根据网上各种文档整理而成.=号两边要空格的问题折磨了我好久.
1:安装
先检查是否安装CVS包
#>rpm -qa|grep cvs
没有安装的话,用下面2种方法安装
(1):在安装linux的时候可以选择安装CVS包
(2):另外下载CVS RPM包 自行安装
2:建立cvs用户和组
#> groupadd cvs
#> useradd -g cvs -G cvs –d /cvsroot cvsroot
#> passwd cvsroot
更改目录属性
chmod –R 770 /cvsroot
3:建立CVS服务
#more /etc/services | grep cvspserver
看看是否有
cvspserver 2401/tcp #CVS client/server operations
cvspserver 2401/udp #CVS client/server operations
如果没有需要到/etc/service文件中增加
建立#vi /etc/xinet.d/cvspserver 文件内容如下
service cvspserver
{
disable = no
flags = REUSE
socket_type = stream
wait = no
user = root
server = /usr/bin/cvs
server_args = -f --allow-root=/cvsroot pserver
}
该文件有特别要注意的地方,所有=号两边都需要空一个空格,除了"root=/cvsroot" 所有要空格的地方,不要多加空格.否则会有CVS服务不能启动的问题
切换到cvsroot用户
#cvs -d /cvsroot init
然后重新启动xinetd服务或者重启动机器
#service xinetd restart
然后用
#netstat -l | grep cvspserver
or
#netstat -l | grep 2401
看是否有下面tcp 0 0 *:cvspserver *:* LISTEN
说明已经正常启动,没有的话请重新检查配置过程是否有错误或者遗漏。最后还必须检查防火墙的设置,把2401端口打开。
4:用户管理
CVS默认使用系统用户登录,所有系统用户都可以登陆,但是这样对系统不安全,我们需要独立的用户管理.CVS用户名和密码保存在CVSROOT目录下的passwd文件中.格式
用户名:密码:系统用户
#htpasswd passwd username
用来设置用户密码并保存到passwd文件中.
然后需要关闭系统用户登陆使用cvs的权限,CVSROOT目录下的config文件,把#SystemAuth=no的#去掉就可以了.
测试登陆
#cvs -d “:pserver:username@127.0.0.1:/cvsroot” login
ok
5 :源代码仓库的备份和移动
基本上,CVS的源代码仓库没有什么特别之处,完全可以用文件备份的方式进行备份。需要注意的只是,应该确认备份的过程中没有用户提交修改,具体的做法可以是停止CVS服务器或者使用锁等等。恢复时只需要把这些文件按原来的目录结构存放好,因为CVS的每一个模块都是单独的一个目录,与其他模块和目录没有任何瓜葛,相当方便。甚至只需要在仓库中删除一个目录或者文件,便可以删除该模块的一些内容,不过并不建议这么做,使用CVS的删除功能将会有一个历史记录,而对仓库的直接删除不留任何痕迹,这对项目管理是不利的。移动仓库与备份相似,只需要把该模块的目录移动到新的路径,便可以使用了。
如果不幸在备份之后有过一些修改并且执行了提交,当服务器出现问题需要恢复源代码仓库时,开发者提交新的修改就会出现版本不一致的错误。此时只需要把CVS相关的目录和文件删除,即可把新的修改提交。
6.更进一步的管理
CVSROOT目录下还有很多其他功能,其中最重要的就是modules文件。这个文件定义了源代码库的模块,下面是一个例子:
代码: |
Linux Linux
Kernel Linux/kernel |
这个文件的内容按行排列,每一行定义一个模块,首先是模块名,然后是模块路径,这是相对于CVS根目录的路径。它定义了两个模块,第一个是Linux模块,它位于Linux目录中,第二个是Kernel模块,这是Linux模块的子模块。
modules文件并非必须的,它的作用相当于一个索引,部分CVS客户端软件通过它可以快速找到相应的模块,比如WinCVS。
7.协同开发的问题
默认方式下,CVS允许多个用户编辑同一个文件,这对一个协作良好的团队来说不会有什么问题,因为多个开发者同时修改同一个文件的同一部分是不正常的,这在项目管理中就应该避免,出现这种情况说明项目组内部没有统一意见。而多个开发者修改文件的不同部分,CVS可以很好的管理。
如果觉得这种方式难以控制,CVS也提供了解决办法,可以使用cvs admin -l进行锁定,这样一个开发者正在做修改时CVS就不会允许其他用户checkout。这里顺便说明一下文件格式的问题,对于文本格式,CVS可以进行历史记录比较、版本合并等工作,而二进制文件不支持这个操作,比如word文档、图片等就应该以二进制方式提交。对于二进制方式,由于无法进行合并,在无法保证只有一个用户修改文件的情况下,建议使用加锁方式进行修改。必须注意的是,修改完毕记得解锁。
从1.6版本开始,CVS引入了监视的概念,这个功能可以让用户随时了解当前谁在修改文件,并且CVS可以自动发送邮件给每一个监视的用户告知最新的更新。
8.建立多个源代码仓库
如果需要管理多个开发组,而这些开发组之间不能互相访问,可以有2个办法:
a.共用一个端口,需要修改cvspserver文件,给server_args指定多个源代码路径,即多个—allow-root参数。由于xinetd的server_args长度有限制,可以在cvspserver文件中把服务器的设置重定向到另外一个文件,如:
代码: |
server = /home/cvsroot/cvs.run |
然后创建/home/cvsroot/cvs.run文件,该文件必须可执行,内容格式为:
代码: |
#!/bin/bash
/usr/bin/cvs -f \
--allow-root=/home/cvsroot/src1 \
--allow-root=/home/cvsroot/src2 \
pserver |
注意此时源代码仓库不再是/home/cvsroot,进行初始化的时候要分别对这两个仓库路径进行初始化,而不再对/home/cvsroot路径进行初始化。
b.采用不同的端口提供服务
重复第2步和第3步,为不同的源代码仓库创建不同服务名的启动脚本,并为这些服务名指定不同的端口,初始化时也必须分别进行初始化。
Linux系统环境下的Socket编程详细解析
什么是Socket
Socket接口是TCP/IP网络的API,Socket接口定义了许多函数或例程,程序员可以用它们来开发TCP/IP网络上的应用程序。要学Internet上的TCP/IP网络编程,必须理解Socket接口。
Socket接口设计者最先是将接口放在Unix操作系统里面的。如果了解Unix系统的输入和输出的话,就很容易了解Socket了。网络的Socket数据传输是一种特殊的I/O,Socket也是一种文件描述符。Socket也具有一个类似于打开文件的函数调用Socket(),该函数返回一个整型的Socket描述符,随后的连接建立、数据传输等操作都是通过该Socket实现的。常用的Socket类型有两种:流式Socket(SOCK_STREAM)和数据报式Socket(SOCK_DGRAM)。流式是一种面向连接的Socket,针对于面向连接的TCP服务应用;数据报式Socket是一种无连接的Socket,对应于无连接的UDP服务应用。
Socket建立
为了建立Socket,程序可以调用Socket函数,该函数返回一个类似于文件描述符的句柄。socket函数原型为:
int socket(int domain, int type, int protocol);
domain指明所使用的协议族,通常为PF_INET,表示互联网协议族(TCP/IP协议族);type参数指定socket的类型:SOCK_STREAM 或SOCK_DGRAM,Socket接口还定义了原始Socket(SOCK_RAW),允许程序使用低层协议;protocol通常赋值"0"。Socket()调用返回一个整型socket描述符,你可以在后面的调用使用它。
Socket描述符是一个指向内部数据结构的指针,它指向描述符表入口。调用Socket函数时,socket执行体将建立一个Socket,实际上"建立一个Socket"意味着为一个Socket数据结构分配存储空间。Socket执行体为你管理描述符表。
两个网络程序之间的一个网络连接包括五种信息:通信协议、本地协议地址、本地主机端口、远端主机地址和远端协议端口。Socket数据结构中包含这五种信息。
Socket配置
通过socket调用返回一个socket描述符后,在使用socket进行网络传输以前,必须配置该socket。面向连接的socket客户端通过调用Connect函数在socket数据结构中保存本地和远端信息。无连接socket的客户端和服务端以及面向连接socket的服务端通过调用bind函数来配置本地信息。
Bind函数将socket与本机上的一个端口相关联,随后你就可以在该端口监听服务请求。Bind函数原型为:
int bind(int sockfd,struct sockaddr *my_addr, int addrlen); Sockfd是调用socket函数返回的socket描述符,
my_addr是一个指向包含有本机IP地址及端口号等信息的sockaddr类型的指针;
addrlen常被设置为sizeof(struct sockaddr)。 struct sockaddr结构类型是用来保存socket信息的: struct sockaddr { unsigned short sa_family; /* 地址族, AF_xxx */ char sa_data[14]; /* 14 字节的协议地址 */ }; sa_family一般为AF_INET,代表Internet(TCP/IP)地址族;sa_data 则包含该socket的IP地址和端口号。 另外还有一种结构类型: struct sockaddr_in { short int sin_family; /* 地址族 */ unsigned short int sin_port; /* 端口号 */ struct in_addr sin_addr; /* IP地址 */ unsigned char sin_zero[8]; /* 填充0 以保持与struct sockaddr同样大小 */ };
|
这个结构更方便使用。sin_zero用来将sockaddr_in结构填充到与struct sockaddr同样的长度,可以用bzero()或memset()函数将其置为零。指向sockaddr_in 的指针和指向sockaddr的指针可以相互转换,这意味着如果一个函数所需参数类型是sockaddr时,你可以在函数调用的时候将一个指向sockaddr_in的指针转换为指向sockaddr的指针;或者相反。
使用bind函数时,可以用下面的赋值实现自动获得本机IP地址和随机获取一个没有被占用的端口号:
my_addr.sin_port = 0; /* 系统随机选择一个未被使用的端口号 */
my_addr.sin_addr.s_addr = INADDR_ANY; /* 填入本机IP地址 */
通过将my_addr.sin_port置为0,函数会自动为你选择一个未占用的端口来使用。同样,通过将my_addr.sin_addr.s_addr置为INADDR_ANY,系统会自动填入本机IP地址。
注意在使用bind函数是需要将sin_port和sin_addr转换成为网络字节优先顺序;而sin_addr则不需要转换。
计算机数据存储有两种字节优先顺序:高位字节优先和低位字节优先。Internet上数据以高位字节优先顺序在网络上传输,所以对于在内部是以低位字节优先方式存储数据的机器,在Internet上传输数据时就需要进行转换,否则就会出现数据不一致。
下面是几个字节顺序转换函数:
·htonl():把32位值从主机字节序转换成网络字节序 ·htons():把16位值从主机字节序转换成网络字节序 ·ntohl():把32位值从网络字节序转换成主机字节序 ·ntohs():把16位值从网络字节序转换成主机字节序
|
Bind()函数在成功被调用时返回0;出现错误时返回"-1"并将errno置为相应的错误号。需要注意的是,在调用bind函数时一般不要将端口号置为小于1024的值,因为1到1024是保留端口号,你可以选择大于1024中的任何一个没有被占用的端口号。
连接建立
面向连接的客户程序使用Connect函数来配置socket并与远端服务器建立一个TCP连接,其函数原型为:
int connect(int sockfd, struct sockaddr *serv_addr,int addrlen);
Sockfd是socket函数返回的socket描述符;serv_addr是包含远端主机IP地址和端口号的指针;addrlen是远端地质结构的长度。Connect函数在出现错误时返回-1,并且设置errno为相应的错误码。进行客户端程序设计无须调用bind(),因为这种情况下只需知道目的机器的IP地址,而客户通过哪个端口与服务器建立连接并不需要关心,socket执行体为你的程序自动选择一个未被占用的端口,并通知你的程序数据什么时候到打断口。
Connect函数启动和远端主机的直接连接。只有面向连接的客户程序使用socket时才需要将此socket与远端主机相连。无连接协议从不建立直接连接。面向连接的服务器也从不启动一个连接,它只是被动的在协议端口监听客户的请求。
Listen函数使socket处于被动的监听模式,并为该socket建立一个输入数据队列,将到达的服务请求保存在此队列中,直到程序处理它们。
int listen(int sockfd, int backlog);
Sockfd是Socket系统调用返回的socket 描述符;backlog指定在请求队列中允许的最大请求数,进入的连接请求将在队列中等待accept()它们(参考下文)。Backlog对队列中等待服务的请求的数目进行了限制,大多数系统缺省值为20。如果一个服务请求到来时,输入队列已满,该socket将拒绝连接请求,客户将收到一个出错信息。
当出现错误时listen函数返回-1,并置相应的errno错误码。
accept()函数让服务器接收客户的连接请求。在建立好输入队列后,服务器就调用accept函数,然后睡眠并等待客户的连接请求。
int accept(int sockfd, void *addr, int *addrlen);
sockfd是被监听的socket描述符,addr通常是一个指向sockaddr_in变量的指针,该变量用来存放提出连接请求服务的主机的信息(某台主机从某个端口发出该请求);addrten通常为一个指向值为sizeof(struct sockaddr_in)的整型指针变量。出现错误时accept函数返回-1并置相应的errno值。
首先,当accept函数监视的socket收到连接请求时,socket执行体将建立一个新的socket,执行体将这个新socket和请求连接进程的地址联系起来,收到服务请求的初始socket仍可以继续在以前的 socket上监听,同时可以在新的socket描述符上进行数据传输操作。
数据传输
Send()和recv()这两个函数用于面向连接的socket上进行数据传输。
Send()函数原型为:
int send(int sockfd, const void *msg, int len, int flags);
Sockfd是你想用来传输数据的socket描述符;msg是一个指向要发送数据的指针;Len是以字节为单位的数据的长度;flags一般情况下置为0(关于该参数的用法可参照man手册)。
Send()函数返回实际上发送出的字节数,可能会少于你希望发送的数据。在程序中应该将send()的返回值与欲发送的字节数进行比较。当send()返回值与len不匹配时,应该对这种情况进行处理。
char *msg = "Hello!";
int len, bytes_sent;
……
len = strlen(msg);
bytes_sent = send(sockfd, msg,len,0);
……
recv()函数原型为:
int recv(int sockfd,void *buf,int len,unsigned int flags);
Sockfd是接受数据的socket描述符;buf 是存放接收数据的缓冲区;len是缓冲的长度。Flags也被置为0。Recv()返回实际上接收的字节数,当出现错误时,返回-1并置相应的errno值。
Sendto()和recvfrom()用于在无连接的数据报socket方式下进行数据传输。由于本地socket并没有与远端机器建立连接,所以在发送数据时应指明目的地址。
Sendto()函数原型为:
int sendto(int sockfd, const void *msg,int len,unsigned int flags,const struct sockaddr *to, int tolen);
该函数比send()函数多了两个参数,to表示目地机的IP地址和端口号信息,而tolen常常被赋值为sizeof (struct sockaddr)。Sendto 函数也返回实际发送的数据字节长度或在出现发送错误时返回-1。
Recvfrom()函数原型为:
int recvfrom(int sockfd,void *buf,int len,unsigned int flags,struct sockaddr *from,int *fromlen);
from是一个struct sockaddr类型的变量,该变量保存源机的IP地址及端口号。fromlen常置为sizeof (struct sockaddr)。当recvfrom()返回时,fromlen包含实际存入from中的数据字节数。Recvfrom()函数返回接收到的字节数或当出现错误时返回
1,并置相应的errno。
如果你对数据报socket调用了connect()函数时,你也可以利用send()和recv()进行数据传输,但该socket仍然是数据报socket,并且利用传输层的UDP服务。但在发送或接收数据报时,内核会自动为之加上目地和源地址信息。
结束传输
当所有的数据操作结束以后,你可以调用close()函数来释放该socket,从而停止在该socket上的任何数据操作:
close(sockfd);
你也可以调用shutdown()函数来关闭该socket。该函数允许你只停止在某个方向上的数据传输,而一个方向上的数据传输继续进行。如你可以关闭某socket的写操作而允许继续在该socket上接受数据,直至读入所有数据。
int shutdown(int sockfd,int how);
Sockfd是需要关闭的socket的描述符。参数 how允许为shutdown操作选择以下几种方式:
·0-------不允许继续接收数据
·1-------不允许继续发送数据
·2-------不允许继续发送和接收数据,
·均为允许则调用close ()
shutdown在操作成功时返回0,在出现错误时返回-1并置相应errno。
面向连接的Socket实例
代码实例中的服务器通过socket连接向客户端发送字符串"Hello, you are connected!"。只要在服务器上运行该服务器软件,在客户端运行客户软件,客户端就会收到该字符串。
该服务器软件代码如下:
#include #include #include #include #include #include #include #include #define SERVPORT 3333 /*服务器监听端口号 */ #define BACKLOG 10 /* 最大同时连接请求数 */ main() { int sockfd,client_fd; /*sock_fd:监听socket;client_fd:数据传输socket */ struct sockaddr_in my_addr; /* 本机地址信息 */ struct sockaddr_in remote_addr; /* 客户端地址信息 */ if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) { perror("socket创建出错!"); exit(1); } my_addr.sin_family=AF_INET; my_addr.sin_port=htons(SERVPORT); my_addr.sin_addr.s_addr = INADDR_ANY; bzero(&(my_addr.sin_zero),8); if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr)) \ == -1) { perror("bind出错!"); exit(1); } if (listen(sockfd, BACKLOG) == -1) { perror("listen出错!"); exit(1); } while(1) { sin_size = sizeof(struct sockaddr_in); if ((client_fd = accept(sockfd, (struct sockaddr *)&remote_addr, \ &sin_size)) == -1) { perror("accept出错"); continue; } printf("received a connection from %s\n", inet_ntoa(remote_addr.sin_addr)); if (!fork()) { /* 子进程代码段 */ if (send(client_fd, "Hello, you are connected!\n", 26, 0) == -1) perror("send出错!"); close(client_fd); exit(0); } close(client_fd); } } }
|
服务器的工作流程是这样的:首先调用socket函数创建一个Socket,然后调用bind函数将其与本机地址以及一个本地端口号绑定,然后调用listen在相应的socket上监听,当accpet接收到一个连接服务请求时,将生成一个新的socket。服务器显示该客户机的IP地址,并通过新的socket向客户端发送字符串"Hello,you are connected!"。最后关闭该socket。
代码实例中的fork()函数生成一个子进程来处理数据传输部分,fork()语句对于子进程返回的值为0。所以包含fork函数的if语句是子进程代码部分,它与if语句后面的父进程代码部分是并发执行的。
客户端程序代码如下:
#include #include #include #include #include #include #include #include #define SERVPORT 3333 #define MAXDATASIZE 100 /*每次最大数据传输量 */ main(int argc, char *argv[]){ int sockfd, recvbytes; char buf[MAXDATASIZE]; struct hostent *host; struct sockaddr_in serv_addr; if (argc < 2) { fprintf(stderr,"Please enter the server's hostname!\n"); exit(1); } if((host=gethostbyname(argv[1]))==NULL) { herror("gethostbyname出错!"); exit(1); } if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1){ perror("socket创建出错!"); exit(1); } serv_addr.sin_family=AF_INET; serv_addr.sin_port=htons(SERVPORT); serv_addr.sin_addr = *((struct in_addr *)host->h_addr); bzero(&(serv_addr.sin_zero),8); if (connect(sockfd, (struct sockaddr *)&serv_addr, \ sizeof(struct sockaddr)) == -1) { perror("connect出错!"); exit(1); } if ((recvbytes=recv(sockfd, buf, MAXDATASIZE, 0)) ==-1) { perror("recv出错!"); exit(1); } buf[recvbytes] = '\0'; printf("Received: %s",buf); close(sockfd); }
|
客户端程序首先通过服务器域名获得服务器的IP地址,然后创建一个socket,调用connect函数与服务器建立连接,连接成功之后接收从服务器发送过来的数据,最后关闭socket。
函数gethostbyname()是完成域名转换的。由于IP地址难以记忆和读写,所以为了方便,人们常常用域名来表示主机,这就需要进行域名和IP地址的转换。函数原型为:
struct hostent *gethostbyname(const char *name); 函数返回为hosten的结构类型,它的定义如下: struct hostent { char *h_name; /* 主机的官方域名 */ char **h_aliases; /* 一个以NULL结尾的主机别名数组 */ int h_addrtype; /* 返回的地址类型,在Internet环境下为AF-INET */ int h_length; /* 地址的字节长度 */ char **h_addr_list; /* 一个以0结尾的数组,包含该主机的所有地址*/ }; #define h_addr h_addr_list[0] /*在h-addr-list中的第一个地址*/
|
当 gethostname()调用成功时,返回指向struct hosten的指针,当调用失败时返回-1。当调用gethostbyname时,你不能使用perror()函数来输出错误信息,而应该使用herror()函数来输出。
无连接的客户/服务器程序的在原理上和连接的客户/服务器是一样的,两者的区别在于无连接的客户/服务器中的客户一般不需要建立连接,而且在发送接收数据时,需要指定远端机的地址。
阻塞和非阻塞
阻塞函数在完成其指定的任务以前不允许程序调用另一个函数。例如,程序执行一个读数据的函数调用时,在此函数完成读操作以前将不会执行下一程序语句。当服务器运行到accept语句时,而没有客户连接服务请求到来,服务器就会停止在accept语句上等待连接服务请求的到来。这种情况称为阻塞(blocking)。而非阻塞操作则可以立即完成。比如,如果你希望服务器仅仅注意检查是否有客户在等待连接,有就接受连接,否则就继续做其他事情,则可以通过将Socket设置为非阻塞方式来实现。非阻塞socket在没有客户在等待时就使accept调用立即返回。
#include
#include
……
sockfd = socket(AF_INET,SOCK_STREAM,0);
fcntl(sockfd,F_SETFL,O_NONBLOCK);
……
通过设置socket为非阻塞方式,可以实现"轮询"若干Socket。当企图从一个没有数据等待处理的非阻塞Socket读入数据时,函数将立即返回,返回值为-1,并置errno值为EWOULDBLOCK。但是这种"轮询"会使CPU处于忙等待方式,从而降低性能,浪费系统资源。而调用select()会有效地解决这个问题,它允许你把进程本身挂起来,而同时使系统内核监听所要求的一组文件描述符的任何活动,只要确认在任何被监控的文件描述符上出现活动,select()调用将返回指示该文件描述符已准备好的信息,从而实现了为进程选出随机的变化,而不必由进程本身对输入进行测试而浪费CPU开销。Select函数原型为:
int select(int numfds,fd_set *readfds,fd_set *writefds,
fd_set *exceptfds,struct timeval *timeout);
其中readfds、writefds、exceptfds分别是被select()监视的读、写和异常处理的文件描述符集合。如果你希望确定是否可以从标准输入和某个socket描述符读取数据,你只需要将标准输入的文件描述符0和相应的sockdtfd加入到readfds集合中;numfds的值是需要检查的号码最高的文件描述符加1,这个例子中numfds的值应为sockfd+1;当select返回时,readfds将被修改,指示某个文件描述符已经准备被读取,你可以通过FD_ISSSET()来测试。为了实现fd_set中对应的文件描述符的设置、复位和测试,它提供了一组宏:
FD_ZERO(fd_set *set)----清除一个文件描述符集;
FD_SET(int fd,fd_set *set)----将一个文件描述符加入文件描述符集中;
FD_CLR(int fd,fd_set *set)----将一个文件描述符从文件描述符集中清除;
FD_ISSET(int fd,fd_set *set)----试判断是否文件描述符被置位。
Timeout参数是一个指向struct timeval类型的指针,它可以使select()在等待timeout长时间后没有文件描述符准备好即返回。struct timeval数据结构为:
struct timeval {
int tv_sec; /* seconds */
int tv_usec; /* microseconds */ };
POP3客户端实例
下面的代码实例基于POP3的客户协议,与邮件服务器连接并取回指定用户帐号的邮件。与邮件服务器交互的命令存储在字符串数组POPMessage中,程序通过一个do-while循环依次发送这些命令。
#include #include #include #include #include #include #include #include #define POP3SERVPORT 110 #define MAXDATASIZE 4096
main(int argc, char *argv[]){ int sockfd; struct hostent *host; struct sockaddr_in serv_addr; char *POPMessage[]={ "USER userid\r\n", "PASS password\r\n", "STAT\r\n", "LIST\r\n", "RETR 1\r\n", "DELE 1\r\n", "QUIT\r\n", NULL }; int iLength; int iMsg=0; int iEnd=0; char buf[MAXDATASIZE];
if((host=gethostbyname("your.server"))==NULL) { perror("gethostbyname error"); exit(1); } if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1){ perror("socket error"); exit(1); } serv_addr.sin_family=AF_INET; serv_addr.sin_port=htons(POP3SERVPORT); serv_addr.sin_addr = *((struct in_addr *)host->h_addr); bzero(&(serv_addr.sin_zero),8); if (connect(sockfd, (struct sockaddr *)&serv_addr,sizeof(struct sockaddr))==-1){ perror("connect error"); exit(1); }
do { send(sockfd,POPMessage[iMsg],strlen(POPMessage[iMsg]),0); printf("have sent: %s",POPMessage[iMsg]);
iLength=recv(sockfd,buf+iEnd,sizeof(buf)-iEnd,0); iEnd+=iLength; buf[iEnd]='\0'; printf("received: %s,%d\n",buf,iMsg);
iMsg++; } while (POPMessage[iMsg]);
close(sockfd); }
|