系统要求进行SQL优化,对效率比较低的SQL进行优化,使其运行效率更高,其中要求对SQL中的部分in/not in修改为exists/not exists
修改方法如下:
in的SQL语句
SELECT id, category_id, htmlfile, title, convert(varchar(20),begintime,112) as pubtime
FROM tab_oa_pub WHERE is_check=1 and
category_id in (select id from tab_oa_pub_cate where no='1')
order by begintime desc
修改为exists的SQL语句
SELECT id, category_id, htmlfile, title, convert(varchar(20),begintime,112) as pubtime
FROM tab_oa_pub WHERE is_check=1 and
exists (select id from tab_oa_pub_cate where tab_oa_pub.category_id=convert(int,no) and no='1')
order by begintime desc
分析一下exists真的就比in的效率高吗?
我们先讨论IN和EXISTS。
select * from t1 where x in ( select y from t2 )
事实上可以理解为:
select *
from t1, ( select distinct y from t2 ) t2
where t1.x = t2.y;
——如果你有一定的SQL优化经验,从这句很自然的可以想到t2绝对不能是个大表,因为需要对t2进行全表的“唯一排序”,如果t2很大这个排序的性能是
不可忍受的。但是t1可以很大,为什么呢?最通俗的理解就是因为t1.x=t2.y可以走索引。但这并不是一个很好的解释。试想,如果t1.x和t2.y
都有索引,我们知道索引是种有序的结构,因此t1和t2之间最佳的方案是走merge
join。另外,如果t2.y上有索引,对t2的排序性能也有很大提高。
select * from t1 where exists ( select null from t2 where y = x )
可以理解为:
for x in ( select * from t1 )
loop
if ( exists ( select null from t2 where y = x.x )
then
OUTPUT THE RECORD!
end if
end loop
——这个更容易理解,t1永远是个表扫描!因此t1绝对不能是个大表,而t2可以很大,因为y=x.x可以走t2.y的索引。
综合以上对IN/EXISTS的讨论,我们可以得出一个基本通用的结论:IN适合于外表大而内表小的情况;EXISTS适合于外表小而内表大的情况。
我们要根据实际的情况做相应的优化,不能绝对的说谁的效率高谁的效率低,所有的事都是相对的
not in 和not exists
如果查询语句使用了not in 那么内外表都进行全表扫描,没有用到索引;
而not extsts 的子查询依然能用到表上的索引。
所以无论那个表大,用not exists都比not in要快。
原文:http://blog.csdn.net/jwisdom/archive/2007/09/27/1803577.aspx