刀剑笑

用技术改善你的生活

  BlogJava :: 首页 :: 新随笔 :: 联系 :: 聚合  :: 管理 ::
  13 随笔 :: 3 文章 :: 3 评论 :: 0 Trackbacks

N-最短路径中文词语粗分是分词过程中非常重要的一步,而原有ICTCLAS中该部分代码也是我认为最难读懂的部分,到现在还有一些方法没有弄明白,因此我几乎重写了NShortPath类。要想说明N-最短路径代码是如何工作的并不容易,所以分成两步分,本部分先说说SharpICTCLAS中1-最短路径是如何实现的,在下一篇文章中再引申到N-最短路径。

1、数据表示

这里我们求最短路的例子使用如下的有向图,每条边的权重已经在图中标注出来了。

(图一)

根据上篇文章内容,该图该可以等价于如下的二维表格表示:

(图二)

而对应于该表格的是一个ColumnFirstDynamicArray,共有10个结点,每个结点的取值如下表所示:

该示例对应的ColumnFirstDynamicArray
row:0,  col:1,  eWeight:1,  nPOS:0,  sWord: 始@A
row:1,  col:2,  eWeight:1,  nPOS:0,  sWord: A@B
row:1,  col:3,  eWeight:2,  nPOS:0,  sWord: A@C
row:2,  col:3,  eWeight:1,  nPOS:0,  sWord: B@C
row:2,  col:4,  eWeight:1,  nPOS:0,  sWord: B@D
row:3,  col:4,  eWeight:1,  nPOS:0,  sWord: C@D
row:4,  col:5,  eWeight:1,  nPOS:0,  sWord: D@E
row:3,  col:6,  eWeight:2,  nPOS:0,  sWord: C@末
row:4,  col:6,  eWeight:3,  nPOS:0,  sWord: D@末
row:5,  col:6,  eWeight:1,  nPOS:0,  sWord: E@末

2、计算出每个结点上可达最短路的PreNode

在求解N-最短路径之前,先看看如何求最短PreNode。如下图所示:

(图三)

首先计算出到达每个结点的最短路径,并将该结点的父结点压入该结点所对应的队列。例如3号“C”结点,到达该结点的最短路径长度为3,它的Parent结点可以是1号“A”结点,也可以是2号“B”结点,因此在队列中存储了两个PreNode结点。

而在实际计算时,如何知道到达3号“C”结点的路径有几条呢?其实我们首先计算所有到达3号“C”结点的路径长度,并按照路径长度从小到大的顺序排列(所有这些都是靠CQueue这个类完成的),然后从队列中依次向后取值,取出所有最短路径对应的PreNode。

计算到当前结点(nCurNode)可能的边,并根据总路径长度由小到大压入队列的代码如下(经过简化):

EnQueueCurNodeEdges方法
//====================================================================
// 将所有到当前结点(nCurNode)可能的边根据eWeight排序并压入队列
//====================================================================
private void EnQueueCurNodeEdges(ref CQueue queWork, int nCurNode)
{
   int nPreNode;
   double eWeight;
   ChainItem<ChainContent> pEdgeList;

   queWork.Clear();
   pEdgeList = m_apCost.GetFirstElementOfCol(nCurNode);

   // 获取所有到当前结点的边
   while (pEdgeList != null && pEdgeList.col == nCurNode)
   {
      nPreNode = pEdgeList.row;  // 很特别的命令,利用了row与col的关系
      eWeight = pEdgeList.Content.eWeight;

      // 第一个结点,没有PreNode,直接加入队列
      if (nPreNode == 0)
      {
         queWork.EnQueue(new QueueElement(nPreNode, eWeight));
         break;
      }

      queWork.EnQueue(new QueueElement(nPreNode, eWeight + m_pWeight[nPreNode - 1]));
      pEdgeList = pEdgeList.next;
   }
}

这段代码中有一行很特别的命令,就是用红颜色注释的那句“nPreNode = pEdgeList.row;”,让我琢磨了半天终于弄明白原有ICTCLAS用意的一句话。这需要参考本文图二,为了方便起见,我将它挪到了这里:

注意 3 号“C”结点在该表中处于第 3 列,所有可以到达该结点的就是该列中的元素(目前有两个元素“A@C”与“B@C”)。而与 3 号“C”结点构成这两条边的PreNode结点恰恰是这两个元素的“行号”,分别是 1 号“A”结点与 2 号“B”结点。正是因为这种特殊的对应关系,为我们检索所有可达边提供了便捷的方法。阅读上面那段代码务必把握好这种关系。

3、求解最短路径

求出每个结点上最短路径的PreNode后就需要据此推导出完整的最短路径。原ICTCLAS代码中是靠GetPaths方法实现的,只是到现在我也没有读懂这个方法的代码究竟想干什么 ,只知道它用了若干个while,若干个if,若干个嵌套...(将ICTCLAS中的GetPaths放上来,如果谁读懂了,回头给我讲讲 ,感觉应该和我的算法差不多)。

NShortPath.cpp程序中的GetPaths方法
void CNShortPath::GetPaths(unsigned int nNode, unsigned int nIndex, int
  **nResult, bool bBest)
{
  CQueue queResult;
  unsigned int nCurNode, nCurIndex, nParentNode, nParentIndex, nResultIndex = 0;

  if (m_nResultCount >= MAX_SEGMENT_NUM)
  //Only need 10 result
    return ;
  nResult[m_nResultCount][nResultIndex] =  - 1; //Init the result 
  queResult.Push(nNode, nIndex);
  nCurNode = nNode;
  nCurIndex = nIndex;
  bool bFirstGet;
  while (!queResult.IsEmpty())
  {
    while (nCurNode > 0)
    //
    {
      //Get its parent and store them in nParentNode,nParentIndex
      if (m_pParent[nCurNode - 1][nCurIndex].Pop(&nParentNode, &nParentIndex, 0,
        false, true) !=  - 1)
      {
        nCurNode = nParentNode;
        nCurIndex = nParentIndex;
      }
      if (nCurNode > 0)
        queResult.Push(nCurNode, nCurIndex);
    }
    if (nCurNode == 0)
    {
      //Get a path and output
      nResult[m_nResultCount][nResultIndex++] = nCurNode; //Get the first node
      bFirstGet = true;
      nParentNode = nCurNode;
      while (queResult.Pop(&nCurNode, &nCurIndex, 0, false, bFirstGet) !=  - 1)
      {
        nResult[m_nResultCount][nResultIndex++] = nCurNode;
        bFirstGet = false;
        nParentNode = nCurNode;
      }
      nResult[m_nResultCount][nResultIndex] =  - 1; //Set the end
      m_nResultCount += 1; //The number of result add by 1
      if (m_nResultCount >= MAX_SEGMENT_NUM)
      //Only need 10 result
        return ;
      nResultIndex = 0;
      nResult[m_nResultCount][nResultIndex] =  - 1; //Init the result 

      if (bBest)
      //Return the best result, ignore others
        return ;
    }
    queResult.Pop(&nCurNode, &nCurIndex, 0, false, true); //Read the top node
    while (queResult.IsEmpty() == false && (m_pParent[nCurNode -
      1][nCurIndex].IsSingle() || m_pParent[nCurNode - 1][nCurIndex].IsEmpty
      (true)))
    {
      queResult.Pop(&nCurNode, &nCurIndex, 0); //Get rid of it
      queResult.Pop(&nCurNode, &nCurIndex, 0, false, true); //Read the top node
    }
    if (queResult.IsEmpty() == false && m_pParent[nCurNode -
      1][nCurIndex].IsEmpty(true) == false)
    {
      m_pParent[nCurNode - 1][nCurIndex].Pop(&nParentNode, &nParentIndex, 0,
        false, false);
      nCurNode = nParentNode;
      nCurIndex = nParentIndex;
      if (nCurNode > 0)
        queResult.Push(nCurNode, nCurIndex);
    }
  }
}

我重写了求解最短路径的方法,其算法表述如下:

(图四)

1)首先将最后一个元素压入堆栈(本例中是6号结点),什么时候这个元素弹出堆栈,什么时候整个任务结束。

2)对于每个结点的PreNode队列,维护了一个当前指针,初始状态都指向PreNode队列中第一个元素。

3)从右向左依次取出PreNode队列中的当前元素并压入堆栈,并将队列指针重新指向队列中第一个元素。如图四:6号元素PreNode是3,3号元素PreNode是1,1号元素PreNode是0。

4)当第一个元素压入堆栈后,输出堆栈内容即为一条队列。本例中0, 1, 3, 6便是一条最短路径。

5)将堆栈中的内容依次弹出,每弹出一个元素,就将当时压栈时对应的PreNode队列指针下移一格。如果到了末尾无法下移,则继续执行第5步,如果仍然可以移动,则执行第3步。

对于本例,先将“0”弹出堆栈,该元素对应的是1号“A”结点的PreNode队列,该队列的当前指针已经无法下移,因此继续弹出堆栈中的“1” ;该元素对应3号“C”结点,因此将3号“C”结点对应的PreNode队列指针下移。由于可以移动,因此将队列中的2压入队列,2号“B”结点的PreNode是1,因此再压入1,依次类推,直到0被压入,此时又得到了一条最短路径,那就是0,1,2,3,6。如下图:

(图五)

再往下,0、1、2都被弹出堆栈,3被弹出堆栈后,由于它对应的6号元素PreNode队列记录指针仍然可以下移,因此将5压入堆栈并依次将其PreNode入栈,直到0被入栈。此时输出第3条最短路径:0, 1, 2, 4, 5, 6。入下图:

(图六)

输出完成后,紧接着又是出栈,此时已经没有任何堆栈元素对应的PreNode队列指针可以下移,于是堆栈中的最后一个元素6也被弹出堆栈,此时输出工作完全结束。我们得到了3条最短路径,分别是:

  • 0, 1, 3, 6,
  • 0, 1, 2, 3, 6,
  • 0, 1, 2, 4, 5, 6,

让我们看看在SharpICTCLAS中,该算法是如何实现的:

SharpICTCLAS中的GetPaths方法
//====================================================================
// 注:index = 0 : 最短的路径; index = 1 : 次短的路径
//     依此类推。index <= this.m_nValueKind
//====================================================================
public List<int[]> GetPaths(int index)
{
   Stack<PathNode> stack = new Stack<PathNode>();
   int curNode = m_nNode - 1, curIndex = index;
   QueueElement element;
   PathNode node;
   int[] aPath;
   List<int[]> result = new List<int[]>();

   element = m_pParent[curNode - 1][curIndex].GetFirst();
   while (element != null)
   {
      // ---------- 通过压栈得到路径 -----------
      stack.Push(new PathNode(curNode, curIndex));
      stack.Push(new PathNode(element.nParent, element.nIndex));
      curNode = element.nParent;

      while (curNode != 0)
      {
         element = m_pParent[element.nParent - 1][element.nIndex].GetFirst();
         stack.Push(new PathNode(element.nParent, element.nIndex));
         curNode = element.nParent;
      }

      // -------------- 输出路径 --------------
      PathNode[] nArray = stack.ToArray();            
      aPath = new int[nArray.Length];
      
      for(int i=0; i<aPath.Length; i++)
         aPath[i] = nArray[i].nParent;

      result.Add(aPath);

      // -------------- 出栈以检查是否还有其它路径 --------------
      do
      {
         node = stack.Pop();
         curNode = node.nParent;
         curIndex = node.nIndex;

      } while (curNode < 1 || (stack.Count != 0 && !m_pParent[curNode - 1][curIndex].CanGetNext));

      element = m_pParent[curNode - 1][curIndex].GetNext();
   }

   return result;
}

注意,上面的代码是N-最短路径的,比起1-最短路径来说增加了点复杂度,但总体架构不变。这段代码将原有ICTCLAS的70多行求解路径代码缩短到了40多行。

  • 小结

1)N-最短路径的求解比较复杂,本文先从求解1-最短路径着手,说明SharpICTCLAS是如何计算的,在下篇文章中将推广到N-最短路径。

2)1-最短路径并不意味着只有一条最短路径,而是路径最短的若干条路径。就如本文案例所示,1-最短路径算法最终求得了3条路径,它们的长度都是5,因此都是最短路径。

来源:http://www.cnblogs.com/zhenyulu/category/85598.html

posted on 2007-12-28 19:38 刀剑笑 阅读(257) 评论(0)  编辑  收藏 所属分类: SharpICTCLAS

只有注册用户登录后才能发表评论。


网站导航: