数据分析:从一堆已知的数据中进行分类,总结得出统计数据,如最大 值,最小值,平均值,总和等。
只能对已知数据进行操作,无法预测出新的数据的特征,于是就有了机器学习。
机器学习:给出一堆已知的,有特征栏位的和结果栏位的数据,选定一个算法,如线性回归,逻辑回归等,其实就是一条公式,进行学习,其实就是运行一堆函数,比较结果,得出规律,也就是确定了公式中参数的值。当输入新的数据时,就能预测出所需的结果,其实就是把输入数据代入公式,算出结果。
机器学习只能做比较简单的任务,如预测下个月的销售数据,判断文字内容是正面还是反面(分类),对于复杂的任务,如对话,其实就是针对输入文字预测靠谱的输出文字(回答),于是就有了深度学习。
深度学习:给出一堆数据,只需两个本栏位,如问题,答案等,选定一个算法,其实就是神经网络的类型,如卷积神经网络(CNN),循环神经网络(RNN),TRANSFORMER神经网络等,进行学习,其实就是运行一堆函数,比较结果,得出规律,也就是确定了公式中参数的值。
操作系统为centos 9.
先安装驱动程序
#切换成文字界面
sudo systemctl set-default multi-user.target
sudo reboot
sh NVIDIA-Linux-x86_64-550.107.02.run
#切换成图形界面
sudo systemctl set-default graphical.target
sudo reboot
安装docker:
yum remove docker \
docker-client \
docker-client-latest \
docker-common \
docker-latest \
docker-latest-logrotate \
docker-logrotate \
docker-engine
yum install -y yum-utils
yum-config-manager --add-repo https://mirrors.tuna.tsinghua.edu.cn/docker-ce/linux/centos/docker-ce.repo
sed -i 's+https://download.docker.com+https://mirrors.tuna.tsinghua.edu.cn/docker-ce+' /etc/yum.repos.d/docker-ce.repo
yum install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin
sudo nvidia-ctk runtime configure --runtime=docker
改镜像地址:
[paul@paul-pc ~]$ cat /etc/docker/daemon.json
{
"registry-mirrors": [
"http://xxx.xxx.xxx"
],
"runtimes": {
"nvidia": {
"args": [],
"path": "nvidia-container-runtime"
}
}
}
安装container-took-kit:
sh cuda_12.6.0_560.28.03_linux.run
验证:
sudo docker run --rm -it --gpus all ubuntu nvidia-smi
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.107.02 Driver Version: 550.107.02 CUDA Version: 12.4 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GeForce RTX 2080 Ti Off | 00000000:01:00.0 On | N/A |
| 62% 36C P8 4W / 260W | 256MiB / 22528MiB | 1% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
| 1 NVIDIA GeForce RTX 2080 Ti Off | 00000000:02:00.0 Off | N/A |
| 64% 35C P8 5W / 260W | 9MiB / 22528MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| 0 N/A N/A 2657 G /usr/libexec/Xorg 99MiB |
| 0 N/A N/A 2735 G /usr/bin/gnome-shell 38MiB |
| 0 N/A N/A 3502 G /usr/lib64/firefox/firefox 111MiB |
| 1 N/A N/A 2657 G /usr/libexec/Xorg 4MiB |
+-----------------------------------------------------------------------------------------+
参考地址:
python服务器脚本,生成html,无需写js,css,适合AI项目
生成文字的代码:
st.text(
'Fixed width text')
st.markdown(
'_Markdown_')
# see #*
st.caption(
'Balloons. Hundreds of them')
st.latex(r
''' e^{i\pi} + 1 = 0 ''')
st.write(
'Most objects')
# df, err, func, keras!
st.write([
'st',
'is <', 3])
# see *
st.title(
'My title')
st.header(
'My header')
st.subheader(
'My sub')
st.code(
'for i in range(8): foo()')
# * optional kwarg unsafe_allow_html = True
生成form控件:
st.button('Hit me')
st.data_editor('Edit data', data)
st.checkbox('Check me out')
st.radio('Pick one:', ['nose','ear'])
st.selectbox('Select', [1,2,3])
st.multiselect('Multiselect', [1,2,3])
st.slider('Slide me', min_value=0, max_value=10)
st.select_slider('Slide to select', options=[1,'2'])
st.text_input('Enter some text')
st.number_input('Enter a number')
st.text_area('Area for textual entry')
st.date_input('Date input')
st.time_input('Time entry')
st.file_uploader('File uploader')
st.download_button('On the dl', data)
st.camera_input("一二三,茄子!")
st.color_picker('Pick a color')
用表格显示数据:
st.dataframe(my_dataframe)
st.table(data.iloc[0:10])
st.json({'foo':'bar','fu':'ba'})
st.metric(label="Temp", value="273 K", delta="1.2 K")
显示加载进度条与状态:
# Show a spinner during a process
>>> with st.spinner(text='In progress'):
>>> time.sleep(3)
>>> st.success('Done')
# Show and update progress bar
>>> bar = st.progress(50)
>>> time.sleep(3)
>>> bar.progress(100)
st.balloons()
st.snow()
st.toast('Mr Stay-Puft')
st.error('Error message')
st.warning('Warning message')
st.info('Info message')
st.success('Success message')
st.exception(e)
这几天要PUSH代码到GITHUB,发现之前用的密码方式被取消了,需改成SSH KEY的方式。
1.生成SSH-KEY
ssh-keygen
#会产生 ~/.ssh/id_rsa 和 ~/.ssh/id_rsa_pub 文件
#如果是从别的地方拷贝过来的id_rsa,需chmod 400 ~/.ssh/id_rsa更改属性
2.在github上新建仓库
https://github.com/paulwong888/python-ai
3.导入公钥到github
打开你的SSH公钥文件,通常位于~/.ssh/id_rsa.pub。复制公钥内容,然后登录到你的GitHub账户,进入Settings > SSH and GPG keys,点击"New SSH key"按钮,粘贴你的公钥,然后点击"Add SSH key"。
4.克隆仓库
git config --global user.name "John Doe"
git config --global user.email johndoe@example.com
git clone git@github.com:paulwong888/python-ai
5.导入project到eclipse
上步克隆时已经在本地新建了一个本地仓库,Import->Git->Project from Git->Existing local repository,选择python-ai/.git文件夹
之后的操作和用密码的方式是一样的。