The set [1,2,3,…,n] contains a total of n! unique permutations.
By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note: Given n will be between 1 and 9 inclusive.
这道题其实有很强的规律可循。首先,n个元素的排列总数是n!。在下面的分析中,让k的范围是0 <= k < n!。(题目代码实际上是1<=k<=n!)
可以看到一个规律,就是这n!个排列中,第一位的元素总是(n-1)!一组出现的,也就说如果p = k / (n-1)!,那么排列的最开始一个元素一定是arr[p]。
这个规律可以类推下去,在剩余的n-1个元素中逐渐挑选出第二个,第三个,...,到第n个元素。程序就结束。
1 /**
2 * The set [1,2,3,…,n] contains a total of n! unique permutations.
3 *
4 * By listing and labeling all of the permutations in order, We get the
5 * following sequence (ie, for n = 3):
6 *
7 * "123" "132" "213" "231" "312" "321" Given n and k, return the kth permutation
8 * sequence.
9 *
10 * Note: Given n will be between 1 and 9 inclusive.
11 *
12 */
13
14 public class PermutationSequence {
15 public String getPermutation(int n, int k) {
16 char[] arr = new char[n];
17 int pro = 1;
18 for (int i = 0; i < n; ++i) {
19 arr[i] = (char) ('1' + i);
20 pro *= (i + 1);
21 }
22 k = k - 1;
23 k %= pro;
24 pro /= n;
25 for (int i = 0; i < n - 1; ++i) {
26 int selectI = k / pro;
27 k = k % pro;
28 pro /= (n - i - 1);
29 int temp = arr[selectI + i];
30 for (int j = selectI; j > 0; --j) {
31 arr[i + j] = arr[i + j - 1];
32 }
33 arr[i] = (char) temp;
34 }
35 return String.valueOf(arr);
36 }
37 }
38