如:Override用于修饰方法时,增加了@Target这个meta-annotation就使编译器对annotation作检查,从而去掉修饰错误类型的Override。

Target meta-annotation类型有唯一的value作为成员。这个成员的类型是java.lang.annotation.ElementType[]类型的,ElementType类型是可以被标注的程序成员的枚举类型。

2.Retention的用法
我们在文章的开头曾经提到过Retention,但是没有详细讲解。Retention描述了annotation是否被编译器丢弃或者保留在class文件;如果保留在class文件中,是否在class文件被装载时被虚拟机读取。默认情况下,annotation被保存在class文件中,但在运行时并不能被反射访问。Retention具有三个取值:source、class、runtime,这些取值来自java.lang.annotation.RetentionPolicy的枚举类型值。

Retention meta-annotation类型有唯一的value作为成员,它的取值来自java.lang.annotation.RetentionPolicy的枚举类型值。

3.Documented
Documented是一个meta-annotation类型,用于描述其它类型的annotation应该被作为被标注的程序成员的公共API,因此可以被例如javadoc此类的工具文档化。

Documented是一个marker annotation,没有成员。

4.Inherited
@Inherited meta-annotation也是一个marker annotation,它阐述了某个被标注的类型是被继承的。如果一个使用了@Inherited修饰的annotation类型被用于一个class,则这个annotation将被用于该class的子类。

注意:@Inherited annotation类型是被标注过的class的子类所继承。类并不从它所实现的接口继承annotation,方法并不从它所重载的方法继承annotation。

值得思考的是,当@Inherited annotation类型标注的annotation的Retention是RetentionPolicy.RUNTIME,则反射API增强了这种继承性。如果我们使用java.lang.reflect去查询一个@Inherited annotation类型的annotation时,反射代码检查将展开工作:检查class和其父类,直到发现指定的annotation类型被发现,或者到达类继承结构的顶层。

六、总结:

本文几乎覆盖了所有的Annotation的概念和知识点,从annotation的定义、语法到工作原理、如何自定义annotation,直至meta-annotation。其中也具有一些配套的代码片断可参考,虽然不是很多,但是可谓言简意赅、着其重点,本人认为用好annotation的关键还在于使用。希望本手册能够帮助大家用好annotation,这也是本人的最大快乐。

posted @ 2006-04-03 13:33 hopeshared 阅读(2526) | 评论 (0)编辑 收藏

版权声明:本文可以自由转载,转载时请务必以超链接形式标明文章原始出处和作者信息及本声明
作者:cleverpig(作者的Blog:
http://blog.matrix.org.cn/page/cleverpig
)
原文:[http://www.matrix.org.cn/resourc ... ava+Annotation.html]http://www.matrix.org.cn/resource/article/44/44048_Java+Annotation.html[/url]
关键字:Java,annotation,标注
摘要:
本文针对java初学者或者annotation初次使用者全面地说明了annotation的使用方法、定义方式、分类。初学者可以通过以上的说明制作简单的annotation程序,但是对于一些高级的annotation应用(例如使用自定义annotation生成javabean映射xml文件)还需要进一步的研究和探讨。涉及到深入annotation的内容,作者将在后文《Java Annotation高级应用》中谈到。
同时,annotation运行存在两种方式:运行时、编译时。上文中讨论的都是在运行时的annotation应用,但在编译时的annotation应用还没有涉及,
一、为什么使用Annotation:
在JAVA应用中,我们常遇到一些需要使用模版代码。例如,为了编写一个JAX-RPC web service,我们必须提供一对接口和实现作为模版代码。如果使用annotation对远程访问的方法代码进行修饰的话,这个模版就能够使用工具自动生成。
另外,一些API需要使用与程序代码同时维护的附属文件。例如,JavaBeans需要一个BeanInfo Class与一个Bean同时使用/维护,而EJB则同样需要一个部署描述符。此时在程序中使用annotation来维护这些附属文件的信息将十分便利而且减少了错误。
二、Annotation工作方式:
在5.0版之前的Java平台已经具有了一些ad hoc annotation机制。比如,使用transient修饰符来标识一个成员变量在序列化子系统中应被忽略。而@deprecated这个javadoc tag也是一个ad hoc annotation用来说明一个方法已过时。从Java5.0版发布以来,5.0平台提供了一个正式的annotation功能:允许开发者定义、使用自己的annoatation类型。此功能由一个定义annotation类型的语法和一个描述annotation声明的语法,读取annotaion的API,一个使用annotation修饰的class文件,一个annotation处理工具(apt)组成。
annotation并不直接影响代码语义,但是它能够工作的方式被看作类似程序的工具或者类库,它会反过来对正在运行的程序语义有所影响。annotation可以从源文件、class文件或者以在运行时反射的多种方式被读取。
当然annotation在某种程度上使javadoc tag更加完整。一般情况下,如果这个标记对java文档产生影响或者用于生成java文档的话,它应该作为一个javadoc tag;否则将作为一个annotation。
三、Annotation使用方法:
1。类型声明方式:
通常,应用程序并不是必须定义annotation类型,但是定义annotation类型并非难事。Annotation类型声明于一般的接口声明极为类似,区别只在于它在interface关键字前面使用“@”符号。
annotation类型的每个方法声明定义了一个annotation类型成员,但方法声明不必有参数或者异常声明;方法返回值的类型被限制在以下的范围:primitives、String、Class、enums、annotation和前面类型的数组;方法可以有默认值。
下面是一个简单的annotation类型声明:
清单1:
    /**
     * Describes the Request-For-Enhancement(RFE) that led
     * to the presence of the annotated API element.
     */
    public @interface RequestForEnhancement {
        int    id();
        String synopsis();
        String engineer() default "[unassigned]";
        String date();    default "[unimplemented]";
    }
代码中只定义了一个annotation类型RequestForEnhancement。
2。修饰方法的annotation声明方式:
annotation是一种修饰符,能够如其它修饰符(如public、static、final)一般使用。习惯用法是annotaions用在其它的修饰符前面。annotations由“@+annotation类型+带有括号的成员-值列表”组成。这些成员的值必须是编译时常量(即在运行时不变)。
A:下面是一个使用了RequestForEnhancement annotation的方法声明:
清单2:
    @RequestForEnhancement(
        id       = 2868724,
        synopsis = "Enable time-travel",
        engineer = "Mr. Peabody",
        date     = "4/1/3007"
    )
    public static void travelThroughTime(Date destination) { ... }
B:当声明一个没有成员的annotation类型声明时,可使用以下方式:
清单3:
    /**
     * Indicates that the specification of the annotated API element
     * is preliminary and subject to change.
     */
    public @interface Preliminary { }
作为上面没有成员的annotation类型声明的简写方式:
清单4:
    @Preliminary public class TimeTravel { ... }
C:如果在annotations中只有唯一一个成员,则该成员应命名为value:
清单5:
    /**
     * Associates a copyright notice with the annotated API element.
     */
    public @interface Copyright {
        String value();
    }
更为方便的是对于具有唯一成员且成员名为value的annotation(如上文),在其使用时可以忽略掉成员名和赋值号(=):
清单6:
    @Copyright("2002 Yoyodyne Propulsion Systems")
    public class OscillationOverthruster { ... }
3。一个使用实例:
结合上面所讲的,我们在这里建立一个简单的基于annotation测试框架。首先我们需要一个annotation类型来表示某个方法是一个应该被测试工具运行的测试方法。
清单7:
    import java.lang.annotation.*;
    /**
     * Indicates that the annotated method is a test method.
     * This annotation should be used only on parameterless static methods.
     */
    @Retention(RetentionPolicy.RUNTIME)
    @Target(ElementType.METHOD)
    public @interface Test { }
值得注意的是annotaion类型声明是可以标注自己的,这样的annotation被称为“meta-annotations”。
在上面的代码中,@Retention(RetentionPolicy.RUNTIME)这个meta-annotation表示了此类型的annotation将被虚拟机保留使其能够在运行时通过反射被读取。而@Target(ElementType.METHOD)表示此类型的annotation只能用于修饰方法声明。
下面是一个简单的程序,其中部分方法被上面的annotation所标注:
清单8:
    public class Foo {
        @Test public static void m1() { }
        public static void m2() { }
        @Test public static void m3() {
            throw new RuntimeException("Boom");
        }
        public static void m4() { }
        @Test public static void m5() { }
        public static void m6() { }
        @Test public static void m7() {
            throw new RuntimeException("Crash");
        }
        public static void m8() { }
    }
Here is the testing tool:
    import java.lang.reflect.*;
    public class RunTests {
       public static void main(String[] args) throws Exception {
          int passed = 0, failed = 0;
          for (Method m : Class.forName(args[0]).getMethods()) {
             if (m.isAnnotationPresent(Test.class)) {
                try {
                   m.invoke(null);
                   passed++;
                } catch (Throwable ex) {
                   System.out.printf("Test %s failed: %s %n", m, ex.getCause());
                   failed++;
                }
             }
          }
          System.out.printf("Passed: %d, Failed %d%n", passed, failed);
       }
    }
这个程序从命令行参数中取出类名,并且遍历此类的所有方法,尝试调用其中被上面的测试annotation类型标注过的方法。在此过程中为了找出哪些方法被annotation类型标注过,需要使用反射的方式执行此查询。如果在调用方法时抛出异常,此方法被认为已经失败,并打印一个失败报告。最后,打印运行通过/失败的方法数量。
下面文字表示了如何运行这个基于annotation的测试工具:
清单9:
    $ java RunTests Foo
    Test public static void Foo.m3() failed: java.lang.RuntimeException: Boom
    Test public static void Foo.m7() failed: java.lang.RuntimeException: Crash
    Passed: 2, Failed 2
四、Annotation分类:
根据annotation的使用方法和用途主要分为以下几类:
1。内建Annotation——Java5.0版在java语法中经常用到的内建Annotation:
@Deprecated用于修饰已经过时的方法;
@Override用于修饰此方法覆盖了父类的方法(而非重载);
@SuppressWarnings用于通知java编译器禁止特定的编译警告。
下面代码展示了内建Annotation类型的用法:
清单10:
package com.bjinfotech.practice.annotation;
/**
* 演示如何使用java5内建的annotation
* 参考资料:
* http://java.sun.com/docs/books/t ... OO/annotations.html
* http://java.sun.com/j2se/1.5.0/d ... ge/annotations.html
* http://mindprod.com/jgloss/annotations.html
* @author cleverpig
*
*/
import java.util.List;
public class UsingBuiltInAnnotation {
        //食物类
        class Food{}
        //干草类
        class Hay extends Food{}
        //动物类
        class Animal{
                Food getFood(){
                        return null;
                }
                //使用Annotation声明Deprecated方法
                @Deprecated
                void deprecatedMethod(){
                }
        }
        //马类-继承动物类
        class Horse extends Animal{
                //使用Annotation声明覆盖方法
                @Override
                Hay getFood(){
                        return new Hay();
                }
                //使用Annotation声明禁止警告
                @SuppressWarnings({"deprecation","unchecked"})
                void callDeprecatedMethod(List horseGroup){
                        Animal an=new Animal();
                        an.deprecatedMethod();
                        horseGroup.add(an);
                }
        }
}
2。开发者自定义Annotation:由开发者自定义Annotation类型。
下面是一个使用annotation进行方法测试的sample:
AnnotationDefineForTestFunction类型定义如下:
清单11:
package com.bjinfotech.practice.annotation;
import java.lang.annotation.*;
/**
* 定义annotation
* @author cleverpig
*
*/
//加载在VM中,在运行时进行映射
@Retention(RetentionPolicy.RUNTIME)
//限定此annotation只能标示方法
@Target(ElementType.METHOD)
public @interface AnnotationDefineForTestFunction{}
测试annotation的代码如下:
清单12:
package com.bjinfotech.practice.annotation;
import java.lang.reflect.*;
/**
* 一个实例程序应用前面定义的Annotation:AnnotationDefineForTestFunction
* @author cleverpig
*
*/
public class UsingAnnotation {
        @AnnotationDefineForTestFunction public static void method01(){}
        
        public static void method02(){}
        
        @AnnotationDefineForTestFunction public static void method03(){
                throw new RuntimeException("method03");
        }
        
        public static void method04(){
                throw new RuntimeException("method04");
        }
        
        public static void main(String[] argv) throws Exception{
                int passed = 0, failed = 0;
                //被检测的类名
                String className="com.bjinfotech.practice.annotation.UsingAnnotation";
                //逐个检查此类的方法,当其方法使用annotation声明时调用此方法
            for (Method m : Class.forName(className).getMethods()) {
               if (m.isAnnotationPresent(AnnotationDefineForTestFunction.class)) {
                  try {
                     m.invoke(null);
                     passed++;
                  } catch (Throwable ex) {
                     System.out.printf("测试 %s 失败: %s %n", m, ex.getCause());
                     failed++;
                  }
               }
            }
            System.out.printf("测试结果: 通过: %d, 失败: %d%n", passed, failed);
        }
}
3。使用第三方开发的Annotation类型
这也是开发人员所常常用到的一种方式。比如我们在使用Hibernate3.0时就可以利用Annotation生成数据表映射配置文件,而不必使用Xdoclet。
五、总结:
1。前面的文字说明了annotation的使用方法、定义方式、分类。初学者可以通过以上的说明制作简单的annotation程序,但是对于一些高级的annotation应用(例如使用自定义annotation生成javabean映射xml文件)还需要进一步的研究和探讨。
2。同时,annotation运行存在两种方式:运行时、编译时。上文中讨论的都是在运行时的annotation应用,但在编译时的annotation应用还没有涉及,因为编译时的annotation要使用annotation processing tool。
涉及以上2方面的深入内容,作者将在后文《Java Annotation高级应用》中谈到。
六、参考资源:
·Matrix-Java开发者社区:
http://www.matrix.org.cn
·
http://java.sun.com/docs/books/tutorial/java/javaOO/annotations.html
·
http://java.sun.com/j2se/1.5.0/docs/guide/apt/GettingStarted.html
·
http://java.sun.com/j2se/1.5.0/docs/guide/apt/GettingStarted.html
·
http://java.sun.com/j2se/1.5.0/docs/guide/apt/GettingStarted.html
·作者的Blog:
http://blog.matrix.org.cn/page/cleverpig
posted @ 2006-04-03 13:30 hopeshared 阅读(886) | 评论 (0)编辑 收藏

级别: 中级

Brian Goetz , 首席顾问, Quiotix

2005 年 12 月 19 日

虽然用 Java™ 语言编写的程序在理论上是不会出现“内存泄漏”的,但是有时对象在不再作为程序的逻辑状态的一部分之后仍然不被垃圾收集。本月,负责保障应用程序健康的工程师 Brian Goetz 探讨了无意识的对象保留的常见原因,并展示了如何用弱引用堵住泄漏。

要让垃圾收集(GC)回收程序不再使用的对象,对象的逻辑 生命周期(应用程序使用它的时间)和对该对象拥有的引用的实际 生命周期必须是相同的。在大多数时候,好的软件工程技术保证这是自动实现的,不用我们对对象生命周期问题花费过多心思。但是偶尔我们会创建一个引用,它在内存中包含对象的时间比我们预期的要长得多,这种情况称为无意识的对象保留(unintentional object retention)

全局 Map 造成的内存泄漏

无意识对象保留最常见的原因是使用 Map 将元数据与临时对象(transient object)相关联。假定一个对象具有中等生命周期,比分配它的那个方法调用的生命周期长,但是比应用程序的生命周期短,如客户机的套接字连接。需要将一些元数据与这个套接字关联,如生成连接的用户的标识。在创建 Socket 时是不知道这些信息的,并且不能将数据添加到 Socket 对象上,因为不能控制 Socket 类或者它的子类。这时,典型的方法就是在一个全局 Map 中存储这些信息,如清单 1 中的 SocketManager 类所示:


清单 1. 使用一个全局 Map 将元数据关联到一个对象

public class SocketManager {
    private Map<Socket,User> m = new HashMap<Socket,User>();
   
    public void setUser(Socket s, User u) {
        m.put(s, u);
    }
    public User getUser(Socket s) {
        return m.get(s);
    }
    public void removeUser(Socket s) {
        m.remove(s);
    }
}

SocketManager socketManager;
...
socketManager.setUser(socket, user);


这种方法的问题是元数据的生命周期需要与套接字的生命周期挂钩,但是除非准确地知道什么时候程序不再需要这个套接字,并记住从 Map 中删除相应的映射,否则,SocketUser 对象将会永远留在 Map 中,远远超过响应了请求和关闭套接字的时间。这会阻止 SocketUser 对象被垃圾收集,即使应用程序不会再使用它们。这些对象留下来不受控制,很容易造成程序在长时间运行后内存爆满。除了最简单的情况,在几乎所有情况下找出什么时候 Socket 不再被程序使用是一件很烦人和容易出错的任务,需要人工对内存进行管理。

-----------------------------------------------------------------------------------

找出内存泄漏

程序有内存泄漏的第一个迹象通常是它抛出一个 OutOfMemoryError,或者因为频繁的垃圾收集而表现出糟糕的性能。幸运的是,垃圾收集可以提供能够用来诊断内存泄漏的大量信息。如果以 -verbose:gc 或者 -Xloggc 选项调用 JVM,那么每次 GC 运行时在控制台上或者日志文件中会打印出一个诊断信息,包括它所花费的时间、当前堆使用情况以及恢复了多少内存。记录 GC 使用情况并不具有干扰性,因此如果需要分析内存问题或者调优垃圾收集器,在生产环境中默认启用 GC 日志是值得的。

有工具可以利用 GC 日志输出并以图形方式将它显示出来,JTune 就是这样的一种工具(请参阅 参考资料)。观察 GC 之后堆大小的图,可以看到程序内存使用的趋势。对于大多数程序来说,可以将内存使用分为两部分:baseline 使用和 current load 使用。对于服务器应用程序,baseline 使用就是应用程序在没有任何负荷、但是已经准备好接受请求时的内存使用,current load 使用是在处理请求过程中使用的、但是在请求处理完成后会释放的内存。只要负荷大体上是恒定的,应用程序通常会很快达到一个稳定的内存使用水平。如果在应用程序已经完成了其初始化并且负荷没有增加的情况下,内存使用持续增加,那么程序就可能在处理前面的请求时保留了生成的对象。

清单 2 展示了一个有内存泄漏的程序。MapLeaker 在线程池中处理任务,并在一个 Map 中记录每一项任务的状态。不幸的是,在任务完成后它不会删除那一项,因此状态项和任务对象(以及它们的内部状态)会不断地积累。


清单 2. 具有基于 Map 的内存泄漏的程序


public class MapLeaker {
    public ExecutorService exec = Executors.newFixedThreadPool(5);
    public Map<Task, TaskStatus> taskStatus
        = Collections.synchronizedMap(new HashMap<Task, TaskStatus>());
    private Random random = new Random();

    private enum TaskStatus { NOT_STARTED, STARTED, FINISHED };

    private class Task implements Runnable {
        private int[] numbers = new int[random.nextInt(200)];

        public void run() {
            int[] temp = new int[random.nextInt(10000)];
            taskStatus.put(this, TaskStatus.STARTED);
            doSomeWork();
            taskStatus.put(this, TaskStatus.FINISHED);
        }
    }

    public Task newTask() {
        Task t = new Task();
        taskStatus.put(t, TaskStatus.NOT_STARTED);
        exec.execute(t);
        return t;
    }
}
 

图 1 显示 MapLeaker GC 之后应用程序堆大小随着时间的变化图。上升趋势是存在内存泄漏的警示信号。(在真实的应用程序中,坡度不会这么大,但是在收集了足够长时间的 GC 数据后,上升趋势通常会表现得很明显。)


图 1. 持续上升的内存使用趋势

确信有了内存泄漏后,下一步就是找出哪种对象造成了这个问题。所有内存分析器都可以生成按照对象类进行分解的堆快照。有一些很好的商业堆分析工具,但是找出内存泄漏不一定要花钱买这些工具 —— 内置的 hprof 工具也可完成这项工作。要使用 hprof 并让它跟踪内存使用,需要以 -Xrunhprof:heap=sites 选项调用 JVM。

清单 3 显示分解了应用程序内存使用的 hprof 输出的相关部分。(hprof 工具在应用程序退出时,或者用 kill -3 或在 Windows 中按 Ctrl+Break 时生成使用分解。)注意两次快照相比,Map.EntryTaskint[] 对象有了显著增加。

请参阅 清单 3

清单 4 展示了 hprof 输出的另一部分,给出了 Map.Entry 对象的分配点的调用堆栈信息。这个输出告诉我们哪些调用链生成了 Map.Entry 对象,并带有一些程序分析,找出内存泄漏来源一般来说是相当容易的。


清单 4. HPROF 输出,显示 Map.Entry 对象的分配点


TRACE 300446:
java.util.HashMap$Entry.<init>(<Unknown Source>:Unknown line)
java.util.HashMap.addEntry(<Unknown Source>:Unknown line)
java.util.HashMap.put(<Unknown Source>:Unknown line)
java.util.Collections$SynchronizedMap.put(<Unknown Source>:Unknown line)
com.quiotix.dummy.MapLeaker.newTask(MapLeaker.java:48)
com.quiotix.dummy.MapLeaker.main(MapLeaker.java:64)


-------------------------------------------------------------------------------------------

弱引用来救援了

SocketManager 的问题是 Socket-User 映射的生命周期应当与 Socket 的生命周期相匹配,但是语言没有提供任何容易的方法实施这项规则。这使得程序不得不使用人工内存管理的老技术。幸运的是,从 JDK 1.2 开始,垃圾收集器提供了一种声明这种对象生命周期依赖性的方法,这样垃圾收集器就可以帮助我们防止这种内存泄漏 —— 利用弱引用

弱引用是对一个对象(称为 referent)的引用的持有者。使用弱引用后,可以维持对 referent 的引用,而不会阻止它被垃圾收集。当垃圾收集器跟踪堆的时候,如果对一个对象的引用只有弱引用,那么这个 referent 就会成为垃圾收集的候选对象,就像没有任何剩余的引用一样,而且所有剩余的弱引用都被清除。(只有弱引用的对象称为弱可及(weakly reachable)。)

WeakReference 的 referent 是在构造时设置的,在没有被清除之前,可以用 get() 获取它的值。如果弱引用被清除了(不管是 referent 已经被垃圾收集了,还是有人调用了 WeakReference.clear()),get() 会返回 null。相应地,在使用其结果之前,应当总是检查 get() 是否返回一个非 null 值,因为 referent 最终总是会被垃圾收集的。

用一个普通的(强)引用拷贝一个对象引用时,限制 referent 的生命周期至少与被拷贝的引用的生命周期一样长。如果不小心,那么它可能就与程序的生命周期一样 —— 如果将一个对象放入一个全局集合中的话。另一方面,在创建对一个对象的弱引用时,完全没有扩展 referent 的生命周期,只是在对象仍然存活的时候,保持另一种到达它的方法。

弱引用对于构造弱集合最有用,如那些在应用程序的其余部分使用对象期间存储关于这些对象的元数据的集合 —— 这就是 SocketManager 类所要做的工作。因为这是弱引用最常见的用法,WeakHashMap 也被添加到 JDK 1.2 的类库中,它对键(而不是对值)使用弱引用。如果在一个普通 HashMap 中用一个对象作为键,那么这个对象在映射从 Map 中删除之前不能被回收,WeakHashMap 使您可以用一个对象作为 Map 键,同时不会阻止这个对象被垃圾收集。清单 5 给出了 WeakHashMapget() 方法的一种可能实现,它展示了弱引用的使用:


清单 5. WeakReference.get() 的一种可能实现


public class WeakHashMap<K,V> implements Map<K,V> {

    private static class Entry<K,V> extends WeakReference<K> 
      implements Map.Entry<K,V> {
        private V value;
        private final int hash;
        private Entry<K,V> next;
        ...
    }

    public V get(Object key) {
        int hash = getHash(key);
        Entry<K,V> e = getChain(hash);
        while (e != null) {
            K eKey= e.get();
            if (e.hash == hash && (key == eKey || key.equals(eKey)))
                return e.value;
            e = e.next;
        }
        return null;
    }


调用 WeakReference.get() 时,它返回一个对 referent 的强引用(如果它仍然存活的话),因此不需要担心映射在 while 循环体中消失,因为强引用会防止它被垃圾收集。WeakHashMap 的实现展示了弱引用的一种常见用法 —— 一些内部对象扩展 WeakReference。其原因在下面一节讨论引用队列时会得到解释。

在向 WeakHashMap 中添加映射时,请记住映射可能会在以后“脱离”,因为键被垃圾收集了。在这种情况下,get() 返回 null,这使得测试 get() 的返回值是否为 null 变得比平时更重要了。

用 WeakHashMap 堵住泄漏

SocketManager 中防止泄漏很容易,只要用 WeakHashMap 代替 HashMap 就行了,如清单 6 所示。(如果 SocketManager 需要线程安全,那么可以用 Collections.synchronizedMap() 包装 WeakHashMap)。当映射的生命周期必须与键的生命周期联系在一起时,可以使用这种方法。不过,应当小心不滥用这种技术,大多数时候还是应当使用普通的 HashMap 作为 Map 的实现。


清单 6. 用 WeakHashMap 修复 SocketManager


public class SocketManager {
    private Map<Socket,User> m = new WeakHashMap<Socket,User>();
    
    public void setUser(Socket s, User u) {
        m.put(s, u);
    }
    public User getUser(Socket s) {
        return m.get(s);
    }
}


引用队列

WeakHashMap 用弱引用承载映射键,这使得应用程序不再使用键对象时它们可以被垃圾收集,get() 实现可以根据 WeakReference.get() 是否返回 null 来区分死的映射和活的映射。但是这只是防止 Map 的内存消耗在应用程序的生命周期中不断增加所需要做的工作的一半,还需要做一些工作以便在键对象被收集后从 Map 中删除死项。否则,Map 会充满对应于死键的项。虽然这对于应用程序是不可见的,但是它仍然会造成应用程序耗尽内存,因为即使键被收集了,Map.Entry 和值对象也不会被收集。

可以通过周期性地扫描 Map,对每一个弱引用调用 get(),并在 get() 返回 null 时删除那个映射而消除死映射。但是如果 Map 有许多活的项,那么这种方法的效率很低。如果有一种方法可以在弱引用的 referent 被垃圾收集时发出通知就好了,这就是引用队列 的作用。

引用队列是垃圾收集器向应用程序返回关于对象生命周期的信息的主要方法。弱引用有两个构造函数:一个只取 referent 作为参数,另一个还取引用队列作为参数。如果用关联的引用队列创建弱引用,在 referent 成为 GC 候选对象时,这个引用对象(不是 referent)就在引用清除后加入 到引用队列中。之后,应用程序从引用队列提取引用并了解到它的 referent 已被收集,因此可以进行相应的清理活动,如去掉已不在弱集合中的对象的项。(引用队列提供了与 BlockingQueue 同样的出列模式 —— polled、timed blocking 和 untimed blocking。)

WeakHashMap 有一个名为 expungeStaleEntries() 的私有方法,大多数 Map 操作中会调用它,它去掉引用队列中所有失效的引用,并删除关联的映射。清单 7 展示了 expungeStaleEntries() 的一种可能实现。用于存储键-值映射的 Entry 类型扩展了 WeakReference,因此当 expungeStaleEntries() 要求下一个失效的弱引用时,它得到一个 Entry。用引用队列代替定期扫描内容的方法来清理 Map 更有效,因为清理过程不会触及活的项,只有在有实际加入队列的引用时它才工作。


清单 7. WeakHashMap.expungeStaleEntries() 的可能实现


private void expungeStaleEntries() {
Entry<K,V> e;
        while ( (e = (Entry<K,V>) queue.poll()) != null) {
            int hash = e.hash;

            Entry<K,V> prev = getChain(hash);
            Entry<K,V> cur = prev;
            while (cur != null) {
                Entry<K,V> next = cur.next;
                if (cur == e) {
                    if (prev == e)
                        setChain(hash, next);
                    else
                        prev.next = next;
                    break;
                }
                prev = cur;
                cur = next;
            }
        }
    }


------------------------------------------------------------------------------------------------

结束语

弱引用和弱集合是对堆进行管理的强大工具,使得应用程序可以使用更复杂的可及性方案,而不只是由普通(强)引用所提供的“要么全部要么没有”可及性。下个月,我们将分析与弱引用有关的软引用,将分析在使用弱引用和软引用时,垃圾收集器的行为。

-----------------------------------------------------------------------------------------------------


原文地址:http://www-128.ibm.com/developerworks/cn/java/j-jtp11225/index.html

posted @ 2006-04-03 11:31 hopeshared 阅读(588) | 评论 (0)编辑 收藏

不知道这个标题是否让读者产生一种想打我的冲动。至少今天我的主管被我用这个小把戏诧异了一把,当他看到"hi there".equals("cheers !") 的结果居然是true时,脸上的表情实在是可爱。

OK,言归正传。System.out.println("hi there".equals("cheers !")); 这个看来再显然不过的句子,输出的结果居然是true。聪明的读者,你知道是为什么吗?如果一时还猜不出来,给你一点提示:

1、Java语言规范规定,同一个程序中任何相同的字符串常量(literal string)都只是同一个String对象的不同引用,不论它们是否在同一个类、同一个包中。

2、Java语言规范规定,由常量表达式计算得到的String对象将在编译期被求值,并在运行时被作为字符串常量对待;在运行时计算得到的String对象将是一个完全独立的新对象。

如果你仍然不明就里,或者想知道这个把戏实现的细节,请看下面这篇来自artima的webLog

——————————————————

Artima Weblogs
"hi there".equals("cheers !") == true
by Heinz Kabutz
May 21, 2003
Summary
Java Strings are strange animals. They are all kept in one pen, especially the constant strings. This can lead to bizarre behaviour when we intentionally modify the innards of the constant strings through reflection. Join us, as we take apart one of Java's most prolific beasts.

Whenever we used to ask our dad a question that he could not possibly have known the answer to (such as: what's the point of school, dad?) he would ask back: "How long is a piece of string?"

Were he to ask me that now, I would explain to him that String is immutable (supposedly) and that it contains its length, all you have to do is ask the String how long it is. This you can do by calling length().

OK, so the first thing we learn about Java is that String is immutable. It is like when we first learn about the stork that brings the babies? There are some things you are not supposed to know until you are older! Secrets so dangerous that merely knowing them would endanger the fibres of electrons pulsating through your Java Virtual Machine.

So, are Strings immutable?

Playing with your sanity - Strings

Have a look at the following code:

public   class  MindWarp  {
  
public   static   void  main(String[] args)  {
    System.out.println(
      
" Romeo, Romeo, wherefore art thou oh Romero? " );
  }

  
private   static   final  String OH_ROMEO  =
    
" Romeo, Romeo, wherefore art thou oh Romero? " ;
  
private   static   final  Warper warper  =   new  Warper();
}


If we are told that the class Warper does not produce any visible output when you construct it, what is the output of this program? The most correct answer is, "you don't know, depends on what Warper does". Now THERE's a nice question for the Sun Certified Java Programmer Examination.

In my case, running "java MindWarp" produces the following output

C:> java MindWarp <ENTER>
Stop this romance nonsense, or I'll be sick

And here is the code for Warper:

												
import  java.lang.reflect. * ;
public   class  Warper  {
  
private   static  Field stringValue;
  
static   {
    
//  String has a private char [] called "value"
    
//  if it does not, find the char [] and assign it to valuetry {
      stringValue  =  String. class .getDeclaredField( " value " );
    }
  catch (NoSuchFieldException ex)  {
      
//  safety net in case we are running on a VM with a
      
//  different name for the char array.
      Field[] all  =  String. class .getDeclaredFields();
      
for  ( int  i = 0 ; stringValue  ==   null   &&  i < all.length; i ++ {
        
if  (all[i].getType().equals( char []. class ))  {
          stringValue 
=  all[i];
        }

      }

    }

    
if  (stringValue  !=   null {
      stringValue.setAccessible(
true );  //  make field public
    }

  }

  
public  Warper()  {
    
try   {
      stringValue.set(
        
" Romeo, Romeo, wherefore art thou oh Romero? " ,
        
" Stop this romance nonsense, or I'll be sick " .
          toCharArray());
      stringValue.set(
" hi there " " cheers ! " .toCharArray());
    }
  catch (IllegalAccessException ex)  {}   //  shhh
  }

}

How is this possible? How can String manipulation in a completely different part of the program affect our class MindWarp?

To understand that, we have to look under the hood of Java. In the language specification it says in ?3.10.5:

"Each string literal is a reference (?4.3) to an instance (?4.3.1, ?12.5) of class String (?4.3.3). String objects have a constant value. String literals-or, more generally, strings that are the values of constant expressions (?15.28)-are "interned" so as to share unique instances, using the method String.intern."

The usefulness of this is quite obvious, we will use less memory if we have two Strings which are equivalent pointing at the same object. We can also manually intern Strings by calling the intern() method.

The language spec goes a bit further:

  1. Literal strings within the same class (?8) in the same package (?7) represent references to the same String object (?4.3.1).
  2. Literal strings within different classes in the same package represent references to the same String object.
  3. Literal strings within different classes in different packages likewise represent references to the same String object.
  4. Strings computed by constant expressions (?15.28) are computed at compile time and then treated as if they were literals.
  5. Strings computed at run time are newly created and therefore distinct.
  6. The result of explicitly interning a computed string is the same string as any pre-existing literal string with the same contents.

This means that if a class in another package "fiddles" with an interned String, it can cause havoc in your program. Is this a good thing? (You don't need to answer ;-)

Consider this example

												
public   class  StringEquals  {
public   static   void  main(String[] args)  {
  System.out.println(
" hi there " .equals( " cheers ! " ));
}

private   static   final  String greeting  =   " hi there " ;
private   static   final  Warper warper  =   new  Warper();
}

Running this against the Warper produces a result of true, which is really weird, and in my opinion, quite mind-bending. Hey, you can SEE the values there right in front of you and they are clearly NOT equal!

BTW, for simplicity, the Strings in my examples are exactly the same length, but you can change the length quite easily as well.

Last example concerns the HashCode of String, which is now cached for performance reasons mentioned in "Java Idiom and Performance Guide", ISBN 0130142603. (Just for the record, I was never and am still not convinced that caching the String hash code in a wrapper object is a good idea, but caching it in String itself is almost acceptable, considering String literals.)

												
public   class  CachingHashcode  {
  
public   static   void  main(String[] args)  {
    java.util.Map map 
=   new  java.util.HashMap();
    map.put(
" hi there " " You found the value " );
    
new  Warper();
    System.out.println(map.get(
" hi there " ));
    System.out.println(map);
  }

  
private   static   final  String greeting  =   " hi there " ;
}

The output under JDK 1.3 is:

You found the value
{cheers !=You found the value}

Under JDK 1.2 it is

null
{cheers !=You found the value}

This is because in the JDK 1.3 SUN is caching the hash code so if it once is calculated, it doesn't get recalculated, so if the value field changes, the hashcode stays the same.

Imagine trying to debug this program where SOMEWHERE, one of your hackers has done a "workaround" by modifying a String literal. The thought scares me.

The practical application of this blog? Let's face it, none.

This is my first blog ever, I would be keen to hear what you thought of it?



摘自:http://www.daima.com.cn/Info/55/Info14695/

posted @ 2006-04-03 11:23 hopeshared 阅读(516) | 评论 (1)编辑 收藏

有很多介绍基本的Java应用性能调整的文章。他们都讨论些简单的技术,诸如使用StringBuffer而不用String,使用synchronized关键字的开销等等。
  
  这篇文章不再介绍这些东西。相反,我们关注能帮助你的基于Web的应用更快、可升级型更好的技巧。一些技巧很详细,其他的相对简短,但所有的都很有用。最后以一些你可提供给你的管理者的建议结束。
  
  我写这篇文章的灵感来自于当我的同事和我一起回忆我们的.com(dot-com)时代的时候――我们如何设计能支持成千上万的用户和拥有紧密代码的系统,我们如何对有侵略性的致命打击。有时在为复用设计和为性能设计之间有一个权衡。基于我的情况,性能每次都获胜。即使你的商务顾客无需理解代码复用,但是他们知道快速(fast-performing)的系统是怎么回事。让我们开始看看我们的技巧。
  
  如何使用Exception
  Exception降低性能。一个异常抛出首先需要创建一个新的对象。Throwable接口中的构造器调用名为fillInStackTrace()的本地方法。这个方法负责巡检栈的整个框架来收集跟踪信息。这样无论何时有异常抛出,它要求虚拟机装载调用栈,因为一个新的对象在中部被创建。
  
  异常应当仅用于有错误发生时,而不要控制流。
  
  我有机会在一个专门用于无线内容市场的网站(名字故意隐去了)看到一段代码,其中开发者完全可以使用一个简单的对照来查看对象是否为空。相反,他或她跳过了这个检查而实际上抛出Null-PointerException。
  
  不要两次初始化变量
  Java通过调用独特的类构造器默认地初始化变量为一个已知的值。所有的对象被设置成null,integers (byte, short, int, long)被设置成0,float和double设置成0.0,Boolean变量设置成false。这对那些扩展自其它类的类尤其重要,这跟使用一个新的关键词创建一个对象时所有一连串的构造器被自动调用一样。
  
  对新的关键词使用优选法则
  正如前面提到的,通过使用一个新的关键词创建一个类的实例,在这个链中的所有构造器将被调用。如果你需要创建一个类的新实例,你可以使用一个实现了cloneable接口的对象的clone()方法。该clone方法不调用任何类的构造器。
  
  如果你已经使用了设计模式作为你的体系结构的一部分,并且使用了工厂模式创建对象,变化会很简单。下面所列是工厂模式的典型实现。
  
  public static Account getNewAccount() {
  return new Account();
  }
  
  使用了clone方法的refactored代码看起来可能像下面这样:
  
  private static Account BaseAccount = new Account();
  public static Account getNewAccount() {
    return (Account) BaseAccount.clone();
  }
  
  以上的思路对实现数组同样有用。
  
  如果你在应用中没有使用设计模式,我建议你停止读这篇文章,赶快跑到(不要走)书店挑一本四人著的《设计模式》。
  
  在任何可能的地方让类为Final
  标记为final的类不能被扩展。在《核心Java API》中有大量这个技术的例子,诸如java.lang.String。将String类标记为final阻止了开发者创建他们自己实现的长度方法。
  
  更深入点说,如果类是final的,所有类的方法也是final的。Java编译器可能会内联所有的方法(这依赖于编译器的实现)。在我的测试里,我已经看到性能平均增加了50%。
  
  在任何可能的地方使用局部变量
  属于方法调用部分的自变量和声明为此调用一部分的临时变量存储在栈中,这比较快。诸如static,实例(instance)变量和新的对象创建在堆中,这比较慢。局部变量的更深入优化依赖于你正在使用的编译器或虚拟机。
  
  使用Nonblocking I/O
  当前的JDK版本不支持nonblocking I/O API,很多应用试图通过创建大量的线程(目光长远得用在池中)来避免阻塞。正如前述,在Java中创建线程有严重的开销。
  
  典型的你可能看到应用中实现的线程需要支持并发I/O流,像Web 服务器,并quote and auction components.
  
  JDK1.4介绍了一个nonblocking I/O包(java.nio)。如果你必须保留在较早版本的JDK,有添加了支持nonblocking I/O的第三方包。
  
  :www.cs.berkeley.edu/~mdw/proj/java-nbio/download.html.
  
  停止小聪明
  很多开发人员在脑子中编写可复用和灵活的代码,而有时候在他们的程序中就产生额外的开销。曾经或者另外的时候他们编写了类似这样的代码:
  
  public void doSomething(File file) {
  FileInputStream fileIn = new FileInputStream(file);
  // do something
  
  他够灵活,但是同时他们也产生了更多的开销。这个主意背后做的事情是操纵一个InputStream,而不是一个文件,因此它应该重写如下:
  
  public void doSomething(InputStream inputStream){
  // do something
  
  乘法和除法
  我有太多的东东适用于摩尔法则――它声明CPU功率每年成倍增长。"摩尔法则"表明每年由开发者所写的差劲的代码数量三倍增加,划去了摩尔法则的任何好处。
  
  考虑下面的代码:
  
  for (val = 0; val < 100000; val +=5) { shiftX = val * 8; myRaise = val * 2; }
  
  如果我们狡猾的利用位移(bit),性能将会六倍增加。这是重写的代码:
  
  for (val = 0; val < 100000; val += 5) { shiftX = val << 3; myRaise = val << 1; }
  
  代替了乘以8,我们使用同等效果的左移3位。每一个移动相当于乘以2,变量myRaise对此做了证明。同样向右移位相当于除以2,当然这会使执行速度加快,但可能会使你的东东以后难于理解;所以这只是个建议。
  
  选择一个基于垃圾收集实现的虚拟机
  许多人可能会对Java规范不需要实现垃圾收集感到惊讶。设想时代已经是我们都拥有无限内存计算机。总之,垃圾收集器日常事务就是负责发现和抛出(hence garbage)不再需要的对象。垃圾收集必须发现那些对象不再被程序指向,并且使被对象占用的栈内存被释放掉。它还负责运行任何被释放对象的finalizer。
  
  垃圾收集故意不允许你释放并非由你分配的内存,从而帮助你确保程序完整,当JVM确定CPU时间的时间表并且当垃圾收集器运行时,这个进程也产生开销。
  
  垃圾收集器有两个不同的步骤执行他们的工作。
  
  实现了定位计算的垃圾收集器在栈中为每一个对象保留一个计数。当一个对象被创建并且对它的一个定位被分配给一个变量,计数增加。当对象越出范围,定位计数被设置成0并且对象可以被垃圾收集。这个步骤允许参考计数器运行在与程序执行有关的短时间增量内。定位计数在父子彼此拥有定位的应用里运行不正常。每次一个对象刷新时也会有定位计数增加和减少的开销。
  
  实现了跟踪的垃圾收集器从根节点开始跟踪一列定位。对象发现跟踪是否被标记。在这个过程完成后,知道不可达的任何没标记的对象可以被垃圾收集。这可能以位图(bitmap)形式实现或者在对象中被设置标志。此技术参考"Mark and Sweep."(reference:定位,翻译成“指向”好像更容易理解,是Java语言对在用对象的一个跟踪指针。译者著)
  
  给你的管理人员提建议
  其他方法可被用来使你的基于Web的应用更快并且更可升级。可实现的最简单的技术通常是支持cluster的策略。使用cluster,一组服务器能够一起透明的提供服务。多数应用服务器允许你获得cluster支持而不需要改变你的应用――一个大的胜利。
  
  当然在执行此步骤之前你可能需要考虑来自你使用的应用服务器提供商附加的许可权利。
  
  当看到cluster策略会有许多额外的事情考虑。经常在体系结构中产生的一个缺点是拥有有状态会话。如果cluster中的一个服务器或者进程当掉,cluster会舍弃整个应用。为防止此类事情发生,cluster必须给cluster中的所有成员不断复制会话Bean的状态。确保你也限制了存储在会话中的对象的大小和数量,因为这些也需要被复制。
  
  Cluster也允许你分期度量你的Web站点的部分。如果你需要度量静态部分,你可以添加Web服务器。如果你需要度量动态生成的部分,你可以添加应用服务器。
  
  在你已经把你的系统放入cluster后,下一个让你的应用跑得更快的建议步骤是选择一个更好的虚拟机。看看Hotspot虚拟机或者其他的飞速发展中的执行优化的虚拟机。随同虚拟机,看看更好的编译器是一个更好的主意。
  
  如果你使用了几个这儿提到的行业技术插件,并且仍然不能获得你要的可升级性和高可用性,那么我建议一个可靠的调试策略。策略的第一步是为可能的瓶颈检查整个体系结构。通常,这在你的作为单线程组件或者有很多辅助连接线组件的UML流图中很容易识别出来。
  
  最后的步骤是产生一个整个代码的详细性能估价。
  
  确保你的管理人员至少为此安排了整个项目时间的20%;否则不足的时间可能不止危及你整个成功的安全,还会导致你向系统引入新的缺点。
  
  许多组织者在适当的位置没有严格意义的测试基础而归咎于成本考虑也是错误的。确保你的QA环境真实反映你的生产环境,并且你的QA测试考虑以不同的负载测试应用,包括在最大的预期并发用户时一个基于低负载和一个完全负载的测试。
  
  性能测试,有时测试一个系统的稳定性,可能需要在每天,甚至每周的整个时期的不同关节都运行。


转自:http://www.1piao.net/articles/view.asp?p=2006/2/1142260628218
posted @ 2006-04-03 11:17 hopeshared 阅读(497) | 评论 (0)编辑 收藏

仅列出标题
共30页: First 上一页 13 14 15 16 17 18 19 20 21 下一页 Last