ICTCLAS分词的总体流程包括:1)初步分词;2)词性标注;3)人名、地名识别;4)重新分词;5)重新词性标注这五步。就第一步分词而言,又细分成:1)原子切分;2)找出原子之间所有可能的组词方案;3)N-最短路径中文词语粗分三步。
在所有内容中,词典库的读取是最基本的功能。ICTCLAS中词典存放在Data目录中,常用的词典包括coreDict.dct(词典库)、BigramDict.dct(词与词间的关联库)、nr.dct(人名库)、ns.dct(地名库)、tr.dct(翻译人名库),它们的文件格式是完全相同的,都使用CDictionary类进行解析。如果想深入了解ICTCLAS词典结构,可以参考sinboy的《ICTCLAS分词系统研究(二)--词典结构》一文,详细介绍了词典结构。我这里只给出SharpICTCLAS中的实现。
首先是对基本元素的定义。在SharpICTCLAS中,对原有命名进行了部分调整,使得更具有实际意义并适合C#的习惯。代码如下:
WordDictionaryElement.cs 程序
using System;
using System.Collections.Generic;
using System.Text;
namespace SharpICTCLAS
{
//==================================================
// Original predefined in DynamicArray.h file
//==================================================
public class ArrayChainItem
{
public int col, row;//row and column
public double value;//The value of the array
public int nPOS;
public int nWordLen;
public string sWord;
//The possible POS of the word related to the segmentation graph
public ArrayChainItem next;
}
public class WordResult
{
//The word
public string sWord;
//the POS of the word
public int nPOS;
//The -log(frequency/MAX)
public double dValue;
}
//--------------------------------------------------
// data structure for word item
//--------------------------------------------------
public class WordItem
{
public int nWordLen;
//The word
public string sWord;
//the process or information handle of the word
public int nPOS;
//The count which it appear
public int nFrequency;
}
//--------------------------------------------------
//data structure for dictionary index table item
//--------------------------------------------------
public class IndexTableItem
{
//The count number of words which initial letter is sInit
public int nCount;
//The head of word items
public WordItem[] WordItems;
}
//--------------------------------------------------
//data structure for word item chain
//--------------------------------------------------
public class WordChain
{
public WordItem data;
public WordChain next;
}
//--------------------------------------------------
//data structure for dictionary index table item
//--------------------------------------------------
public class ModifyTableItem
{
//The count number of words which initial letter is sInit
public int nCount;
//The number of deleted items in the index table
public int nDelete;
//The head of word items
public WordChain pWordItemHead;
}
}
其中ModifyTableItem用于组成ModifyTable,但在实际分词时,词库往往处于“只读”状态,因此用于修改词库的ModifyTable实际上起的作用并不大。因此在后面我将ModifyTable的代码暂时省略。
有了基本元素的定义后,就该定义“词典”类了。原有C++代码中所有类名均以大写的“C”打头,词典类名为CDictionary,在SharpICTCLAS中,我去掉了开头的“C”,并且为了防止和系统的Dictionary类重名,特起名为“WordDictionary”类。该类主要负责完成词典库的读、写以及检索操作。让我们看看如何读取词典库:
public class WordDictionary
{
public bool bReleased = true;
public IndexTableItem[] indexTable;
public ModifyTableItem[] modifyTable;
public bool Load(string sFilename)
{
return Load(sFilename, false);
}
public bool Load(string sFilename, bool bReset)
{
int frequency, wordLength, pos; //频率、词长、读取词性
bool isSuccess = true;
FileStream fileStream = null;
BinaryReader binReader = null;
try
{
fileStream = new FileStream(sFilename, FileMode.Open, FileAccess.Read);
if (fileStream == null)
return false;
binReader = new BinaryReader(fileStream, Encoding.GetEncoding("gb2312"));
indexTable = new IndexTableItem[Predefine.CC_NUM];
bReleased = false;
for (int i = 0; i < Predefine.CC_NUM; i++)
{
//读取以该汉字打头的词有多少个
indexTable[i] = new IndexTableItem();
indexTable[i].nCount = binReader.ReadInt32();
if (indexTable[i].nCount <= 0)
continue;
indexTable[i].WordItems = new WordItem[indexTable[i].nCount];
for (int j = 0; j < indexTable[i].nCount; j++)
{
indexTable[i].WordItems[j] = new WordItem();
frequency = binReader.ReadInt32(); //读取频率
wordLength = binReader.ReadInt32(); //读取词长
pos = binReader.ReadInt32(); //读取词性
if (wordLength > 0)
indexTable[i].WordItems[j].sWord = Utility.ByteArray2String(binReader.ReadBytes(wordLength));
else
indexTable[i].WordItems[j].sWord = "";
//Reset the frequency
if (bReset)
indexTable[i].WordItems[j].nFrequency = 0;
else
indexTable[i].WordItems[j].nFrequency = frequency;
indexTable[i].WordItems[j].nWordLen = wordLength;
indexTable[i].WordItems[j].nPOS = pos;
}
}
}
catch (Exception e)
{
Console.WriteLine(e.Message);
isSuccess = false;
}
finally
{
if (binReader != null)
binReader.Close();
if (fileStream != null)
fileStream.Close();
}
return isSuccess;
}
//......
}
下面内容节选自词库中CCID为2、3、4、5的单元, CCID的取值范围自1~6768,对应6768个汉字,所有与该汉字可以组成的词均记录在相应的单元内。词库中记录的词是没有首汉字的(我用带括号的字补上了),其首汉字就是该单元对应的汉字。词库中记录了词的词长、频率、词性以及词。
另外特别需要注意的是在一个单元内,词是按照CCID大小排序的!这对我们后面的分析至关重要。
汉字:埃, ID :2
词长 频率 词性 词
0 128 h (埃)
0 0 j (埃)
2 4 n (埃)镑
2 28 ns (埃)镑
4 4 n (埃)菲尔
2 511 ns (埃)及
4 4 ns (埃)克森
6 2 ns (埃)拉特湾
4 4 nr (埃)里温
6 2 nz (埃)默鲁市
2 27 n (埃)塞
8 64 ns (埃)塞俄比亚
22 2 ns (埃)塞俄比亚联邦民主共和国
4 3 ns (埃)塞萨
4 4 ns (埃)舍德
6 2 nr (埃)斯特角
4 2 ns (埃)松省
4 3 nr (埃)特纳
6 2 nz (埃)因霍温
====================================
汉字:挨, ID :3
词长 频率 词性 词
0 56 h (挨)
2 1 j (挨)次
2 19 n (挨)打
2 3 ns (挨)冻
2 1 n (挨)斗
2 9 ns (挨)饿
2 4 ns (挨)个
4 2 ns (挨)个儿
6 17 nr (挨)家挨户
2 1 nz (挨)近
2 0 n (挨)骂
6 1 ns (挨)门挨户
2 1 ns (挨)批
2 0 ns (挨)整
2 12 ns (挨)着
2 0 nr (挨)揍
====================================
汉字:哎, ID :4
词长 频率 词性 词
0 10 h (哎)
2 3 j (哎)呀
2 2 n (哎)哟
====================================
汉字:唉, ID :5
词长 频率 词性 词
0 9 h (唉)
6 4 j (唉)声叹气
在这里还应当注意的是,一个词可能有多个词性,因此一个词可能在词典中出现多次,但词性不同。若想从词典中唯一定位一个词的话,必须同时指明词与词性。
另外在WordDictionary类中用到得比较多的就是词的检索,这由FindInOriginalTable方法实现。原ICTCLAS代码中该方法的实现结构比较复杂,同时考虑了多种检索需求,因此代码也相对复杂一些。在SharpICTCLAS中,我对该方法进行了重载,针对不同检索目的设计了不同的FindInOriginalTable方法,简化了程序接口和代码复杂度。其中一个FindInOriginalTable方法代码如下,实现了判断某一词性的一词是否存在功能。
FindInOriginalTable方法的一个重载版本
private bool FindInOriginalTable(int nInnerCode, string sWord, int nPOS)
{
WordItem[] pItems = indexTable[nInnerCode].WordItems;
int nStart = 0, nEnd = indexTable[nInnerCode].nCount - 1;
int nMid = (nStart + nEnd) / 2, nCmpValue;
//Binary search
while (nStart <= nEnd)
{
nCmpValue = Utility.CCStringCompare(pItems[nMid].sWord, sWord);
if (nCmpValue == 0 && (pItems[nMid].nPOS == nPOS || nPOS == -1))
return true;//find it
else if (nCmpValue < 0 || (nCmpValue == 0 && pItems[nMid].nPOS < nPOS && nPOS != -1))
nStart = nMid + 1;
else if (nCmpValue > 0 || (nCmpValue == 0 && pItems[nMid].nPOS > nPOS && nPOS != -1))
nEnd = nMid - 1;
nMid = (nStart + nEnd) / 2;
}
return false;
}
其它功能在这里就不再介绍了。
1、WordDictionary类实现了对字典的读取、写入、更改、检索等功能。
2、词典中记录了以6768个汉字打头的词、词性、出现频率的信息,具体结构需要了解。
来源:http://www.cnblogs.com/zhenyulu/category/85598.html