数据挖掘技术实现,可以根据它的工作过程分为:数据的抽取、数据的存储和管理、数据的展现等关键技术。
数据挖掘有6种分析方法:
· 分类 (Classification)
· 估值(Estimation)
· 预言(Prediction)
· 相关性分组或关联规则(Affinity grouping or association rules)
· 聚集(Clustering)
· 描述和可视化(Description and Visualization)
· 复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
*前3种属于直接数据挖掘,后3种属于间接数据挖掘
· 分类 (Classification)
首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类。
例子:
a. 信用卡申请者,分类为低、中、高风险
b. 分配客户到预先定义的客户分片
注意: 类的个数是确定的,预先定义好的
· 估值(Estimation)
估值与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的输出;分类的类别是确定数目的,估值的量是不确定的。
例子:
a. 根据购买模式,估计一个家庭的孩子个数
b. 根据购买模式,估计一个家庭的收入
c. 估计real estate的价值
一般来说,估值可以作为分类的前一步工作。给定一些输入数据,通过估值,得到未知的连续变量的值,然后,根据预先设定的阈值,进行分类。例如:银行对家庭贷款业务,运用估值,给各个客户记分(Score 0~1)。然后,根据阈值,将贷款级别分类。
· 预言(Prediction)
通常,预言是通过分类或估值起作用的,也就是说,通过分类或估值得出模型,该模型用于对未知变量的预言。从这种意义上说,预言其实没有必要分为一个单独的类。预言其目的是对未来未知变量的预测,这种预测是需要时间来验证的,即必须经过一定时间后,才知道预言准确性是多少。
· 相关性分组或关联规则(Affinity grouping or association rules)
决定哪些事情将一起发生。
例子:
a. 超市中客户在购买A的同时,经常会购买B,即A => B(关联规则)
b. 客户在购买A后,隔一段时间,会购买B (序列分析)
· 聚集(Clustering)
聚集是对记录分组,把相似的记录在一个聚集里。聚集和分类的区别是聚集不依赖于预先定义好的类,不需要训练集。
例子:
a. 一些特定症状的聚集可能预示了一个特定的疾病
b. 租VCD类型不相似的客户聚集,可能暗示成员属于不同的亚文化群
聚集通常作为数据挖掘的第一步。例如,"哪一种类的促销对客户响应最好?",对于这一 类问题,首先对整个客户做聚集,将客户分组在各自的聚集里,然后对每个不同的聚集,回答问题,可能效果更好。
· 描述和可视化(Description and Visualization)
是对数据挖掘结果的表示方式。
· 复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
posted on 2009-02-05 14:18
花-花 阅读(744)
评论(0) 编辑 收藏 所属分类:
数据挖掘(Data Mining)