OMG,到底在寻找什么..................
(构造一个完美的J2EE系统所需要的完整知识体系)
posts - 198,  comments - 37,  trackbacks - 0

原贴地址: http://www.blogjava.net/security/archive/2006/01/11/27547.aspx

RSA协议我不再描述,大家可以看http://www.di-mgt.com.au/rsa_alg.html
RSA的密钥对生成时间依赖于两个因素,
第一,密钥的长度
第二,素数的筛选质量

在整个密钥对生成过程中,RSA会随机选择两个大素数,事实上,计算机的聪明
程度还不足以判断某个随机选择的大素数是否真的不可分解,因此,你只能够通过
计算机程序来尽量将这个大随机数不是素数的几率降到某个界限值(如0.0001)以下。

RSA KeyPair分为公钥和私钥,你应该这样使用KeyPair:
1,你使用私钥来签名,别人用你的公钥来验证签名
2,别人用你的公钥加密信息M->M',你用私钥来解密信息M'->M

虽然RSA经受过多年深入的密码分析,但大家在使用RSA的时候还是要注意以下事项,
否则RSA的安全性会大打折扣:

1,合理的密钥长度(setKeyLength)
RSA1024至今是安全的,按照目前密码分析和计算机硬件条件的发展,估计在未来5-10年,
仍以难以破解。

2,素数确定性选择(setCertaintyOfPrime)
实际应用中,选择100就行了。

3,选择合理的padding(setRSAMode)
RSA有三种模式,RAW, PKCS和OAEP,日常应用中,我本人只使用PKCS(PKCS#1 v1.5)
和OAEP(PKCS#1 v2.0)这两种padding模式。
padding跟安全性其实是紧密挂钩的,有兴趣的朋友可以看看PKCS#1标准讨论。


我编写了一个RSAUtils的工具类,下面的该类的测试代码的一部分。

程序如下:
  RSAUtils utils =new RSAUtils();
  utils.setKeyLength(1024);
  utils.setCertaintyOfPrime(100);
  utils.setRSAMode(PKCS_RSA_MODE);   //RAW =1  PKCS=2  OAEP=3
  utils.initRSAKeyPair();
  
  //查看公钥
  RSAKeyParameters mypubkey=utils.getPublicKey();
  BigInteger mypubkey_modulus=mypubkey.getModulus();  
  BigInteger mypubkey_exponent=mypubkey.getExponent();
  System.out.println("##mypubkey的modulus长度="+mypubkey_modulus.bitLength());
  System.out.println("##mypubkey_modulus值="+mypubkey_modulus.toString());
  System.out.println("##mypubkey的exponent长度="+mypubkey.getExponent().bitLength());
  System.out.println("##mypubkey_exponent值="+mypubkey_exponent.toString());

  //查看私钥
  RSAKeyParameters myprivkey=utils.getPrivateKey();
  BigInteger myprivkey_modulus=myprivkey.getModulus();
  System.out.println("##myprivkey的modulus长度="+myprivkey_modulus.bitLength());
  System.out.println("##myprivkey的modulus值="+myprivkey_modulus.toString());
  System.out.println("##myprivkey.getExponent()长度="+myprivkey.getExponent().bitLength());
  System.out.println("##myprivkey.getExponent()值="+myprivkey.getExponent());

以下是输出:
##mypubkey的modulus长度=1024
##mypubkey_modulus值=93806062666699782638132820491933031482836826566660997927543724649365705443512121003172409185855121369631538039111403612211728268332662414248776212969019881724066055080327735965218365399595323200109436472147258110417469825748181131149217613806780318374365617984326523029965066348377550281908277056378455106547
##mypubkey的exponent长度=2
##mypubkey_exponent值=3

##myprivkey的modulus长度=1024
##myprivkey的modulus值=93806062666699782638132820491933031482836826566660997927543724649365705443512121003172409185855121369631538039111403612211728268332662414248776212969019881724066055080327735965218365399595323200109436472147258110417469825748181131149217613806780318374365617984326523029965066348377550281908277056378455106547
##myprivkey.getExponent()长度=1023
##myprivkey.getExponent()值=62537375111133188425421880327955354321891217711107331951695816432910470295674747335448272790570080913087692026074269074807818845555108276165850808646013241363962278455328383552959397735977285649455021534046301135296075808377308404258909132811288204167107604525033796313576612747649866739561523887875979483707

其中,要记住,公钥的exponent即RSA算法中的e, e通常是3,17和65537
X.509建议使用65537,PEM建议使用3,PKCS#1建议使用3或65537,一般来说,都是选择3。

私钥的Exponent就是私钥中最重要的部分,它就是私钥区别于公钥的地方!

接着,我们看看RSA的加密,解密过程。

通常,不要随便对某一个别人发过来的东西进行签名(有潜在危险),即使有这样的必要,请先将它的文件进行Digest或者HMAC
处理后,再做签名。
为了说明RSA是如何加密信息的,我先让大家脱离MD5/SHA1等辅助算法(没有人会单独使用RSA,RSAwithMD5,RSAwithSHA1才是常用的使用方法),来单独看看RSA本身:

大家习惯了DES/IDEA,再看RSA的加密,可能会有一些不习惯,因为RSA虽然也可以看成是基于Block的加密,但是,RSA的输入和输出的Block的大小是不一样的,Block的大小依赖于你所使用的RSA Key的长度和RSA的padding模式。
在RSAUtils测试用例中,分别对RSA设置三种长度的Key(768,1024,2048)和2种padding模式(PKCS 1.5和OAEP),结果如下:

RSA                InBlock大小   OutBlock大小  (单位,字节)
768bit/PKCS        85                96
1024bit/PKCS     117               128
2048bit/PKCS     245               256
768bit/OAEP        54                96
1024bit/OAEP     86               128
2048bit/OAEP     214               256

大家可以看到,相同密钥长度, 加密出来的密文长度要比明文要长,且OAEP的InBlock/OutBlock要比PKCS的InBlock/OutBlock要小,单从熵的角度,意味着OAEP padding模式引入更多的熵,OAEP要比PKCS更安全(事实上,为何提出OAEP代替PKCS,大家可以到RSA网站看看OAEP文档 http://www.rsasecurity.com/rsalabs/node.asp?id=2125)。


下面,RSAUtils是我写的针对BouncyCastle的一个工具类,它封装了BouncyCastle的crypto中的RSAEngine,基本上,我很少单独使用RSAUtils,我更多的是结合DiegestUtils来使用。

posted on 2007-01-22 15:34 OMG 阅读(456) 评论(0)  编辑  收藏 所属分类: Webservice

只有注册用户登录后才能发表评论。


网站导航:
 

<2007年1月>
31123456
78910111213
14151617181920
21222324252627
28293031123
45678910

常用链接

留言簿(1)

随笔分类

随笔档案

IT风云人物

文档

朋友

相册

经典网站

搜索

  •  

最新评论

阅读排行榜

评论排行榜