paulwong

JDK1.5中的线程池(java.util.concurrent.ThreadPoolExecutor)使用简介

大多数并发应用程序是以执行任务(task)为基本单位进行管理的。通常情况下,我们会为每个任务单独创建一个线程来执行。这样会带来两个问题:一,大量的线程(>100)会消耗系统资源,使线程调度的开销变大,引起性能下降;二,对于生命周期短暂的任务,频繁地创建和消亡线程并不是明智的选择。因为创建和消亡线程的开销可能会大于使用多线程带来的性能好处。

一个比较简单的线程池至少应包含线程池管理器、工作线程、任务队列、任务接口等部分。其中线程池管理器(ThreadPool Manager)的作用是创建、销毁并管理线程池,将工作线程放入线程池中;工作线程是一个可以循环执行任务的线程,在没有任务时进行等待;任务队列的作用是提供一种缓冲机制,将没有处理的任务放在任务队列中;任务接口是每个任务必须实现的接口,主要用来规定任务的入口、任务执行完后的收尾工作、任务的执行状态等,工作线程通过该接口调度任务的执行。下面的代码实现了创建一个线程池,以及从线程池中取出线程的操作。

在多线程大师Doug Lea的贡献下,在JDK1.5中加入了许多对并发特性的支持,例如:线程池。

1.核心线程(任务):我们定义的线程,即实现了Runnable接口的类,是我们将要放到线程池中执行的类,如实例代码中的CountService类

2.工作线程:由线程池中创建的线程,是用来获得核心线程并执行核心线程的线程(比较拗口哦,具体看代码就知道是什么东东了)。

简单理解就三个概念:线程、线程池和任务。

任务:就是要执行的业务逻辑;
线程:任务是要放到线程中去执行的;
线程池:主要是控制当前正在执行的线程的数量和将要被执行的线程队列。

一、简介
线程池类为 java.util.concurrent.ThreadPoolExecutor,常用构造方法为:

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize,long keepAliveTime, TimeUnit unit,BlockingQueue<Runnable> workQueue,RejectedExecutionHandler handler)


corePoolSize: 线程池维护线程的最少数量
maximumPoolSize:线程池维护线程的最大数量
keepAliveTime: 线程池维护线程所允许的空闲时间
unit: 线程池维护线程所允许的空闲时间的单位
workQueue: 线程池所使用的缓冲队列
handler: 线程池对拒绝任务的处理策略

一个任务通过 execute(Runnable)方法被添加到线程池,任务就是一个 Runnable类型的对象,任务的执行方法就是 Runnable类型对象的run()方法。

当一个任务通过execute(Runnable)方法欲添加到线程池时:

如果此时线程池中的数量小于corePoolSize,即使线程池中的线程都处于空闲状态,也要创建新的线程来处理被添加的任务。

如果此时线程池中的数量等于 corePoolSize,但是缓冲队列 workQueue未满,那么任务被放入缓冲队列。

如果此时线程池中的数量大于corePoolSize,缓冲队列workQueue满,并且线程池中的数量小于maximumPoolSize,建新的线程来处理被添加的任务。

如果此时线程池中的数量大于corePoolSize,缓冲队列workQueue满,并且线程池中的数量等于maximumPoolSize,那么通过 handler所指定的策略来处理此任务。

也就是:处理任务的优先级为:
核心线程corePoolSize、任务队列workQueue、最大线程maximumPoolSize,如果三者都满了,使用handler处理被拒绝的任务。

当线程池中的线程数量大于 corePoolSize时,如果某线程空闲时间超过keepAliveTime,线程将被终止。这样,线程池可以动态的调整池中的线程数。

unit可选的参数为java.util.concurrent.TimeUnit中的几个静态属性:
NANOSECONDS、MICROSECONDS、MILLISECONDS、SECONDS。

workQueue我常用的是:java.util.concurrent.ArrayBlockingQueue

handler有四个选择:

ThreadPoolExecutor.AbortPolicy()
抛出java.util.concurrent.RejectedExecutionException异常

ThreadPoolExecutor.CallerRunsPolicy()
重试添加当前的任务,他会自动重复调用execute()方法

ThreadPoolExecutor.DiscardOldestPolicy()
抛弃旧的任务

ThreadPoolExecutor.DiscardPolicy()
抛弃当前的任务

二、一般用法举例


package com.paul.threadPool;

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class TestThreadPool {

private static int produceTaskSleepTime = 10;

private static int produceTaskMaxNumber = 10;

public static void main(String[] args) {

// 构造一个线程池
ThreadPoolExecutor threadPool = new ThreadPoolExecutor(2, 4, 3,
TimeUnit.SECONDS,
new ArrayBlockingQueue<Runnable>(3),
new ThreadPoolExecutor.CallerRunsPolicy());

for (int i = 1; i <= produceTaskMaxNumber; i++) {
try {
String task
= "task@ " + i;
System.out.println(
"创建任务并提交到线程池中:" + task);
threadPool.execute(
new ThreadPoolTask(task));

Thread.sleep(produceTaskSleepTime);
}
catch (Exception e) {
e.printStackTrace();
}

}

}

}


package com.paul.threadPool;

import java.io.Serializable;

public class ThreadPoolTask implements Runnable, Serializable {

private static final long serialVersionUID = 0;

// 保存任务所需要的数据
private Object threadPoolTaskData;

private static int consumeTaskSleepTime = 2000;

ThreadPoolTask(Object tasks)
{
this.threadPoolTaskData = tasks;
}


public synchronized void run() {
// 处理一个任务,这里的处理方式太简单了,仅仅是一个打印语句
System.out.println("开始执行任务:" + threadPoolTaskData);
try {
// //便于观察,等待一段时间
Thread.sleep(consumeTaskSleepTime);
}
catch (Exception e) {
e.printStackTrace();
}

threadPoolTaskData
= null;
}


public Object getTask() {
return this.threadPoolTaskData;
}


}


说明:
1、在这段程序中,一个任务就是一个Runnable类型的对象,也就是一个ThreadPoolTask类型的对象。
2、一般来说任务除了处理方式外,还需要处理的数据,处理的数据通过构造方法传给任务。
3、在这段程序中,main()方法相当于一个残忍的领导,他派发出许多任务,丢给一个叫 threadPool的任劳任怨的小组来做。
这个小组里面队员至少有两个,如果他们两个忙不过来,任务就被放到任务列表里面。
如果积压的任务过多,多到任务列表都装不下(超过3个)的时候,就雇佣新的队员来帮忙。但是基于成本的考虑,不能雇佣太多的队员,至多只能雇佣 4个。
如果四个队员都在忙时,再有新的任务,这个小组就处理不了了,任务就会被通过一种策略来处理,我们的处理方式是不停的派发,直到接受这个任务为止(更残忍!呵呵)。
因为队员工作是需要成本的,如果工作很闲,闲到 3SECONDS都没有新的任务了,那么有的队员就会被解雇了,但是,为了小组的正常运转,即使工作再闲,小组的队员也不能少于两个。
4、通过调整 produceTaskSleepTime和 consumeTaskSleepTime的大小来实现对派发任务和处理任务的速度的控制,改变这两个值就可以观察不同速率下程序的工作情况。
5、通过调整4中所指的数据,再加上调整任务丢弃策略,换上其他三种策略,就可以看出不同策略下的不同处理方式。
6、对于其他的使用方法,参看jdk的帮助,很容易理解和使用。

posted on 2011-12-02 01:07 paulwong 阅读(465) 评论(0)  编辑  收藏 所属分类: 性能优化


只有注册用户登录后才能发表评论。


网站导航: