这是Programming Erlang第8章节的一个练习,创建N个process,连接成一个圈,然后在这个圈子里发送消息M次,看看时间是多少,然后用另一门语言写同样的程序,看看时间是多少。我自己写的版本在处理3000个进程,1000次消息循环(也就是300万次消息传递)时花了5秒多,后来去google别人写的版本,竟然让我找到一个98年做的benchmark:Erlang vs. java,也是同样的的问题。测试的结果是Erlang性能远远大于java,这也是显然的结果,Erlang的process是轻量级、无共享的,而java的线程是os级别的,两者创建的cost不可同日而语。详细的比较请看
这里 不过我分析了这个测试里的Erlang代码,存在问题,并没有完成所有的循环,进程就结束了,这对比较结果有较大的影响。原始代码如下:
-module(zog).
%% This is a test program that first creates N processes (that are
%% "connected" in a ring) and then sends M messages in that ring.
%%
%% - September 1998
%% - roland
-export([start/0, start/1, start/2]).
-export([run/2, process/1]). % Local exports - ouch
start() -> start(16000).
start(N) -> start(N, 1000000).
start(N, M) -> spawn(?MODULE, run, [N, M]).
run(N, M) when N < 1 ->
io:format("Must be at least 1 process~n", []),
0.0;
run(N, M) ->
statistics(wall_clock),
Pid = setup(N-1, self()),
{_,T1} = statistics(wall_clock),
io:format("Setup : ~w s", [T1/1000]),
case N of
1 -> io:format(" (0 spawns)~n", []);
_ -> io:format(" (~w us per spawn) (~w spawns)~n",
[1000*T1/(N-1), N-1])
end,
statistics(wall_clock),
Pid ! M,
K = process(Pid),
{_,T2} = statistics(wall_clock),
Time = 1000*T2/(M+K),
io:format("Run : ~w s (~w us per msg) (~w msgs)~n",
[T2/1000, Time, (M+K)]),
Time.
setup(0, OldPid) ->
OldPid;
setup(N, OldPid) ->
NewPid = spawn(?MODULE, process, [OldPid]),
setup(N-1, NewPid).
process(Pid) ->
receive
M ->
Pid ! M-1,
if
M < 0 -> -M;
true -> process(Pid)
end
end.
我将process修改一下:
process(Pid) ->
receive
M ->
Pid ! M-1,
io:format("form ~w to ~w~n",[self(),Pid]),
if
M < 0 -> -M;
true -> process(Pid)
end
end.
然后执行下zog:run(3,3),
你将发现消息绕了两圈就结束了,第三圈根本没有进行,不知道测试者是什么用意。
依照现在的执行300万次消息传送竟然只需要3毫秒!我修改了下了下代码如下:
-module(zog).
%% This is a test program that first creates N processes (that are
%% "connected" in a ring) and then sends M messages in that ring.
%%
%% - September 1998
%% - roland
-export([start/0, start/1, start/2]).
-export([run/2, process/2]). % Local exports - ouch
start() -> start(16000).
start(N) -> start(N, 1000000).
start(N, M) -> spawn(?MODULE, run, [N, M]).
run(N, M) when N < 1 ->
io:format("Must be at least 1 process~n", []),
0.0;
run(N, M) ->
statistics(wall_clock),
Limit=N-N*M+1+M,
Pid = setup(N-1,Limit,self()),
{_,T1} = statistics(wall_clock),
io:format("Setup : ~w s", [T1/1000]),
case N of
1 -> io:format(" (0 spawns)~n", []);
_ -> io:format(" (~w us per spawn) (~w spawns)~n",
[1000*T1/(N-1), N-1])
end,
statistics(wall_clock),
% io:format("run's Pid=~w~n",[Pid]),
Pid ! M,
K = process(Pid,Limit),
% io:format("run's K=~w~n",[K]),
{_,T2} = statistics(wall_clock),
Time = 1000*T2/(M+K),
io:format("Run : ~w s (~w us per msg) (~w msgs)~n",
[T2/1000, Time, (M+K)]),
T2/1000.
setup(0,Limit, OldPid) ->
OldPid;
setup(N,Limit, OldPid) ->
NewPid = spawn(?MODULE, process, [OldPid,Limit]),
setup(N-1, Limit,NewPid).
process(Pid,Limit) ->
receive
M ->
Pid ! M-1,
% io:format("from ~w to ~w and M=~w~n",[self(),Pid,M]),
if
M <Limit -> -M;
true -> process(Pid,Limit)
end
end.
修改之后,执行zog:run(3000,1000),也就是3000个进程,1000次消息循环,总共300万次消息传递,
结果在2.5秒左右,这也是相当惊人的结果。有人用haskell和scheme各实现了一个版本,有兴趣的看看
这里和
这里