七、数据库
几乎所有操作最后都要落到数据库身上,它又最难扩展(存储也挺难)。对于mysql,什么样的表用myisam,什么样的表用innodb,在开发之前要确定。复制策略、分片策略,也要确定。表引擎方面,一般,更新不多、不需要事务的表可以用myisam,需要行锁定、事务支持的,用innodb。myisam的锁表不一定是性能低下的根源,innodb也不一定全是行锁,具体细节要多看相关的文档,熟悉了引擎特性才能用的更好。现代WEB应用越来越复杂了,我们设计表结构时常常设计很多冗余,虽然不符合传统范式,但为了速度考虑还是值得的,要求高的情况下甚至要杜绝联合查询。编程时得多注意数据一致性。
复制策略方面,多主多从结构也最好一开始就设计好,代码直接按照多主多从来编写,用一些小技巧来避免复制延时问题,并且还要解决多数据库数据是否一致,可以自己写或者找现成的运维工具。
分片策略。总会有那么几个表数据量超大,这时分片必不可免。分片有很多策略,从简单的分区到根据热度自动调整,依照具体业务选择一个适合自己的。避免自增ID作为主键,不利于分片。
用存储过程是比较难扩展的,这种情形多发生于传统C/S,特别是OA系统转换过来的开发人员。低成本网站不是一两台小型机跑一个数据库处理所有业务的模式,是机海作战。方便水平扩展比那点预分析时间和网络传输流量要重要的多的多。
NoSQL。这只是一个概念。实际应用中,网站有着越来越多的密集写操作、上亿的简单关系数据读取、热备等,这都不是传统关系数据库所擅长的,于是就产生了很多非关系型数据库,比如Redis/TC&TT/MongoDB/Memcachedb等,在测试中,这些几乎都达到了每秒至少一万次的写操作,内存型的甚至5万以上。例如MongoDB,几句配置就可以组建一个复制+自动分片+failover的环境,文档化的存储也简化了传统设计库结构再开发的模式。很多业务是可以用这类数据库来替代mysql的。
八、缓存。
数据库很脆弱,一定要有缓存在前面挡着,其实我们优化速度,几乎就是优化缓存,能用缓存的地方,就不要再跑到后端数据库那折腾。缓存有持久化缓存、内存缓存,生成静态页面是最容易理解的持久化缓存了,还有很多比如varnish的分块缓存、前面提到的memcachedb等,内存缓存,memcached首当其冲。缓存更新可用被动更新和主动更新。被动更新的好处是设计简单,缓存空了就自动去数据库取数据再把缓存填上,但容易引发雪崩效应,一旦缓存大面积失效,数据库的压力直线上升很可能挂掉。主动缓存可避免这点但是可能引发程序取不到数据的问题。这两者之间如何配合,程序设计要多动脑筋。
九、队列。
用户一个操作很可能引发一系列资源和功能的调动,这些调动如果同时发生,压力无法控制,用户体验也不好,可以把这样一些操作放入队列,由另几个模块去异步执行,例如发送邮件,发送手机短信。开源队列服务器很多,性能要求不高用数据库当做队列也可以,只要保证程序读写队列的接口不变,底层队列服务可随时更换就可以,类似Zend Framework里的Zend_Queue类,java.util.Queue接口等。
十、文件存储。
除了结构化数据,我们经常要存放其他的数据,像图片之类的。这类数据数量繁多、访问量大。典型的就是图片,从用户头像到用户上传的照片,还要生成不同的缩略图尺寸。存储的分布几乎跟数据库扩展一样艰难。不使用专业存储的情况下,基本都是靠自己的NAS。这就涉及到结构。拿图片存储举例,图片是非常容易产生热点的,有些图片上传后就不再有人看,有些可能每天被访问数十万次,而且大量小文件的异步备份也很耗费时间。
为了将来图片走cdn做准备,一开始最好就将图片的域名分开,且不用主域名。很多网站都将cookie设置到了.domain.ltd,如果图片也在这个域名下,很可能因为cookie而造成缓存失效,并且占多余流量,还可能因为浏览器并发线程限制造成访问缓慢。
如果用普通的文件系统存储图片,有一个简单的方法。计算文件的hash值,比如md5,以结果第一位作为第一级目录,这样第一级有16个目录。从0到F,可以把这个字母作为域名,0.yourimg.com到f.yourimg.com(客户端dns压力会增大),还可以扩展到最多16个NAS集群上。第二级可用年月例如,201011,第三级用日,第四级可选,根据上传量,比如am/pm,甚至小时。最终的目录结构可能会是 e/201008/25/am/e43ae391c839d82801920cf.jpg。rsync备份时可以用脚本只同步某年某日某时的文件,避免计算大量文件带来的开销。当然最好是能用专门的分布式文件系统或更专业点的存储解决方案。
下面,我们要谈谈代码了。
posted on 2010-12-08 19:58
沉香江南 阅读(189)
评论(0) 编辑 收藏 所属分类:
转载文章