Jack Jiang

我的最新工程MobileIMSDK:http://git.oschina.net/jackjiang/MobileIMSDK
posts - 467, comments - 13, trackbacks - 0, articles - 0

1、MMKV简介

腾讯微信团队于2018年9月底宣布开源 MMKV ,这是基于 mmap 内存映射的 key-value 组件,底层序列化/反序列化使用 protobuf 实现,主打高性能和稳定性。近期也已移植到 Android 平台,一并对外开源。

MMKV 是基于 mmap 内存映射的 key-value 组件,底层序列化/反序列化使用 protobuf 实现,性能高,稳定性强。从 2015 年中至今,在 iOS 微信上使用已有近 3 年,其性能和稳定性经过了时间的验证。近期也已移植到 Android 平台,一并开源。

MMKV最新源码托管地址:https://github.com/Tencent/MMKV

2、MMKV 源起

在微信客户端的日常运营中,时不时就会爆发特殊文字引起系统的 crash(请参见文章:《微信团队分享:iOS版微信是如何防止特殊字符导致的炸群、APP崩溃的?》、《微信团队分享:iOS版微信的高性能通用key-value组件技术实践》),文章里面设计的技术方案是在关键代码前后进行计数器的加减,通过检查计数器的异常,来发现引起闪退的异常文字。在会话列表、会话界面等有大量 cell 的地方,希望新加的计时器不会影响滑动性能;另外这些计数器还要永久存储下来——因为闪退随时可能发生。

这就需要一个性能非常高的通用 key-value 存储组件,我们考察了 SharedPreferences、NSUserDefaults、SQLite 等常见组件,发现都没能满足如此苛刻的性能要求。考虑到这个防 crash 方案最主要的诉求还是实时写入,而 mmap 内存映射文件刚好满足这种需求,我们尝试通过它来实现一套 key-value 组件。

3、MMKV 原理

内存准备:

通过 mmap 内存映射文件,提供一段可供随时写入的内存块,App 只管往里面写数据,由操作系统负责将内存回写到文件,不必担心 crash 导致数据丢失。

数据组织:

数据序列化方面我们选用 protobuf 协议,pb 在性能和空间占用上都有不错的表现。

写入优化:

考虑到主要使用场景是频繁地进行写入更新,我们需要有增量更新的能力。我们考虑将增量 kv 对象序列化后,append 到内存末尾。

空间增长:

使用 append 实现增量更新带来了一个新的问题,就是不断 append 的话,文件大小会增长得不可控。我们需要在性能和空间上做个折中。

更详细的设计原理参考MMKV 原理

4、iOS 指南

安装引入(推荐使用 CocoaPods):

安装CocoaPods

打开命令行,cd到你的项目工程目录, 输入pod repo update让 CocoaPods 感知最新的 MMKV 版本;

打开 Podfile, 添加pod 'MMKV'到你的 app target 里面;

在命令行输入pod install;

用 Xcode 打开由 CocoaPods 自动生成的.xcworkspace文件;

添加头文件#import <MMKV/MMKV.h>,就可以愉快地开始你的 MMKV 之旅了。

更多安装指引参考iOS Setup

快速上手:

MMKV 的使用非常简单,无需任何配置,所有变更立马生效,无需调用synchronize:

MMKV *mmkv = [MMKV defaultMMKV];    [mmkvsetBool:YESforKey:@"bool"];BOOL bValue = [mmkvgetBoolForKey:@"bool"];    [mmkvsetInt32:-1024forKey:@"int32"];int32_t iValue = [mmkvgetInt32ForKey:@"int32"];    [mmkvsetObject:@"hello, mmkv"forKey:@"string"];NSString *str = [mmkvgetObjectOfClass:NSString.classforKey:@"string"];

更详细的使用教程参考iOS Tutorial

性能对比:

循环写入随机的int1w 次,我们有如下性能对比:

更详细的性能对比参考iOS Benchmark

5、Android 指南

安装引入:

推荐使用 Maven:

dependencies{implementation'com.tencent:mmkv:1.0.10'// replace"1.0.10"with any available version}

更多安装指引参考Android Setup

快速上手:

MMKV 的使用非常简单,所有变更立马生效,无需调用sync、apply。 在 App 启动时初始化 MMKV,设定 MMKV 的根目录(files/mmkv/),例如在 MainActivity 里:

protectedvoidonCreate(Bundle savedInstanceState){super.onCreate(savedInstanceState);    String rootDir = MMKV.initialize(this);    System.out.println("mmkv root: "+ rootDir);//……}

MMKV 提供一个全局的实例,可以直接使用:

importcom.tencent.mmkv.MMKV;//……MMKV kv = MMKV.defaultMMKV();kv.encode("bool",true);booleanbValue = kv.decodeBool("bool");kv.encode("int", Integer.MIN_VALUE);intiValue = kv.decodeInt("int");kv.encode("string","Hello from mmkv");String str = kv.decodeString("string");

MMKV 支持多进程访问,更详细的用法参考Android Tutorial

性能对比:

循环写入随机的int1k 次,我们有如下性能对比:

更详细的性能对比参考Android Benchmark

posted @ 2018-09-22 11:20 Jack Jiang 阅读(253) | 评论 (0)编辑 收藏

     摘要: 本文引用了公众号纯洁的微笑作者奎哥的技术文章,感谢原作者的分享。1、前言老于网络编程熟手来说,在测试和部署网络通信应用(比如IM聊天、实时音视频等)时,如果发现网络连接超时,第一时间想到的就是使用Ping命令Ping一下服务器看看通不通。甚至在有些情况下通过图形化的Ping命令工具对目标网络进行长测(比如:《两款增强型Ping工具:持续统计、图形化展式网络状况 [附件下载]》、《网络测试:Andr...  阅读全文

posted @ 2018-09-21 18:12 Jack Jiang 阅读(209) | 评论 (0)编辑 收藏

     摘要: 本文来自知乎官方技术团队的“知乎技术专栏”,感谢原作者陈鹏的无私分享。1、引言知乎存储平台团队基于开源Redis 组件打造的知乎 Redis 平台,经过不断的研发迭代,目前已经形成了一整套完整自动化运维服务体系,提供很多强大的功能。本文作者陈鹏是该系统的负责人,本次文章深入介绍了该系统的方方面面,值得互联网后端程序员仔细研究。(本文同步发布于:http://www.52im...  阅读全文

posted @ 2018-09-18 12:31 Jack Jiang 阅读(193) | 评论 (0)编辑 收藏

     摘要: 1、前言网络通信一直是Android项目里比较重要的一个模块,Android开源项目上出现过很多优秀的网络框架,从一开始只是一些对HttpClient和HttpUrlConnection简易封装使用的工具类,到后来Google开源的比较完善丰富的Volley,再到如今比较流行的Okhttp、Retrofit。要想理解他们之间存在的异同(或者具体点说,要想更深入地掌握Android开发中的网络通信技...  阅读全文

posted @ 2018-09-17 10:44 Jack Jiang 阅读(234) | 评论 (0)编辑 收藏

     摘要: 本文原文内容来自InfoQ的技术分享,本次有修订、勘误和加工,感谢原作者的分享。1、前言自从2018年8月20日子弹短信在锤子发布会露面之后(详见《老罗最新发布了“子弹短信”这款IM,主打熟人社交能否对标微信?》),关于它的讨论不绝于耳,7 天融资 1.5 亿的传闻更是将它推到了风口浪尖(请见《[资讯] “子弹短信”发布一周即融得1.5亿资金》)。&...  阅读全文

posted @ 2018-09-14 13:50 Jack Jiang 阅读(146) | 评论 (0)编辑 收藏

     摘要: 本文来自“人人都是产品经理”公众号作者栗栗粥的原创分享。1、前言移动端的时代里,微信占据了社交领域的半壁江山,不得不让人想起曾经PC时代里的王者“QQ”,微信的爆发和QQ的停滞让很多人认为微信已经彻底将QQ打败,QQ已经不再适合这个时代了。前不久看到一句有意思的分享说:“与其说微信为什么能打败QQ,不如说QQ为什么没有被微信打败。R...  阅读全文

posted @ 2018-09-11 14:58 Jack Jiang 阅读(201) | 评论 (0)编辑 收藏

     摘要: 本文原作者:李越,由银杏财经原创发布,本次内容改动。1、前言上线一周完成1.5亿元融资,上线10天总激活用户数超400万,8月29日单日新增用户超100万,这是子弹短信交出的最新成绩单(详见《[资讯] “子弹短信”发布一周即融得1.5亿资金》)。▲ 老罗的“子弹短信”这个牛逼,又可以吹很久了这样的数据,几乎就要接近移动互联网时代APP最快...  阅读全文

posted @ 2018-09-09 21:02 Jack Jiang 阅读(111) | 评论 (0)编辑 收藏

     摘要: 1、前言随着互联网的发展,面对海量用户高并发业务,传统的阻塞式的服务端架构模式已经无能为力。本文(和下篇《高性能网络编程(六):一文读懂高性能网络编程中的线程模型》)旨在为大家提供有用的高性能网络编程的I/O模型概览以及网络服务进程模型的比较,以揭开设计和实现高性能网络架构的神秘面纱。限于篇幅原因,请将本文与《高性能网络编程(六):一文读懂高性能网络编程中的线程模型》连起来读,这样会让知识更连贯。...  阅读全文

posted @ 2018-09-06 21:09 Jack Jiang 阅读(238) | 评论 (0)编辑 收藏

     摘要: 本文来自公众号“傅老师”(ID:fustory)的原创分享,感谢作者。1、引言如果QQ是一个人,看似风光,其实从出生到成长,过程饱经错荡,堪算坎坷。它的人生历程确实也够励志的了。学习交流:- 即时通讯开发交流3群:185926912 [推荐]- 移动端IM开发入门文章:《新手入门一篇就够:从零开发移动端IM》(本文同步发布于:http://www.52im.net...  阅读全文

posted @ 2018-09-05 17:07 Jack Jiang 阅读(139) | 评论 (0)编辑 收藏

本文由达达京东到家Java工程师季炳坤原创分享。

1、前言

达达-京东到家作为优秀的即时配送物流平台,实现了多渠道的订单配送,包括外卖平台的餐饮订单、新零售的生鲜订单、知名商户的优质订单等。为了提升平台的用户粘性,我们需要兼顾商户和骑士的各自愿景:商户希望订单能够准时送达,骑士希望可以高效抢单。那么在合适的时候提升订单定制化的曝光率,是及时送物流平台的核心竞争力之一。

本文将描述“达达-京东到家”的订单即时派发系统从无到有的系统演进过程,以及方案设计的关键要点,希望能为大家在解决相关业务场景上提供一个案例参考。

关于“达达-京东到家”:

达达-京东到家,是同城速递信息服务平台和无界零售即时消费平台。达达-京东到家创始人兼首席执行官蒯佳祺;

公司旗下,目前已覆盖全国400 多个主要城市,服务超过120万商家用户和超 5000万个人用户;

2018年8月,达达-京东到家正式宣布完成最新一轮5亿美元融资,投资方分别为沃尔玛和京东。

(本文同步发布于:http://www.52im.net/thread-1928-1-1.html

2、关于作者

季炳坤:“达达-京东到家”Java工程师,负责“达达-京东到家”的订单派发、订单权限、合并订单等相关技术工作的实现。

3、订单即时派发架构的演进

在公司发展的初期,我们的外卖订单从商户发单之后直接出现在抢单池中,3公里之内的骑士能够看到订单,并且从订单卡片中获取配送地址、配送时效等关键信息。这种暴力的显示模式,很容易造成骑士挑选有利于自身的订单进行配送,从而导致部分订单超时未被配送。这样的模式,在一定程度上导致了商户的流失,同时也浪费了骑士的配送时间。

从上面的场景可以看出来,我们系统中缺少一个订单核心调度者。有一种方案是选择区域订单的订单调度员,由调度员根据骑士的接单情况、配送时间、订单挤压等实时情况来进行订单调度。这种模式,看似可行,但是人力成本投入太高,且比较依赖个人的经验总结。

核心问题已经出来了:个人的经验总结会是什么呢?

1) 骑士正在配送的订单的数量,是否已经饱和;

2) 骑士的配送习惯是什么;

3) 某一阶段的订单是否顺路,骑士是否可以一起配送;

4) 骑士到店驻留时间的预估;

5) ...

理清核心问题的答案,我们的系统派单便成为了可能。

基于以上的原理,订单派发模式就可以逐渐从抢单池的订单显示演变成系统派单:

我们将会:

1)记录商户发单行为;

2)骑士配送日志及运行轨迹等信息。

并且经过数据挖掘和数据分析:

1)获取骑士的画像;

2)骑士配送时间的预估;

3)骑士到店驻留时间的预估等基础信息;

4)使用遗传算法规划出最优的配送路径;

5)...

经过上述一系列算法,我们将在骑士池中匹配出最合适的骑士,进而使用长连接(Netty)不间断的通知到骑士。

随着达达业务的不断迭代,订单配送逐渐孵化出基于大商户的驻店模式:基于商户维护一批固定的专属骑士,订单只会在运力不足的时候才会外发到抢单池中,正常情况使用派单模式通知骑士。

4、订单派发模型的方案选型

订单派发可以浅显的认为是一种信息流的推荐。在订单进入抢单池之前,我们会根据每个城市的调度情况,先进行轮询N次的派单。

大概的表现形式如下图:

举例:有笔订单需要进行推送,在推送过程中,我们暂且假设一直没有骑士接单,那么这笔订单会每间隔N秒便会进行一次普通推荐,然后进入抢单池。

从订单派发的流程周期上可以看出来,派发模型充斥着大量的延迟任务,只要能解决订单在什么时候可以进行派发,那么整个系统 50% 的功能点就能迎刃而解。

我们先了解一下经典的延迟方案,请继续往下读。。。

4.1 方案1:数据库轮询

通过一个线程定时的扫描数据库,获取到需要派单的订单信息。

优点:开发简单,结合quartz即可以满足分布式扫描;

缺点:对数据库服务器压力大,不利于项目后续发展。

4.2 方案2:JDK的延迟队列 - DelayQueue

DelayQueue是Delayed元素的一个无界阻塞队列,只有在延迟期满时才能从中提取元素。队列中对象的顺序按到期时间进行排序。

优点:开发简单,效率高,任务触发时间延迟低;

缺点:服务器重启后,数据会丢失,要满足高可用场景,需要hook线程二次开发;宕机的担忧;如果数据量暴增,也会引起OOM的情况产生。

4.3 方案3:时间轮 - TimingWheel

时间轮的结构原理很简单,它是一个存储定时任务的环形队列,底层是由数组实现,而数组中的每个元素都可以存放一个定时任务列表。列表中的每一项都表示一个事件操作单元,当时间指针指向对应的时间格的时候,该列表中的所有任务都会被执行。 时间轮由多个时间格组成,每个时间格代表着当前实践论的跨度,用tickMs代表;时间轮的个数是固定的,用wheelSize代表。

整个时间轮的跨度用interval代表,那么指针转了一圈的时间为:

interval = tickMs * wheelSize

如果tickMs=1ms,wheelSize=20,那么便能计算出此时的时间是以20ms为一转动周期,时间指针(currentTime)指向wheelSize=0的数据槽,此时有5ms延迟的任务插入了wheelSize=5的时间格。随着时间的不断推移,指针currentTime不断向前推进,过了5ms之后,当到达时间格5时,就需要将时间格5所对应的任务做相应的到期操作。

如果此时有个定时为180ms的任务该如何处理?很直观的思路是直接扩充wheelSize?这样会导致wheelSize的扩充会随着业务的发展而不断扩张,这样会使时间轮占用很大的内存空间,导致效率低下,因此便衍生出了层级时间轮的数据结构。

180ms的任务会升级到第二层时间轮中,最终被插入到第二层时间轮中时间格#8所对应的TimerTaskList中。如果此时又有一个定时为600ms的任务,那么显然第二层时间轮也无法满足条件,所以又升级到第三层时间轮中,最终被插入到第三层时间轮中时间格#1的TimerTaskList中。注意到在到期时间在[400ms,800ms)区间的多个任务(比如446ms、455ms以及473ms的定时任务)都会被放入到第三层时间轮的时间格#1中,时间格#1对应的TimerTaskList的超时时间为400ms。

随着时间轮的转动,当TimerTaskList到期时,原本定时为450ms的任务还剩下50ms的时间,还不能执行这个任务的到期操作。便会有个时间轮降级的操作,会将这个剩余时间50ms的定时任务重新提交到下一层级的时间轮中,所以该任务被放到第二层时间轮到期时间为 [40ms,60ms) 的时间格中。再经历了40ms之后,此时这个任务又被触发到,不过还剩余10ms,还是不能立即执行到期操作。所以还要再一次的降级,此任务会被添加到第一层时间轮到期时间为[10ms,11ms)的时间格中,之后再经历10ms后,此任务真正到期,最终执行相应的到期操作。

优点:效率高,可靠性高(Netty,Kafka,Akka均有使用),便于开发;

缺点:数据存储在内存中,需要自己实现持久化的方案来实现高可用。

5、订单派发方案的具体实现

结合了上述的三种方案,最后决定使用redis作为数据存储,使用timingWhell作为时间的推动者。这样便可以将定时任务的存储和时间推动进行解耦,依赖Redis的AOF机制,也不用过于担心订单数据的丢失。

kafka中为了处理成千上万的延时任务选择了多层时间轮的设计,我们从业务角度和开发难度上做了取舍,只选择设计单层的时间轮便可以满足需求。

1)时间格和缓存的映射维护:

假设当前时间currentTime为11:49:50,订单派发时间dispatchTime为11:49:57,那么时间轮的时间格#7中会设置一个哨兵节点(作为是否有数据存储在redis的依据 )用来表示该时间段是否会时间事件触发,同时会将这份数据放入到缓存中(key=dispatchTime+ip), 当7秒过后,触发了该时间段的数据,便会从redis中获取数据,异步执行相应的业务逻辑。最后,防止由于重启等一些操作导致数据的丢失,哨兵节点的维护也会在缓存中维护一份数据,在重启的时候重新读取。

2)缓存的key统一加上IP标识:

由于我们的时间调度器是依附于自身系统的,通过将缓存的key统一加上IP的标识,这样就可以保证各台服务器消费属于自身的数据,从而防止分布式环境下的并发问题,也可以减轻遍历整个列表带来的时间损耗(时间复杂度为O(N))。

3)使用异步线程处理时间格中对应的数据:

使用异步线程,是考虑到如果上一个节点发生异常或者超时等情况,会延误下一秒的操作,如果使用异常可以改善调度的即时性问题。

我们在设计系统的时候,系统的完善度和业务的满足度是互相关联影响的,单从上述的设计看,是会有些问题的,比如使用IP作为缓存的key,如果集群发生变更便会导致数据不会被消费;使用线程池异步处理也有概率导致数据不会被消费。这些不会被消费的数据会进入到抢单池中。从派单场景的需求来看,这些场景是可以被接受的,当然了,我们系统会有脚本来进行定期的筛选,将那些进入抢单池的订单进行再次派单。

* 思考:为什么不使用ScheduledThreadPoolExecutor来定时轮询redis?

原因是即便这样可以完成业务上的需求,获取定时触发的任务,但是带来的空查询不但会拉高服务的CPU,redis的QPS也会被拉高,可能会导致redis的慢查询会显著增多。

6、结语

我们在完成一个功能的时候,往往需要一些可视化的数据来确定业务发展的正确性。因此我们在开发的时候,也相应的记录了一些订单与骑士的交互动作。从每天的报表数据可以看出来,90% 以上的订单是通过派单发出并且被骑士认可接单。

订单派发的模式是提升订单曝光率有效的技术手段,我们一直结合大数据、人工智能等技术手段希望能更好的做好订单派发,能提供更加多元化的功能,将达达打造成更加一流的配送平台。

附录:更多相关技术文章

伪即时通讯:分享滴滴出行iOS客户端的演进过程

iOS的推送服务APNs详解:设计思路、技术原理及缺陷等

信鸽团队原创:一起走过 iOS10 上消息推送(APNS)的坑

Android端消息推送总结:实现原理、心跳保活、遇到的问题等

扫盲贴:认识MQTT通信协议

一个基于MQTT通信协议的完整Android推送Demo

IBM技术经理访谈:MQTT协议的制定历程、发展现状等

求教android消息推送:GCM、XMPP、MQTT三种方案的优劣

移动端实时消息推送技术浅析

扫盲贴:浅谈iOS和Android后台实时消息推送的原理和区别

绝对干货:基于Netty实现海量接入的推送服务技术要点

移动端IM实践:谷歌消息推送服务(GCM)研究(来自微信)

为何微信、QQ这样的IM工具不使用GCM服务推送消息?

极光推送系统大规模高并发架构的技术实践分享

从HTTP到MQTT:一个基于位置服务的APP数据通信实践概述

魅族2500万长连接的实时消息推送架构的技术实践分享

专访魅族架构师:海量长连接的实时消息推送系统的心得体会

深入的聊聊Android消息推送这件小事

基于WebSocket实现Hybrid移动应用的消息推送实践(含代码示例)

一个基于长连接的安全可扩展的订阅/推送服务实现思路

实践分享:如何构建一套高可用的移动端消息推送系统?

Go语言构建千万级在线的高并发消息推送系统实践(来自360公司)

腾讯信鸽技术分享:百亿级实时消息推送的实战经验

百万在线的美拍直播弹幕系统的实时推送技术实践之路

京东京麦商家开放平台的消息推送架构演进之路

了解iOS消息推送一文就够:史上最全iOS Push技术详解

基于APNs最新HTTP/2接口实现iOS的高性能消息推送(服务端篇)

解密“达达-京东到家”的订单即时派发技术原理和实践》

>> 更多同类文章 ……

(本文同步发布于:http://www.52im.net/thread-1928-1-1.html

posted @ 2018-09-04 10:20 Jack Jiang 阅读(221) | 评论 (0)编辑 收藏

仅列出标题
共47页: First 上一页 36 37 38 39 40 41 42 43 44 下一页 Last 
Jack Jiang的 Mail: jb2011@163.com, 联系QQ: 413980957, 微信: hellojackjiang