Jack Jiang

我的最新工程MobileIMSDK:http://git.oschina.net/jackjiang/MobileIMSDK
posts - 450, comments - 13, trackbacks - 0, articles - 0

     摘要: 1、引言IM等社交应用的开发工作中,乱码问题也很常见,比如:1)IM聊天消息中的Emoji表情为什么发给后端后MySQL数据库里会乱码;2)文件名中带有中文的大文件聊天消息发送后,对方看到的文名是乱码;3)Http rest接口调用时,后端读取到APP端传过来的参数有中文乱码问题;... ...那么,对于乱码这个看似不起眼,但并不是一两话能讲清楚的问题,是很有必要从根源了解字符集和编码原理,知其然...  阅读全文

posted @ 2019-12-17 19:36 Jack Jiang 阅读(174) | 评论 (0)编辑 收藏

1、引言

随着互联网安全意识的普遍提高,对安全要求稍高的应用中,HTTPS的使用是很常见的,甚至在1年前,苹果公司就将使用HTTPS作为APP上架苹果应用市场的先决条件之一(详见:《苹果即将强制实施 ATS,你的APP准备好切换到HTTPS了吗?》)。

所以,无论是即时通讯IM还是其它应用,在网络安全意识增强的今天,很多场景下使用HTTPS是肯定没错的。对于即时通讯IM的开发人员来说,长连接用TLS这没疑问,短连接用HTTPS也没问题,但我想问你一个最基础的面视问题:HTTPS到底用的是对称加密还是非对称加密?

要回答这个问题,显然需要再梳理一下HTTPS的技术原理了,本文将带你了解HTTPS到底用的是对称加密还是非对称加密,以及具体又是怎么使用的。

学习交流:

- 即时通讯/推送技术开发交流5群:215477170 [推荐]

- 移动端IM开发入门文章:《新手入门一篇就够:从零开发移动端IM

(本文同步发布于:http://www.52im.net/thread-2866-1-1.html

2、相关文章

➊ 要理解HTTPS,须对HTTP协议有所了解,以下文章可能是您需要的:

网络编程懒人入门(七):深入浅出,全面理解HTTP协议

脑残式网络编程入门(三):HTTP协议必知必会的一些知识

不为人知的网络编程(八):从数据传输层深度解密HTTP

从HTTP/0.9到HTTP/2:一文读懂HTTP协议的历史演变和设计思路

WebSocket详解(四):刨根问底HTTP与WebSocket的关系(上篇)

WebSocket详解(五):刨根问底HTTP与WebSocket的关系(下篇)

可能会搞砸你的面试:你知道一个TCP连接上能发起多少个HTTP请求吗?

➋ 想更好的理解本文有关HTTPS的知识,建议一并阅以下HTTPS的基础文章:

一分钟理解 HTTPS 到底解决了什么问题

即时通讯安全篇(七):如果这样来理解HTTPS,一篇就够了

一篇读懂HTTPS:加密原理、安全逻辑、数字证书等

HTTPS时代已来,打算更新你的HTTP服务了吗?

美图App的移动端DNS优化实践:HTTPS请求耗时减小近半

➌ 本文是IM通讯安全知识系列文章中的第8篇,此系列总目录如下:

即时通讯安全篇(一):正确地理解和使用Android端加密算法

即时通讯安全篇(二):探讨组合加密算法在IM中的应用

即时通讯安全篇(三):常用加解密算法与通讯安全讲解

即时通讯安全篇(四):实例分析Android中密钥硬编码的风险

即时通讯安全篇(五):对称加密技术在Android平台上的应用实践

即时通讯安全篇(六):非对称加密技术的原理与应用实践

即时通讯安全篇(七):如果这样来理解HTTPS原理,一篇就够了

即时通讯安全篇(八):你知道,HTTPS用的是对称加密还是非对称加密?》(本文)

3、HTTPS灵魂拷问

随着 HTTPS 建站的成本下降,现在大部分的网站都已经开始用上 HTTPS 协议。大家都知道 HTTPS 比 HTTP 安全,也听说过与 HTTPS 协议相关的概念有 SSL 、非对称加密、 CA证书等。

但对于以下灵魂三拷问可能就答不上了:

  • 1)为什么用了 HTTPS 就是安全的?
  • 2)HTTPS 的底层原理如何实现?
  • 3)用了 HTTPS 就一定安全吗?

不用担心,本文将在解答“HTTPS到底用的是对称加密还是非对称加密?”的同时层层深入,从原理上把 HTTPS 的安全性讲透,您也将同时理解上述问题。

4、HTTPS 的实现原理

大家可能都听说过 HTTPS 协议之所以是安全的是因为 HTTPS 协议会对传输的数据进行加密,而加密过程是使用了非对称加密实现。但其实:HTTPS 在内容传输的加密上使用的是对称加密,非对称加密只作用在证书验证阶段。

HTTPS的整体过程分为证书验证和数据传输阶段,具体的交互过程如下: 

① 证书验证阶段:

1)浏览器发起 HTTPS 请求;

2)服务端返回 HTTPS 证书;

3)客户端验证证书是否合法,如果不合法则提示告警。

② 数据传输阶段:

1)当证书验证合法后,在本地生成随机数;

2)通过公钥加密随机数,并把加密后的随机数传输到服务端;

3)服务端通过私钥对随机数进行解密;

4)服务端通过客户端传入的随机数构造对称加密算法,对返回结果内容进行加密后传输。

5、为什么数据传输是用对称加密?

首先:非对称加密的加解密效率是非常低的,而 http 的应用场景中通常端与端之间存在大量的交互,非对称加密的效率是无法接受的。

另外:在 HTTPS 的场景中只有服务端保存了私钥,一对公私钥只能实现单向的加解密,所以 HTTPS 中内容传输加密采取的是对称加密,而不是非对称加密。

6、为什么需要 CA 认证机构颁发证书?

HTTP 协议被认为不安全是因为传输过程容易被监听者勾线监听、伪造服务器,而 HTTPS 协议主要解决的便是网络传输的安全性问题。

首先我们假设不存在认证机构,任何人都可以制作证书,这带来的安全风险便是经典的“中间人攻击”问题。

“中间人攻击”的具体过程如下: 

如上图所以,过程原理如下:

  • 1)本地请求被劫持(如DNS劫持等),所有请求均发送到中间人的服务器;
  • 2)中间人服务器返回中间人自己的证书;
  • 3)客户端创建随机数,通过中间人证书的公钥对随机数加密后传送给中间人,然后凭随机数构造对称加密对传输内容进行加密传输;
  • 4)中间人因为拥有客户端的随机数,可以通过对称加密算法进行内容解密;
  • 5)中间人以客户端的请求内容再向正规网站发起请求;
  • 6)因为中间人与服务器的通信过程是合法的,正规网站通过建立的安全通道返回加密后的数据;
  • 7)中间人凭借与正规网站建立的对称加密算法对内容进行解密;
  • 8)中间人通过与客户端建立的对称加密算法对正规内容返回的数据进行加密传输;
  • 9)客户端通过与中间人建立的对称加密算法对返回结果数据进行解密。

由于缺少对证书的验证,所以客户端虽然发起的是 HTTPS 请求,但客户端完全不知道自己的网络已被拦截,传输内容被中间人全部窃取。

7、浏览器是如何确保 CA 证书的合法性?

7.1 证书包含什么信息?

  • 1)颁发机构信息;
  • 2)公钥;
  • 3)公司信息;
  • 4)域名;
  • 5)有效期;
  • 6)指纹;
  • 7)......

7.2 证书的合法性依据是什么?

  • 1)首先:权威机构是要有认证的,不是随便一个机构都有资格颁发证书,不然也不叫做权威机构;
  • 2)另外:证书的可信性基于信任制,权威机构需要对其颁发的证书进行信用背书,只要是权威机构生成的证书,我们就认为是合法的。

所以权威机构会对申请者的信息进行审核,不同等级的权威机构对审核的要求也不一样,于是证书也分为免费的、便宜的和贵的。

7.3 浏览器如何验证证书的合法性?

浏览器发起 HTTPS 请求时,服务器会返回网站的 SSL 证书,浏览器需要对证书做以下验证:

1)验证域名、有效期等信息是否正确:证书上都有包含这些信息,比较容易完成验证;

2)判断证书来源是否合法:每份签发证书都可以根据验证链查找到对应的根证书,操作系统、浏览器会在本地存储权威机构的根证书,利用本地根证书可以对对应机构签发证书完成来源验证(如下图所示): 

3)判断证书是否被篡改:需要与 CA 服务器进行校验;

4)判断证书是否已吊销:通过CRL(Certificate Revocation List 证书注销列表)和 OCSP(Online Certificate Status Protocol 在线证书状态协议)实现,其中 OCSP 可用于第3步中以减少与 CA 服务器的交互,提高验证效率。

以上任意一步都满足的情况下浏览器才认为证书是合法的。

这里插一个我想了很久的但其实答案很简单的问题:

既然证书是公开的,如果要发起中间人攻击,我在官网上下载一份证书作为我的服务器证书,那客户端肯定会认同这个证书是合法的,如何避免这种证书冒用的情况?

其实这就是非加密对称中公私钥的用处,虽然中间人可以得到证书,但私钥是无法获取的,一份公钥是不可能推算出其对应的私钥,中间人即使拿到证书也无法伪装成合法服务端,因为无法对客户端传入的加密数据进行解密。

7.4 只有认证机构可以生成证书吗?

如果需要浏览器不提示安全风险,那只能使用认证机构签发的证书。但浏览器通常只是提示安全风险,并不限制网站不能访问,所以从技术上谁都可以生成证书,只要有证书就可以完成网站的 HTTPS 传输。

例如早期的 12306 采用的便是手动安装私有证书的形式实现 HTTPS 访问: 

8、本地随机数被窃取怎么办?

证书验证是采用非对称加密实现,但是传输过程是采用对称加密,而其中对称加密算法中重要的随机数是由本地生成并且存储于本地的,HTTPS 如何保证随机数不会被窃取?

其实 HTTPS 并不包含对随机数的安全保证,HTTPS 保证的只是传输过程安全,而随机数存储于本地,本地的安全属于另一安全范畴,应对的措施有安装杀毒软件、反木马、浏览器升级修复漏洞等。

9、用了 HTTPS 会被抓包吗?

HTTPS 的数据是加密的,常规下抓包工具代理请求后抓到的包内容是加密状态,无法直接查看。

但是,正如前文所说,浏览器只会提示安全风险,如果用户授权仍然可以继续访问网站,完成请求。因此,只要客户端是我们自己的终端,我们授权的情况下,便可以组建中间人网络,而抓包工具便是作为中间人的代理。通常 HTTPS 抓包工具的使用方法是会生成一个证书,用户需要手动把证书安装到客户端中,然后终端发起的所有请求通过该证书完成与抓包工具的交互,然后抓包工具再转发请求到服务器,最后把服务器返回的结果在控制台输出后再返回给终端,从而完成整个请求的闭环。

既然 HTTPS 不能防抓包,那 HTTPS 有什么意义?

HTTPS 可以防止用户在不知情的情况下通信链路被监听,对于主动授信的抓包操作是不提供防护的,因为这个场景用户是已经对风险知情。要防止被抓包,需要采用应用级的安全防护,例如采用私有的对称加密,同时做好移动端的防反编译加固,防止本地算法被破解。

10、本文小结

以下用简短的Q&A形式进行全文总结。

Q: HTTPS 为什么安全?

A: 因为 HTTPS 保证了传输安全,防止传输过程被监听、防止数据被窃取,可以确认网站的真实性。

Q: HTTPS 的传输过程是怎样的?

A: 客户端发起 HTTPS 请求,服务端返回证书,客户端对证书进行验证,验证通过后本地生成用于改造对称加密算法的随机数,通过证书中的公钥对随机数进行加密传输到服务端,服务端接收后通过私钥解密得到随机数,之后的数据交互通过对称加密算法进行加解密。

Q: 为什么需要证书?

A: 防止”中间人“攻击,同时可以为网站提供身份证明。

Q: 使用 HTTPS 会被抓包吗?

A: 会被抓包,HTTPS 只防止用户在不知情的情况下通信被监听,如果用户主动授信,是可以构建“中间人”网络,代理软件可以对传输内容进行解密。

好了,回归到本文标的问题,我们来总结回顾一下。

Q: HTTPS用的是对称加密还是非对称加密?

Q: HTTPS 在内容传输的加密上使用的是对称加密,非对称加密只作用在证书验证阶段。

顺手 po 一张学习的过程图(点击查看大图):

附录:更多有关IM安全的文章

传输层安全协议SSL/TLS的Java平台实现简介和Demo演示

理论联系实际:一套典型的IM通信协议设计详解(含安全层设计)

微信新一代通信安全解决方案:基于TLS1.3的MMTLS详解

来自阿里OpenIM:打造安全可靠即时通讯服务的技术实践分享

简述实时音视频聊天中端到端加密(E2EE)的工作原理

移动端安全通信的利器——端到端加密(E2EE)技术详解

Web端即时通讯安全:跨站点WebSocket劫持漏洞详解(含示例代码)

通俗易懂:一篇掌握即时通讯的消息传输安全原理

IM开发基础知识补课(四):正确理解HTTP短连接中的Cookie、Session和Token

快速读懂量子通信、量子加密技术

即时通讯安全篇(七):如果这样来理解HTTPS原理,一篇就够了

一分钟理解 HTTPS 到底解决了什么问题

一篇读懂HTTPS:加密原理、安全逻辑、数字证书等

即时通讯安全篇(八):你知道,HTTPS用的是对称加密还是非对称加密?

>> 更多同类文章 ……

(本文同步发布于:http://www.52im.net/thread-2866-1-1.html) 

posted @ 2019-12-10 12:15 Jack Jiang 阅读(170) | 评论 (0)编辑 收藏

1、引言

在即时通讯网经常能看到各种高大上的高并发、分布式、高性能架构设计方面的文章,平时大家参加的众多开发者大会,主题也都是各种高大上的话题——什么5G啦、AI人工智能啦、什么阿里双11分分钟多少万QPS高并发等等。

但实际上,对于普通的开发者(包括IM开发人员)来说,多数公司、多数团队也都是干着默默无闻、平淡无奇的产品开发,并没有那么多高并发、高大上的事情可以做。

就拿一个IM系统来说,无论你的架构设计考虑了多少分布式、高吞吐、高可用,所有这些事情只要落地,那编码的第一件事情就是要实现几乎所有信息系统都要面对的任务——如何设计账号登录功能?

本文将分享几种典型的移动端账号登陆方式的技术原理,以及设计思路,理解后,完全可以快速实施于你的各种应用系统(并不限于IM系统)中。本文阅读对像主要为刚入门的开发人员,请程序老司机们嘴下留情哦。

 

通过本篇文章, 你可以学到:

1)主流账号登陋技术方案细节;

2)相应的表设计;

3)相应的流程设计。

通过本篇文章, 你无法学到:

与其他原理性的文章一样,本篇不涉及具体代码实现细节(对于程序员来说,只要思路搞通,代码咋写都不会太烂,大家应该都有体会)。

学习交流:

- 即时通讯/推送技术开发交流5群:215477170[推荐]

- 移动端IM开发入门文章:《新手入门一篇就够:从零开发移动端IM

(本文同步发布于:http://www.52im.net/thread-2863-1-1.html

2、IM开发干货系列文章

本文是系列文章中的第20篇,总目录如下:

IM消息送达保证机制实现(一):保证在线实时消息的可靠投递

IM消息送达保证机制实现(二):保证离线消息的可靠投递

如何保证IM实时消息的“时序性”与“一致性”?

IM单聊和群聊中的在线状态同步应该用“推”还是“拉”?

IM群聊消息如此复杂,如何保证不丢不重?

一种Android端IM智能心跳算法的设计与实现探讨(含样例代码)

移动端IM登录时拉取数据如何作到省流量?

通俗易懂:基于集群的移动端IM接入层负载均衡方案分享

浅谈移动端IM的多点登陆和消息漫游原理

IM开发基础知识补课(一):正确理解前置HTTP SSO单点登陆接口的原理

IM开发基础知识补课(二):如何设计大量图片文件的服务端存储架构?

IM开发基础知识补课(三):快速理解服务端数据库读写分离原理及实践建议

IM开发基础知识补课(四):正确理解HTTP短连接中的Cookie、Session和Token

IM群聊消息的已读回执功能该怎么实现?

IM群聊消息究竟是存1份(即扩散读)还是存多份(即扩散写)?

IM开发基础知识补课(五):通俗易懂,正确理解并用好MQ消息队列

一个低成本确保IM消息时序的方法探讨

IM开发基础知识补课(六):数据库用NoSQL还是SQL?读这篇就够了!

IM里“附近的人”功能实现原理是什么?如何高效率地实现它?

IM开发基础知识补课(七):主流移动端账号登录方式的原理及设计思路》(本文)

3、最经典的用户名密码注册登陆方式

一个典型的用户名密码注册登陆功能类似于下面这样:

 

这种账号登陆方式很经典也很常用,先注册、再进行登录,尤其在老一点的CMS系统、网站系统、聊天应用中都能找到这个影子。

它的技术原理流程图如下:

 
 

如上图所示,详细的流程说明如下:

  • 1)前端将用户名、密码发送到服务器,服务器进行常规的判断,判断用户名、密码长度是否满足,用户名是否重复等条件,条件不通过直接返回对应错误码给到前端,这里密码字段,为了防止传输过程中被截胡,建议加密再上传,我们的传输密码默认都是会进行一个md5加密,然后记录到数据库再进行一层加密,就算是脱库也没事,密码不要明文存储。
  • 2)校验通过后,就将用户名密码写入数据库,并进行后面积分发放等操作,这里不展开。
  • 3)现在进行登录,前端将用户名,密码发送给到服务端,服务端首先会校验登录次数是否超过设置的阈值,如果超过只能继续等待被关小黑屋。
  • 4)如果未超过继续登录逻辑,判断用户名、密码是否正确,不正确密码则进行阈值的判断,如果超过则关小黑屋,记住小黑屋必须设置过期时间,要不然就会永久关上了,这个可以用redis的过期来做。
  • 5)登录成功后进行后续的一切后置逻辑,比如加积分。。。等操作。

这种经典的注册登陆方式,具体怎么设计就不在这里赘述了,谁都懂。

4、现今最主流的手机号注册登陆方式

4.1 基本原理

典型的手机号注册登陆功能类似于下图:

 

典型的手机号注册技术原理流程图如下:

 
 

如上图所示,详细的流程说明如下:

  • 1)首先输入手机号:然后发送到服务端,服务端将手机号记录在我们数据库中,然后生成随机验证码,并将手机号和验证码绑定到一个redis里面,然后记录过期时间,这个过期时间一般是10分钟左右,这就是我们一般手机验证码的有效期;
  • 2)手机接收到手机短信后:那么就在界面填写验证码发送服务端,服务端收到验证码后就会在redis里面查询到这个手机号对应的验证码,失败就返回错误码。
  • 3)成功后:就进行登录操作。

这里看起来没有明确的注册登录操作,其实在发送手机号码就可以认为是一个常规的注册,然后后面的验证码输入就是一个登陆操作。

但这种区别于常见的用户名密码注册方式,是没有密码的的。

问: 那我要密码咋办?

答: 在后续产品里面增加一个手机号码密码补录的功能即可,这也是现在很常规的手法,但是现在移动互联网大爆炸时代,密码已经显得不是那么重要了,反正我从来记不住密码,如果手机号码能操作的app,绝对不用密码来操作。

4.2 具体的数据库设计

表结构: 

说明:

这里只是单纯说明需要用到的数据,没有扩展具体场景,这个表结构能够满足上面两个方案的设计。

5、一种辅助的登陆方式:第3方账号登陆

5.1 基本原理

现在很多应用为了降低新用户的使用门槛,都会对接第3方账号进行登陆(比如:用微信号登陆、QQ号登陆、微博账号登陆等)。

这里我以QQ的开放平台登录逻辑为例进行讲解。

某团外卖的QQ账号登陆功能如下图:

 

我们先来一波时序图:

 
 

时序流程详细说明:

  • 1)客户端自己调起登录的界面,进行输入用户名、密码,这里的是第三方的用户名,密码,登录成功后,会返回access_token openid expire_in,这过程会使用到oauth2.0,不过在sdk里面进行内置回调获取了,后面我们会说明我们自身实现的oauth2.0;
  • 2)客户端拿到access_token、openid、login_type(qq、wechat...)请求应用服务器,应用服务器拿到这些数据后就会根据对应的login_type去对应的用户中心进行access_token和openid进行校验。校验不通过则返回对应错误码;
  • 3)校验通过后就会判断本地是否有这个login_type和openid是否存在,不存在则进行获取远程的用户名、头像等基础信息来作为本地基础数据,并且返回code值;
  • 4)如果已经存在,那就是进行登录操作,返回code值;
  • 5)客户端拿到code值后进行token值的换取,这个完全遵照oauth2.0的协议来走的,后续每次请求必须带上token,token值在服务端的时间比较久,因为我们想要做的是那种永不下线的操作,所以每次请求我们都将token过期时间进行累加。

想要深入了解第3方账号登陆,可以读读这两篇:《第三方登录:QQ登录接入指南》、《第三方账号登录功能接入完全流程》。

5.2 具体的数据库设计

表结构:

对于读者的建议,我这里做一下数据库的整理。

 

用户基础表(users):

 

用户验证关联表(user_auth_rel): 

 

本地用户表(user_local_auth):

 

第三方用户表(user_third_auth): 

 

表结说明:

  • 1)users表只是单纯针对我们业务侧的登录,主要是做自身业务的oauth2.0业务;
  • 2)user_local_auth是做自己用户名、密码登录,手机号码登录信息记录;
  • 3)user_third_auth是我们第三方用户体系的数据记录;
  • 4)user_auth_rel是用来关联我们users表与user_local_auth、user_third_auth;
  • 5)整个设计理念就是将自建用户与第三方在存储上区分,这在架构演进上也是合乎情理的,开始用户体系大多自建,而后才是对外接入。

6、本文小结

总的来讲,账号注册登录功能在一般的系统里都是入口功能,一般情况下都不会太复杂。

对于第三方用户的接入技术,也同样比较简单,我文章里设计多一个user_thirds是可以支持足够多的第三方接入,当然一般我们也就两三个登录就好,太多登录方不仅自身维护成本,界面摆盘也不好看不是。

希望大家能够通过以上学习,能够对于账户注册登录有一个比较好的认知,文章里设计方案不包含分表分库、没有服务化,就是简单直接的设计,当然用户量和需要的不一样,在这个基础上还要加很多东西,谢谢大家阅读。

附录:更多IM开发方面的文章

[1] IM开发综合文章:

新手入门一篇就够:从零开发移动端IM

移动端IM开发者必读(一):通俗易懂,理解移动网络的“弱”和“慢”

移动端IM开发者必读(二):史上最全移动弱网络优化方法总结

从客户端的角度来谈谈移动端IM的消息可靠性和送达机制

现代移动端网络短连接的优化手段总结:请求速度、弱网适应、安全保障

腾讯技术分享:社交网络图片的带宽压缩技术演进之路

小白必读:闲话HTTP短连接中的Session和Token

IM开发基础知识补课:正确理解前置HTTP SSO单点登陆接口的原理

移动端IM开发需要面对的技术问题

开发IM是自己设计协议用字节流好还是字符流好?

请问有人知道语音留言聊天的主流实现方式吗?

一个低成本确保IM消息时序的方法探讨

完全自已开发的IM该如何设计“失败重试”机制?

通俗易懂:基于集群的移动端IM接入层负载均衡方案分享

微信对网络影响的技术试验及分析(论文全文)

即时通讯系统的原理、技术和应用(技术论文)

开源IM工程“蘑菇街TeamTalk”的现状:一场有始无终的开源秀

QQ音乐团队分享:Android中的图片压缩技术详解(上篇)

QQ音乐团队分享:Android中的图片压缩技术详解(下篇)

腾讯原创分享(一):如何大幅提升移动网络下手机QQ的图片传输速度和成功率

腾讯原创分享(二):如何大幅压缩移动网络下APP的流量消耗(上篇)

腾讯原创分享(三):如何大幅压缩移动网络下APP的流量消耗(下篇)

如约而至:微信自用的移动端IM网络层跨平台组件库Mars已正式开源

基于社交网络的Yelp是如何实现海量用户图片的无损压缩的?

腾讯技术分享:腾讯是如何大幅降低带宽和网络流量的(图片压缩篇)

腾讯技术分享:腾讯是如何大幅降低带宽和网络流量的(音视频技术篇)

字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8

全面掌握移动端主流图片格式的特点、性能、调优等

子弹短信光鲜的背后:网易云信首席架构师分享亿级IM平台的技术实践

微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)

自已开发IM有那么难吗?手把手教你自撸一个Andriod版简易IM (有源码)

融云技术分享:解密融云IM产品的聊天消息ID生成策略

适合新手:从零开发一个IM服务端(基于Netty,有完整源码)

拿起键盘就是干:跟我一起徒手开发一套分布式IM系统

>> 更多同类文章 …… 

[2] 有关IM架构设计的文章:

浅谈IM系统的架构设计

简述移动端IM开发的那些坑:架构设计、通信协议和客户端

一套海量在线用户的移动端IM架构设计实践分享(含详细图文)

一套原创分布式即时通讯(IM)系统理论架构方案

从零到卓越:京东客服即时通讯系统的技术架构演进历程

蘑菇街即时通讯/IM服务器开发之架构选择

腾讯QQ1.4亿在线用户的技术挑战和架构演进之路PPT

微信后台基于时间序的海量数据冷热分级架构设计实践

微信技术总监谈架构:微信之道——大道至简(演讲全文)

如何解读《微信技术总监谈架构:微信之道——大道至简》

快速裂变:见证微信强大后台架构从0到1的演进历程(一)

17年的实践:腾讯海量产品的技术方法论

移动端IM中大规模群消息的推送如何保证效率、实时性?

现代IM系统中聊天消息的同步和存储方案探讨

IM开发基础知识补课(二):如何设计大量图片文件的服务端存储架构?

IM开发基础知识补课(三):快速理解服务端数据库读写分离原理及实践建议

IM开发基础知识补课(四):正确理解HTTP短连接中的Cookie、Session和Token

WhatsApp技术实践分享:32人工程团队创造的技术神话

微信朋友圈千亿访问量背后的技术挑战和实践总结

王者荣耀2亿用户量的背后:产品定位、技术架构、网络方案等

IM系统的MQ消息中间件选型:Kafka还是RabbitMQ?

腾讯资深架构师干货总结:一文读懂大型分布式系统设计的方方面面

以微博类应用场景为例,总结海量社交系统的架构设计步骤

快速理解高性能HTTP服务端的负载均衡技术原理

子弹短信光鲜的背后:网易云信首席架构师分享亿级IM平台的技术实践

知乎技术分享:从单机到2000万QPS并发的Redis高性能缓存实践之路

IM开发基础知识补课(五):通俗易懂,正确理解并用好MQ消息队列

微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)

微信技术分享:微信的海量IM聊天消息序列号生成实践(容灾方案篇)

新手入门:零基础理解大型分布式架构的演进历史、技术原理、最佳实践

一套高可用、易伸缩、高并发的IM群聊、单聊架构方案设计实践

阿里技术分享:深度揭秘阿里数据库技术方案的10年变迁史

阿里技术分享:阿里自研金融级数据库OceanBase的艰辛成长之路

社交软件红包技术解密(一):全面解密QQ红包技术方案——架构、技术实现等

社交软件红包技术解密(二):解密微信摇一摇红包从0到1的技术演进

社交软件红包技术解密(三):微信摇一摇红包雨背后的技术细节

社交软件红包技术解密(四):微信红包系统是如何应对高并发的

社交软件红包技术解密(五):微信红包系统是如何实现高可用性的

社交软件红包技术解密(六):微信红包系统的存储层架构演进实践

社交软件红包技术解密(七):支付宝红包的海量高并发技术实践

社交软件红包技术解密(八):全面解密微博红包技术方案

社交软件红包技术解密(九):谈谈手Q红包的功能逻辑、容灾、运维、架构等

即时通讯新手入门:一文读懂什么是Nginx?它能否实现IM的负载均衡?

即时通讯新手入门:快速理解RPC技术——基本概念、原理和用途

多维度对比5款主流分布式MQ消息队列,妈妈再也不担心我的技术选型了

从游击队到正规军(一):马蜂窝旅游网的IM系统架构演进之路

从游击队到正规军(二):马蜂窝旅游网的IM客户端架构演进和实践总结

IM开发基础知识补课(六):数据库用NoSQL还是SQL?读这篇就够了!

瓜子IM智能客服系统的数据架构设计(整理自现场演讲,有配套PPT)

阿里钉钉技术分享:企业级IM王者——钉钉在后端架构上的过人之处

>> 更多同类文章 ……

(本文同步发布于:http://www.52im.net/thread-2863-1-1.html

posted @ 2019-12-07 19:38 Jack Jiang 阅读(132) | 评论 (0)编辑 收藏

1、引言

整个暑假去面试,面试了很多家公司(无论是小厂还是大厂)问到的深度不同,网络原理是面试最容易问到的问题,虽然我们在项目中很少去实践它,但是了解其原理,会让我们背后网络通信是如果工作的,既能在面试官面前体现出你的基础是否扎实,也能对以后深入网络这部分学习有更多的了解。

很多同学面试在准备这部分的时候,都会去背,这部分确实很难掌握,我个人总结的最好的学习网络原理的方法就是不用刻意的去记忆而是完全的结合实际去讲整个原理融会贯通。虽然一开始学习起来很吃力,但是稍微用点心,多看几遍,多问自己为什么,把自己当做是开发网络原理的开发者,面试前的准备只要理清逻辑就足够了,而不是去背这部分内容。

而且这部分相同的知识点面试官有多种提问方式,但是其中很多都是换汤不换药。我记得最多的问的是输入URL,到页面呈现出来,其中经历了什么?这道面试题的背后,涉及到了很多网络原理的知识,我们这篇文章不会全部分享到,而是先把由来和网络层次划分弄清楚,就完成了这篇文章的目的。

(本文同步发布于:http://www.52im.net/thread-2851-1-1.html

相关文章:

网络编程懒人入门(一):快速理解网络通信协议(上篇)》(* 力荐)

网络编程懒人入门(二):快速理解网络通信协议(下篇)》(* 力荐)

网络编程懒人入门(六):史上最通俗的集线器、交换机、路由器功能原理入门

网络编程懒人入门(九):通俗讲解,有了IP地址,为何还要用MAC地址?

学习交流:

- 即时通讯/推送技术开发交流5群:215477170[推荐]

- 移动端IM开发入门文章:《新手入门一篇就够:从零开发移动端IM

2、关于作者

小鹿(前端工程师):

微信公众号:小鹿动画学编程

Github地址:https://github.com/luxiangqiang

个人博客:http://luxiangqiang.com/

3、系列文章

本文是系列文章中的第7篇,本系列大纲如下:

脑残式网络编程入门(一):跟着动画来学TCP三次握手和四次挥手

脑残式网络编程入门(二):我们在读写Socket时,究竟在读写什么?

脑残式网络编程入门(三):HTTP协议必知必会的一些知识

脑残式网络编程入门(四):快速理解HTTP/2的服务器推送(Server Push)

脑残式网络编程入门(五):每天都在用的Ping命令,它到底是什么?

脑残式网络编程入门(六):什么是公网IP和内网IP?NAT转换又是什么鬼?

脑残式网络编程入门(七):面视必备,史上最通俗计算机网络分层详解》(本文)

4、为什么要进行网络层次划分?

说到网络层次划分并不陌生,我刚刚接触到网络层次的时候一脸懵逼,这么多层,一层不就行了嘛?层与层之间好多协议,还有各种数据包,第一次我放弃了。

当我从新拾起网络层次的时候,我下定决心从根上理解它。首先弄明白它的原理,那必定要知道它的由来,也就是为什么要进行网络层次划分?这个问题问的好。

假如“小鹿”是网络的开发人员,起初认为计算机与计算机之间的通信只需要一根线就可以完成通信,对没错,但是世界那么大,那么多计算机,距离又远,不但浪费线,还没出现各种线被你偷偷剪断的情况,毋庸置疑,那计算机之间通信就不行了。(后边出来了无线网,虽然其中网关、路由之间也需要连线,但不是让每台计算机两两连接,而是一个区域为单位计算机相互连接通信)

不行,老板说,“小鹿”你给我想法子改,改不出来今晚不能睡觉,“小鹿”仔细想了想,这还是个技术活,需要进行全面的改进,也发现所谓的计算机之间的连线只能传送0、1信号,另一台计算并不知道那么多0、1代表什么,而且“小鹿”又发现不同厂商的生产的计算机既然有连线实现通信也是很麻烦的,干脆定义一套规则吧,无论“某硕”计算机还是“某想”计算机,都必须遵守这套规则,其实所说的这套规则就是我们经常说的“网络协议”。

不是说网络层次的由来吗,怎么讲到网络协议了。咱们继续,通过上面的问题,那个计算机之间通过连线传送0、1信号的问题虽然规定了通信规则,但是除了像0、1这种无意义的信号之外,网络中还存在着其他各种各样的问题,两个计算机之间怎么进行识别?以及怎么才能知道对方的地址?以及不同计算机应用程序怎么知道是给自己传递的数据,还有不同的通信数据格式怎么来规定等等一系列的问题都出来了。

“小鹿”发现,如果各种问题都写成一套协议来规定双方通信的规则,但是呢?万一其中哪些规则通信中出现问题,影响到了其他规则,最常见的就是数据包,一个数据包中如果包含各种各样的协议,不就乱套了。

“小鹿”为了能够把它设计的更好,决定采用分层划分的结构,既能规定不同层的完成的功能,又能实现层与层之间的改动而不相互影响,这就是我们经常听到网络划分层次的好处。

5、网络分层是如何进行分层的?

既然我们决定要分层,那么分为几层才好呢?

起初网络分层是标准的七层,也就是我们所说的 OSI 七层模型。

 

▲ OSI参考模型或七层模型

我们所知道的还有 TCP/IP 四层模型和 TCP/IP 五层模型。这又是怎么出来的,其实所谓的 TCP/IP 四层模型和 TCP/IP 五层模型是以 OSI 七层优化而来,把某些层进行合并了,其实本质上还是相同的,但是我个人最喜欢用五层来解释。

 

▲ 五层模型

6、每一层的作用是什么?

这一部分涉及到每一层的很多协议和知识点,但是我们这一节不具体分享,为什么?我们具体深入之前必须大脑里有个具体的网络分层结构图,先要知道每层是做什么的,层与层之间的关系,然后下一节再深入每层中的每个协议怎么通信的,这样的好处学起来条理清晰,而不至于当时我学习的时候表面还不懂,就深入最后懵逼状态。

6.1 物理层

物理层,顾名思义,用物理手段将电脑连接起来,就像我们上边讲到的计算机之间的物理连线。主要用来传输0、1信号,上边也分析过了,0、1信号毕竟没有任何的现实意义,所有我们用另一层用来规定不同0、1组合的意义是什么。

6.2 数据链路层

下层的物理层既然不能规定不同0、1组合的信号代表什么意义,那么我们在数据链路层规定一套协议,专门的给0、1信号进行分组,以及规定不同的组代表什么意思,从而双方计算机都能够进行识别,这个协议就是“以太网协议”(具体的以太网协议内容下节内容详细讲解)。

但是问题又来了,我们要发送给对方计算机,怎么标识对方以及怎么知道对方的地址呢?

6.2.1)MAC 地址:

我们所说的MAC地址到底的作用是啥?说白了它就是作为网络中计算机设备的唯一标识,从计算机在厂商生产出来就被十六进制的数标识为MAC地址。

既然我们知道了用MAC地址作为标识,那么怎么才能知道我们要进行通信的计算机MAC地址呢?

6.2.2)广播:

这里广播详细的在下一节讲,这一节你只需要知道广播可以帮助我们能够知道对方的 MAC 地址。那么既然知道了MAC地址就可以通信了?没有想得那么简单,广播中还存在两种情况,一种是,在同一子网络下(同一局域网下)的计算机是通过 ARP 协议获取到对方 MAC地址的。不同自网络中(不同局域网)中是交给两个局域网的网关(路由器)去处理的。这里边涉及到很多细节的知识,都会集中到下一节,但是这一节你了解怎么进行标识计算机和怎么获取到MAC地址就可以了。

6.3 网络层

物理层和数据链路层都有自己的事情要做,也就是我们上边所讲到的这些(里边很多细节不在这节多说)。上边两层在我看来可以完成正常通信了,那么网络层出来干啥子?

网络层的由来是因为在数据链路层中我们说说两台计算机之间的通信是分为同一子网络和不同子网络之间,那么问题就来了,怎么判断两台计算机是否在同一子网络(局域网)中?这就是网络层要解决的问题。

6.3.1)IP 协议:

我们通常用到的 IP 地址,就是网络层中的东西,所规定的的协议就是 IP 协议。很多小伙伴问,IP 地址想必也是地址吧,上边都有唯一标识的 MAC 地址了,IP 地址出来是混饭吃的?为了能够让大家更方便的理解 IP 地址和 MAC 地址,我们可以将 IP 地址抽象成一种逻辑上的地址,也就是说 MAC 地址是物理上的地址,就是定死了。IP 地址呢,是动态分配的,不是固定死的。

我们就是通过 IP 地址来判断两个计算机设备是否在同一子网络中的,那么你会问它是怎么判断的,以及 IP 地址谁给他分配的?又是如何分配的等一些列问题,我们不着急,这里只说一下大体的流程,详细会后续写一大篇。

既然我们通过 IP 地址来判断两个计算机是否处于同一局域网中,那么首先要知道对方的 IP 地址吧?DNS 解析想必大家都知道,可以将域名解析为 IP 地址。好了,我们知道两台计算机的 IP 地址了,怎么进行判断是否同一局域网中?

6.3.2)子网掩码:

嘿嘿,又是一个只听说过,但是不知道这个什么作用的一个名词,没事,等我聊完,你就明白是做什么的了。

子网掩码就是用来标识同一局域网中的 IP 地址的信息的?什么信息?IP 地址是由 32 个二进制位组成的,也就是四个十进制(如:255.255.255.000)。

子网掩码也是由 32 个二进制位组成的,但是只能用 0 或 1 来表示,如:11111111.11111111.11111111.00000000。

到底什么意思呢?有 1 的部分表示网络部分,有 0 表示主机部分,这和判断两台计算机是否在同一局域网中有什么关系?没错,是有关系的!两台计算机的 IP 地址分别和子网掩码进行一种运算(AND 运算),如果结果相同,两台计算机就在同一局域网中,否则就不在同一局域网中。

AND 是如何进行运算的,IP 的数据包的组成等问题,不在这里多陈述。

6.4 传输层

好了,如果你认为计算机可以进行通信了,那么“小鹿”恭喜你,你已经基本知道了以上几层划分的作用,但是如果你正在一边打 LOL,一边和朋友在 QQ 聊天,突然,游戏中队友聊天信息出现在了 QQ 窗口中,咦?出现了什么情况?

其实是以上层级还是不够,出现上边的原因就是,两台计算机虽然可以通信了,但是每天计算机运行着好多的程序,谁知道你们传输的信息是属于哪些程序的,怨不得 LOL 的聊天信息跑到了 QQ 窗口中。

想必大家猜到了传输层主要用来干啥滴,是的,传输层的主要功能就是为了能够实现“端口到端口”的通信。计算机上运行的不同程序都会分配不同的端口,所以才能使得数据能够正确的传送给不同的应用程序。

6.4.1)UDP 协议:

加入端口号也需要一套规则,那就是 UDP 协议,但是 UDP协议有个缺点,一旦进行通信,就不知道对方是否接收到数据了,我们再定义一套规则,让其可以和对方进行确认,那么 TCP 出现了。

6.4.2)TCP 协议:

我们通常说 TCP 三次握手和四次挥手,没错,这就是传输层中完成的,TCP 三次握手涉及到的内容贼多,都可以单独写一篇长文,这里不多陈述,知道它是在传输层中完成的以及它的作用是什么,能够认识到它就好了。

6.5 应用层协议

“喂,你发给我的是什么破数据,乱七八糟的,我TM能解析吗?能不能按照我的规定给我传送?“

“好的,下次不敢了”

想必大家已经猜到了应用层的协议,应用层的功能就是规定了应用程序的数据格式。我们经常用得到的电子邮件、HTTP协议、以及FTP数据的格式,就是在应用层定义的。

7、每一层的的功能细节是什么?

前面章节主要分享了网络分层的基本概念,为什么要进行网络分层?又是如何进行分层?每一层的基本功能是什么?而且对于每一层的的功能细节方面,比如数据包的组成以及每层包含的一些协议的使用都没有细说,那么本节将继续分享网络分层每层中协议等深入讲解。(PS:可能里边有的讲解不正确,还请大佬指出改正)

7.1 物理层

物理层里边涉及到最多的是硬件底层的一些内容,没有需要过多了解的内容,我们直接看数据链路层。

7.2 数据链路层

上回讲到数据链路层中规定的“以太网协议”来规定电信号的分组形式,什么是以太网,以太网的数据包是什么样子的?

7.2.1)以太网协议:

以太网规定,每组的电信号就是一个数据包,每个数据包我们可以成为“帧”。每帧的组成是由标头(Head)和数据(Data)组成。

 

那么你会问,标头里有什么信息?Data 数据又会存放写什么?为什么分为两部分?放在一块不好吗?

a)标头:

为什么传输数据会有标头,我们想呀,在传输数据的时候,接收端怎么判断是不是给自己发送的,那么就只取出标头来进行判断。

数据包的标头中通常会存放一些有关数据包的说明、发送者是谁、接受者又是谁等相关识别信息。

标头的长度固定为 18 字节,也就是说,一些标头识别信息的大小不能超过 18 字节。

b)数据:

数据,顾名思义,你要传输给接收端什么数据都会放到数据包中,也就是整个数据包的具体内容,比如文件、字符串之类的。

数据部分的长度最小至少为 46 个字节,最长 1500 字节。我们可能会想到,如果小于 46 字节没啥问题可以存放开,那么大于 1500 字节怎么处理呢?很简单,我们就分成两个包处理(分割),两个包存放不下就分割成三个包…

7.2.2)广播:

上回说到,广播的作用就是用来查找接收端的 MAC 地址,从而进行下一步的数据传输。注意,广播只是一种发送数据的形式,而计算机想要知道另一台计算机的 MAC 地址是通过 ARP 协议解决的,ARP 协议会在讲完 IP 协议后再说,因为它会涉及到 IP 协议的一点内容,现在讲可能会有点乱。

如果你觉的上边稍微有点乱,那怎们稍微屡一下,我们想要发送数据,首先要知道对方的唯一标识(MAC 地址),要想知道对方的 MAC 地址,需要使用 ARP 协议,假设我们通过 ARP 协议拿到了接收方的 MAC 地址。

我们开始发送数据,将发送方的 MAC 地址和接收方的 MAC 地址封装在数据包中,然后发送端向同一子网络中(同一局域网)中的所有计算机发送该数据包,所有的计算机接收到该包之后,就对数据包的头部进行提取,提取出里边封装好的接收端 MAC 地址和自己的 MAC 地址作比对,如果相同,就说明该数据包是给自己发送的,否则,就会丢弃该数据包,这个过程就是广播的过程。

上一篇文章在这个地方留下的一个问题就以上是在同一局域网中,如果不在同一局域网中我们怎么处理?我们平常使用无线网都知道每个无线局域网都会有一个路由器,我们先通过以上的方法将数据发送到路由器,然后路由器转发数据到其他局域网中的计算机。

7.3 网络层

网络层中最重要的一个协议就是 IP 协议,我们一般发送端给服务端发送数据同时要知道两个地址才能准确送达到对方,分别为 IP 地址和 MAC 地址。停!stop! 上边讲到的明明知道对方的 MAC 地址就可以传输数据了,为什么现在需要两个地址呢?你给我说明白,说不明白取关!

上边确实是一个 MAC 地址就可以通信,但是前提是通过 ARP 协议获得的 MAC 地址,而 ARP 协议正是利用的接收端的 IP 地址才获取到接收端的 MAC 地址的,所以这两个地址很重要,那么如果实现的,下边会继续讲。

7.3.1)IP 协议:

IP 的数据包是直接放入到以太网数据包的“数据”部分的,这样做有一个好处就是“上层的变动完全涉及不到下层的结构”。然后数据包就变成这个样子了。

 

IP 数据包也分为标头(Head)和数据(Data)两部分:

  • 1)标头:IP 数据包的标头是 20 ~ 60 字节,主要包括版本、IP 地址等信息;
  • 2)数据:数据的最大长度为 65515 字节。整个 IP 数据包的最大总长度为 65535 字节。主要存放 IP 数据包的具体内容。

问题来了,以太网的数据部分最长为 1500 字节,你把一个长度为 65535 字节的 IP 数据包放到以太网的数据包汇总,不会被撑破吗?你在逗我么?确实是呀,那我们就分割数据包吧,分割成几个以太网数据包分开发送。

7.3.2)AND 运算:

IP 协议上篇文章中最重要的作用就是判断两个设备是否属于同一子网中(同一局域网中)。

将两个IP地址与子网掩码分别进行AND运算(两个数位都为1,运算结果为1,否则为0),然后比较结果是否相同,如果是的话,就表明它们在同一个子网络中,否则就不是。

我们可以通过 DNS 解析知道对方的 IP ,除了判断两个计算机是否在同一局域网中,还有一个作用就是然后通过 ARP 协议获取到对方的 MAC 地址。停!真想让我取关吗?ARP 就 TN 的说了多少遍了,该详细说一下了吧?

7.3.3)ARP 协议:

前提:对方的 IP 地址是已知的,通过 DNS 解析得到。

ARP 协议发出一个数据包,包含在以太网的数据包中(其中包含对方的 IP 地址,对方的 MAC 地址栏是 FF:FF:FF:FF:FF:FF)。子网络中的每台主机都会收到这个包,然后从中取出 IP 地址与自身对比,如果两者相同,都做出回复,向对方报告自己的 MAC 地址,否则就丢弃这个包。

7.4 传输层

传输层主要涉及到两个重要协议,UDP 和 TCP 协议,上篇讲过主要用来确定端口到端口的通信,计算机中不同运行的程序端口号不相同。

"端口"是 0 到 65535 之间的一个整数,正好 16 个二进制位。0 到 1023的端口被系统占用,我们只能选用大于1023 的端口。

7.4.1)UDP 协议:

UDP 协议也分为标头(Head)和数据(Data)两部分:

  • 1)标头:标头的长度为 8 字节。主要存放了发送和接收端口号;
  • 2)数据:数据部分和标头部分的总长度不超过 65535 字节,正好放进一个IP数据包。

前边也讲过,数据包之间是包含关系的,所以 UDP 的数据包是放到 IP 数据包的“数据”部分的,IP 数据包又放在以太网数据包的“数据”部分的。

 

7.4.2)TCP 协议:

TCP 和 UDP 是相同的,上一篇讲了 UDP 和 TCP 的优缺点,TCP 保证了网络的可靠性,TCP 三次握手和四次挥手就是这部分内容。

TCP 的数据包和 UDP 相同嵌入在 IP 协议的“数据”部分,TCP 并没有长度限制,但是为了保证传输效率,肯定要进行限制的,TCP 的数据包的长度一般不会超过 IP 数据包的长度了,保证单个的 TCP 数据包不再进行分割。

7.5 应用层

应用层是最高一层,直接面向用户,它的数据包会放在 TCP 的数据包的“数据”部分,那么整个五层的数据包就会变成一下这样。

 

以上五层中的内容基本讲完了,我是从下到上逐层写的,这篇文章可以让你入门网络五层协议的基本内容了。

8、写在最后

如果本文内容看完,还是有点懵,那怎么办?

可以继续以下两篇文章,它们应该可以让你内力倍增:

网络编程懒人入门(一):快速理解网络通信协议(上篇)

网络编程懒人入门(二):快速理解网络通信协议(下篇)

另外,关于计算机网络协议的分层和关系,可以看看下面两图:

 

* 上述两张图的清晰原图,请见:《计算机网络通讯协议关系图(中文珍藏版)[附件下载]》。

附录:更多网络编程基础资料

TCP/IP详解 - 第11章·UDP:用户数据报协议

TCP/IP详解 - 第17章·TCP:传输控制协议

TCP/IP详解 - 第18章·TCP连接的建立与终止

TCP/IP详解 - 第21章·TCP的超时与重传

技术往事:改变世界的TCP/IP协议(珍贵多图、手机慎点)

通俗易懂-深入理解TCP协议(上):理论基础

通俗易懂-深入理解TCP协议(下):RTT、滑动窗口、拥塞处理

理论经典:TCP协议的3次握手与4次挥手过程详解

理论联系实际:Wireshark抓包分析TCP 3次握手、4次挥手过程

计算机网络通讯协议关系图(中文珍藏版)

UDP中一个包的大小最大能多大?

P2P技术详解(一):NAT详解——详细原理、P2P简介

P2P技术详解(二):P2P中的NAT穿越(打洞)方案详解

P2P技术详解(三):P2P技术之STUN、TURN、ICE详解

通俗易懂:快速理解P2P技术中的NAT穿透原理

高性能网络编程(一):单台服务器并发TCP连接数到底可以有多少

高性能网络编程(二):上一个10年,著名的C10K并发连接问题

高性能网络编程(三):下一个10年,是时候考虑C10M并发问题了

高性能网络编程(四):从C10K到C10M高性能网络应用的理论探索

高性能网络编程(五):一文读懂高性能网络编程中的I/O模型

高性能网络编程(六):一文读懂高性能网络编程中的线程模型

Java的BIO和NIO很难懂?用代码实践给你看,再不懂我转行!

不为人知的网络编程(一):浅析TCP协议中的疑难杂症(上篇)

不为人知的网络编程(二):浅析TCP协议中的疑难杂症(下篇)

不为人知的网络编程(三):关闭TCP连接时为什么会TIME_WAIT、CLOSE_WAIT

不为人知的网络编程(四):深入研究分析TCP的异常关闭

不为人知的网络编程(五):UDP的连接性和负载均衡

不为人知的网络编程(六):深入地理解UDP协议并用好它

不为人知的网络编程(七):如何让不可靠的UDP变的可靠?

不为人知的网络编程(八):从数据传输层深度解密HTTP

不为人知的网络编程(九):理论联系实际,全方位深入理解DNS

网络编程懒人入门(一):快速理解网络通信协议(上篇)

网络编程懒人入门(二):快速理解网络通信协议(下篇)

网络编程懒人入门(三):快速理解TCP协议一篇就够

网络编程懒人入门(四):快速理解TCP和UDP的差异

网络编程懒人入门(五):快速理解为什么说UDP有时比TCP更有优势

网络编程懒人入门(六):史上最通俗的集线器、交换机、路由器功能原理入门

网络编程懒人入门(七):深入浅出,全面理解HTTP协议

网络编程懒人入门(八):手把手教你写基于TCP的Socket长连接

网络编程懒人入门(九):通俗讲解,有了IP地址,为何还要用MAC地址?

网络编程懒人入门(十):一泡尿的时间,快速读懂QUIC协议

技术扫盲:新一代基于UDP的低延时网络传输层协议——QUIC详解

让互联网更快:新一代QUIC协议在腾讯的技术实践分享

现代移动端网络短连接的优化手段总结:请求速度、弱网适应、安全保障

聊聊iOS中网络编程长连接的那些事

移动端IM开发者必读(一):通俗易懂,理解移动网络的“弱”和“慢”

移动端IM开发者必读(二):史上最全移动弱网络优化方法总结

IPv6技术详解:基本概念、应用现状、技术实践(上篇)

IPv6技术详解:基本概念、应用现状、技术实践(下篇)

从HTTP/0.9到HTTP/2:一文读懂HTTP协议的历史演变和设计思路

以网游服务端的网络接入层设计为例,理解实时通信的技术挑战

迈向高阶:优秀Android程序员必知必会的网络基础

全面了解移动端DNS域名劫持等杂症:技术原理、问题根源、解决方案等

美图App的移动端DNS优化实践:HTTPS请求耗时减小近半

Android程序员必知必会的网络通信传输层协议——UDP和TCP

IM开发者的零基础通信技术入门(一):通信交换技术的百年发展史(上)

IM开发者的零基础通信技术入门(二):通信交换技术的百年发展史(下)

IM开发者的零基础通信技术入门(三):国人通信方式的百年变迁

IM开发者的零基础通信技术入门(四):手机的演进,史上最全移动终端发展史

IM开发者的零基础通信技术入门(五):1G到5G,30年移动通信技术演进史

IM开发者的零基础通信技术入门(六):移动终端的接头人——“基站”技术

IM开发者的零基础通信技术入门(七):移动终端的千里马——“电磁波”

IM开发者的零基础通信技术入门(八):零基础,史上最强“天线”原理扫盲

IM开发者的零基础通信技术入门(九):无线通信网络的中枢——“核心网”

IM开发者的零基础通信技术入门(十):零基础,史上最强5G技术扫盲

IM开发者的零基础通信技术入门(十一):为什么WiFi信号差?一文即懂!

IM开发者的零基础通信技术入门(十二):上网卡顿?网络掉线?一文即懂!

IM开发者的零基础通信技术入门(十三):为什么手机信号差?一文即懂!

IM开发者的零基础通信技术入门(十四):高铁上无线上网有多难?一文即懂!

IM开发者的零基础通信技术入门(十五):理解定位技术,一篇就够

百度APP移动端网络深度优化实践分享(一):DNS优化篇

百度APP移动端网络深度优化实践分享(二):网络连接优化篇

百度APP移动端网络深度优化实践分享(三):移动端弱网优化篇

技术大牛陈硕的分享:由浅入深,网络编程学习经验干货总结

可能会搞砸你的面试:你知道一个TCP连接上能发起多少个HTTP请求吗?

知乎技术分享:知乎千万级并发的高性能长连接网关技术实践

>> 更多同类文章 ……

(本文同步发布于:http://www.52im.net/thread-2851-1-1.html

posted @ 2019-12-01 15:59 Jack Jiang 阅读(330) | 评论 (0)编辑 收藏

     摘要: 本文引用了唐小智发表于InfoQ公众号上的“钉钉企业级IM存储架构创新之道”一文的部分内容,收录时有改动,感谢原作者的无私分享。1、引言业界的 IM 产品在功能上同质化较高,而企业级的 IM 产品对于高可用、安全性又有更高的要求,如何打造具备差异化的产品,又在高可用、安全性、数据一致性等方面具备较高的品质,是企业级 IM 产品成功的关键。钉钉在过去短短几年时间里,用户数已破...  阅读全文

posted @ 2019-11-26 15:32 Jack Jiang 阅读(139) | 评论 (0)编辑 收藏

     摘要: 本文原题“从实践角度重新理解BIO和NIO”,原文由Object分享,为了更好的内容表现力,收录时有改动。1、引言这段时间自己在看一些Java中BIO和NIO之类的东西,也看了很多博客,发现各种关于NIO的理论概念说的天花乱坠头头是道,可以说是非常的完整,但是整个看下来之后,发现自己对NIO还是一知半解、一脸蒙逼的状态(请原谅我太笨)。 基于以上原因,就有了写本文...  阅读全文

posted @ 2019-11-22 21:55 Jack Jiang 阅读(620) | 评论 (0)编辑 收藏

     摘要: 1、引言如今我们所处的时代,是移动互联网时代,也可以说是视频时代。从快播到抖音,从“三生三世”到“延禧攻略”,我们的生活,被越来越多的视频元素所影响。  而这一切,离不开视频拍摄技术的不断升级,还有视频制作产业的日益强大。 此外,也离不开通信技术的飞速进步。试想一下,如果还是当年的56K Modem拨号,或者是2G手机,...  阅读全文

posted @ 2019-11-19 11:00 Jack Jiang 阅读(590) | 评论 (0)编辑 收藏

     摘要: 本文引用了饿了么资深开发工程师万汨“Redis 到底是怎么实现“附近的人”这个功能的呢?”一文的内容,感谢原作者的分享,为了提升文章品质,即时通讯收录时有内容补充和修订。1、引言基本上以陌生人社交为主的IM产品里,都会增加“附近的人”、“附近的xxx”这种以LBS(地理位置)为导向的产品特色(微信这个熟...  阅读全文

posted @ 2019-11-12 15:04 Jack Jiang 阅读(502) | 评论 (0)编辑 收藏

1、TCP协议到底怎么了?

现时的互联网应用中,Web平台(准确地说是基于HTTP及其延伸协议的客户端/服务器应用)的数据传输都基于 TCP 协议。

但TCP 协议在创建连接之前需要进行三次握手(如下图 1,更详细原理请见《理论经典:TCP协议的3次握手与4次挥手过程详解》),如果需要提高数据交互的安全性,既增加传输层安全协议(TLS),还会增加更多的更多握手次数(如下图 2)。

 
▲ 图 1 - TCP的三次握手原理图
 
▲ 图 2  - TLS的初始化握手原理图

正如上面两张图里演示的原理,TCP 协议连接建立的成本相对较高。

所以,一般的稳定网络传输都是通过TCP,但是在网络基建本身就已经越来越完善的情况下,TCP设计本身的问题便暴露了出来,特别是在弱网环境下,让我们不得不考虑一些新的可能性。

(本文同步发布于:http://www.52im.net/thread-2816-1-1.html

2、QUIC协议登场

和 TCP 相反,UDP 协议是无连接协议。客户端发出 UDP 数据包后,只能“假设”这个数据包已经被服务端接收。这样的好处是在网络传输层无需对数据包进行确认,但存在的问题就是为了确保数据传输的可靠性,应用层协议需要自己完成包传输情况的确认。

此时,QUIC 协议就登场了。

QUIC 是 Quick UDP Internet Connections 的缩写,谷歌发明的新传输协议。

与 TCP 相比,QUIC 可以减少延迟。

QUIC 协议可以在 1 到 2 个数据包(取决于连接的服务器是新的还是已知的)内,完成连接的创建(包括 TLS)(如下图3所示)。

 

▲ 图 3  - QUIC 协议握手原理图

从表面上看:QUIC 非常类似于在 UDP 上实现的 TCP + TLS + HTTP/2。由于 TCP 是在操作系统内核和中间件固件中实现的,因此对 TCP 进行重大更改几乎是不可能的(TCP 协议栈通常由操作系统实现,如 Linux、Windows 内核或者其他移动设备操作系统。修改 TCP 协议是一项浩大的工程,因为每种设备、系统的实现都需要更新)。但是,由于 QUIC 建立在 UDP 之上,因此没有这种限制。QUIC 可以实现可靠传输,而且相比于 TCP,它的流控功能在用户空间而不在内核空间,那么使用者就不受限于 CUBIC 或是 BBR,而是可以自由选择,甚至根据应用场景自由调整优化。

QUIC 与现有 TCP + TLS + HTTP/2 方案相比,有以下几点主要特征:

1)利用缓存,显著减少连接建立时间;

2)改善拥塞控制,拥塞控制从内核空间到用户空间;

3)没有 head of line 阻塞的多路复用;

4)前向纠错,减少重传;

5)连接平滑迁移,网络状态的变更不会影响连接断线。

 

从图上可以看出,QUIC 底层通过 UDP 协议替代了 TCP,上层只需要一层用于和远程服务器交互的 HTTP/2 API。这是因为 QUIC 协议已经包含了多路复用和连接管理,HTTP API 只需要完成 HTTP 协议的解析即可。

有关QUIC的详解请见:《技术扫盲:新一代基于UDP的低延时网络传输层协议——QUIC详解》。

3、QUIC协议的目标

QUIC 协议的主要目的,是为了整合 TCP 协议的可靠性和 UDP 协议的速度和效率。

一张图看懂QUIC协议的优势:

 

对于 Google 来说优化 TCP 协议是一个长期目标,QUIC 旨在创建几乎等同于 TCP 的独立连接,但有着低延迟,并对类似 SPDY 的多路复用流协议有更好的支持。 如果 QUIC 协议的特性被证明是有效的,这些特性以后可能会被迁移入后续版本的 TCP 和 TLS 协议(它们都有很长的开发周期)。

值得注意的是,虽然理论上来说,如果 QUIC 的特性被证明是有效的,这些特性以后可能会被迁移到后续版本的 TCP 协议中,但鉴于TCP协议长达几十年在互联网通信里的垄断地位,以及这么多年积累下来的沉重历史报复,想要根本性地优化或改进TCP协议,难度相当大(或许,有些事情,只能是想想而已,IPV6还喊了这么多年呢,不是一样没普及。。。)。

4、QUIC协议这么好,可以大规模切换为QUIC吗?

理想和现实总是有一定的差距:虽然经过多年的推广的应用,但QUIC协议目前仍未达到大量普及的阶段,在 IETF上的QUIC 依然还是草稿,并且还存在Google QUIC与IETF QUIC两类不稳定的协定。

而且,QUIC还面临以下挑战:

1)小地方,路由封杀UDP 443端口( 这正是QUIC 部署的端口);

2)UDP包过多,由于QS限定,会被服务商误认为是攻击,UDP包被丢弃;

3)无论是路由器还是防火墙目前对QUIC都还没有做好准备。

5、QUIC协议实践

Chrome 浏览器从 2014 年开始已经实验性的支持了 QUIC 协议。可以通过在 Chrome 浏览器中输入 chrome://net-internals/#quic 查看是否已经支持 QUIC 协议。如果还未支持,可以在 chrome://flags/#enable-quic 中进行开启。

开始 Chrome 浏览器对 QUIC 协议的支持之后,可以在 chrome://net-internals/#quic 中查看到当前浏览器的 QUIC 一些连接。当然目前只有 Google 服务才支持 QUIC 协议(如 YouTube、 Google.com)。

 

Google 在 2015 年的一篇博文中分享了一些关于 QUIC 协议实现的结果,这些优势在诸如 YouTube 的视频服务上更为突出:用户报告通过 QUIC 协议在观看视频的时候可以减少 30% 的重新缓冲时间。

6、我想试试QUIC协议,可以怎么做?

目前支持 QUIC 协议的 web 服务只有 0.9 版本以后的 Caddy 。其他常用 web 服务如 nginx、apache 等都未开始支持。

整个 QUIC 协议比较复杂,想自己完全实现一套对笔者来说还比较困难。

所以先看看开源实现有哪些。

1)Chromium

这个是官方支持的。优点自然很多,Google 官方维护基本没有坑,随时可以跟随 chrome 更新到最新版本。不过编译 Chromium 比较麻烦,它有单独的一套编译工具。暂时不建议考虑这个方案。

2)proto-quic

从 chromium 剥离的一个 QUIC 协议部分,但是其 github 主页已宣布不再支持,仅作实验使用。不建议考虑这个方案。

3)goquic

goquic 封装了 libquic 的 go 语言封装,而 libquic 也是从 chromium 剥离的,好几年不维护了,仅支持到 quic-36, goquic 提供一个反向代理,测试发现由于 QUIC 版本太低,最新 chrome 浏览器已无法支持。不建议考虑这个方案。

4)quic-go

quic-go 是完全用 go 写的 QUIC 协议栈,开发很活跃,已在 Caddy 中使用,MIT 许可,目前看是比较好的方案。

那么,对于中小团队或个人开发者来说,比较推荐的方案是最后一个,即采用 caddy 来部署实现 QUIC。caddy 这个项目本意并不是专门用来实现 QUIC 的,它是用来实现一个免签的 HTTPS web 服务器的(caddy 会自动续签证书)。而QUIC 只是它的一个附属功能(不过现实是——好像用它来实现 QUIC 的人更多)。

从Github的技术趋势来说,有关QUIC的开源资源越来越多,有兴趣可以自已逐一研究研究:https://github.com/search?q=quic

7、本文小结

QUIC 协议开创性的使用了 UDP 协议作为底层传输协议,通过各种方式减少了网络延迟。

虽然目前 QUIC 协议已经运行在一些较大的网站上,但离大范围普及还有较长的一段距离,期待 QUIC 协议规范能够成为终稿,并在除了谷歌浏览器之外的其他浏览器和应用服务器中也能够实现。

8、参考资料

9、系列文章

附录:更多网络编程相关资料推荐

TCP/IP详解 - 第11章·UDP:用户数据报协议

TCP/IP详解 - 第17章·TCP:传输控制协议

TCP/IP详解 - 第18章·TCP连接的建立与终止

TCP/IP详解 - 第21章·TCP的超时与重传

技术往事:改变世界的TCP/IP协议(珍贵多图、手机慎点)

通俗易懂-深入理解TCP协议(上):理论基础

通俗易懂-深入理解TCP协议(下):RTT、滑动窗口、拥塞处理

理论经典:TCP协议的3次握手与4次挥手过程详解

理论联系实际:Wireshark抓包分析TCP 3次握手、4次挥手过程

计算机网络通讯协议关系图(中文珍藏版)

UDP中一个包的大小最大能多大?

P2P技术详解(一):NAT详解——详细原理、P2P简介

P2P技术详解(二):P2P中的NAT穿越(打洞)方案详解

P2P技术详解(三):P2P技术之STUN、TURN、ICE详解

通俗易懂:快速理解P2P技术中的NAT穿透原理

高性能网络编程(一):单台服务器并发TCP连接数到底可以有多少

高性能网络编程(二):上一个10年,著名的C10K并发连接问题

高性能网络编程(三):下一个10年,是时候考虑C10M并发问题了

高性能网络编程(四):从C10K到C10M高性能网络应用的理论探索

高性能网络编程(五):一文读懂高性能网络编程中的I/O模型

高性能网络编程(六):一文读懂高性能网络编程中的线程模型

不为人知的网络编程(一):浅析TCP协议中的疑难杂症(上篇)

不为人知的网络编程(二):浅析TCP协议中的疑难杂症(下篇)

不为人知的网络编程(三):关闭TCP连接时为什么会TIME_WAIT、CLOSE_WAIT

不为人知的网络编程(四):深入研究分析TCP的异常关闭

不为人知的网络编程(五):UDP的连接性和负载均衡

不为人知的网络编程(六):深入地理解UDP协议并用好它

不为人知的网络编程(七):如何让不可靠的UDP变的可靠?

不为人知的网络编程(八):从数据传输层深度解密HTTP

不为人知的网络编程(九):理论联系实际,全方位深入理解DNS

技术扫盲:新一代基于UDP的低延时网络传输层协议——QUIC详解

让互联网更快:新一代QUIC协议在腾讯的技术实践分享

现代移动端网络短连接的优化手段总结:请求速度、弱网适应、安全保障

聊聊iOS中网络编程长连接的那些事

移动端IM开发者必读(一):通俗易懂,理解移动网络的“弱”和“慢”

移动端IM开发者必读(二):史上最全移动弱网络优化方法总结

IPv6技术详解:基本概念、应用现状、技术实践(上篇)

IPv6技术详解:基本概念、应用现状、技术实践(下篇)

从HTTP/0.9到HTTP/2:一文读懂HTTP协议的历史演变和设计思路

脑残式网络编程入门(一):跟着动画来学TCP三次握手和四次挥手

脑残式网络编程入门(二):我们在读写Socket时,究竟在读写什么?

脑残式网络编程入门(三):HTTP协议必知必会的一些知识

脑残式网络编程入门(四):快速理解HTTP/2的服务器推送(Server Push)

脑残式网络编程入门(五):每天都在用的Ping命令,它到底是什么?

脑残式网络编程入门(六):什么是公网IP和内网IP?NAT转换又是什么鬼?

以网游服务端的网络接入层设计为例,理解实时通信的技术挑战

迈向高阶:优秀Android程序员必知必会的网络基础

全面了解移动端DNS域名劫持等杂症:技术原理、问题根源、解决方案等

美图App的移动端DNS优化实践:HTTPS请求耗时减小近半

Android程序员必知必会的网络通信传输层协议——UDP和TCP

IM开发者的零基础通信技术入门(一):通信交换技术的百年发展史(上)

IM开发者的零基础通信技术入门(二):通信交换技术的百年发展史(下)

IM开发者的零基础通信技术入门(三):国人通信方式的百年变迁

IM开发者的零基础通信技术入门(四):手机的演进,史上最全移动终端发展史

IM开发者的零基础通信技术入门(五):1G到5G,30年移动通信技术演进史

IM开发者的零基础通信技术入门(六):移动终端的接头人——“基站”技术

IM开发者的零基础通信技术入门(七):移动终端的千里马——“电磁波”

IM开发者的零基础通信技术入门(八):零基础,史上最强“天线”原理扫盲

IM开发者的零基础通信技术入门(九):无线通信网络的中枢——“核心网”

IM开发者的零基础通信技术入门(十):零基础,史上最强5G技术扫盲

IM开发者的零基础通信技术入门(十一):为什么WiFi信号差?一文即懂!

IM开发者的零基础通信技术入门(十二):上网卡顿?网络掉线?一文即懂!

IM开发者的零基础通信技术入门(十三):为什么手机信号差?一文即懂!

IM开发者的零基础通信技术入门(十四):高铁上无线上网有多难?一文即懂!

IM开发者的零基础通信技术入门(十五):理解定位技术,一篇就够

百度APP移动端网络深度优化实践分享(一):DNS优化篇

百度APP移动端网络深度优化实践分享(二):网络连接优化篇

百度APP移动端网络深度优化实践分享(三):移动端弱网优化篇

技术大牛陈硕的分享:由浅入深,网络编程学习经验干货总结

可能会搞砸你的面试:你知道一个TCP连接上能发起多少个HTTP请求吗?

知乎技术分享:知乎千万级并发的高性能长连接网关技术实践

>> 更多同类文章 ……

(本文同步发布于:http://www.52im.net/thread-2816-1-1.html

posted @ 2019-11-01 14:32 Jack Jiang 阅读(1000) | 评论 (0)编辑 收藏

     摘要: 本文由ITPub根据封宇在【第十届中国系统架构师大会(SACC2018)】现场演讲内容整理而成。1、引言瓜子业务重线下,用户网上看车、预约到店、成交等许多环节都发生在线下。瓜子IM智能客服系统的目的是要把这些线下的活动搬到线上,对线下行为进行追溯,积累相关数据。系统连接用户、客服、电销、销售、AI机器人、业务后台等多个角色及应用,覆盖网上咨询、浏览、预约看车、到店体验、后服、投诉等众多环节,各个角...  阅读全文

posted @ 2019-10-25 15:29 Jack Jiang 阅读(144) | 评论 (0)编辑 收藏

仅列出标题
共45页: First 上一页 26 27 28 29 30 31 32 33 34 下一页 Last 
Jack Jiang的 Mail: jb2011@163.com, 联系QQ: 413980957, 微信: hellojackjiang