qileilove

blog已经转移至github,大家请访问 http://qaseven.github.io/

量化项目管理案例:缺陷趋势预测利器(1)

量化项目管理案例:缺陷趋势预测利器(1)

 不知身为软件工程师的你,在写代码时是不是有过这样的经历:一方面对自己写的代码信心满满,一方面又非常希望知道自己开发的代码的质量到底多高。如果代码真的没被测出bug来或者测出的bug较少时,反而有点担心——会不会还有隐藏的更深的bug没被发现?或者身为测试工程师的你,可能比开发人员担心的会更多:这些代码该不该再继续测试了?怎么就能断定当前的版本算是通过验收标准了,继而可以被客户和用户认可?是不是就可以把这个版本交付使用了呢?

  --------------------------------------------------------------------------------

  相信这是很多开发和测试人员都曾经经历过的。无论是开发人员、测试人员,还是项目经理、高层管理人员,都已经为版本的交付日以继夜的加班工作,可不能在交付的时刻功亏一篑。打击心情不说,加班加点不说,而且,谁该来为可能的返工和无休无止的变更买单呢。

  所以,软件版本在发布时需要有一个判定的标准——没有预先定义的判定标准,就无法去判断版本是否已经达到了客户的要求。不进行判断,或者是错误的判断,都很有可能会造成该项目资源安排的不合理,甚至造成资源的浪费,那么不管是精神上还是体力上,甚至进度上、成本上,都会给项目团队带来不小的打击。

  CMMI四级的一个要求是量化的管理项目(详见量化项目管理QPM中文版)。映射到缺陷预测活动中,也就是量化的管理缺陷。量化的退出标准就是将类似“这个版本是否能够通过”这样的问题,形象地转变为“已经测出的bug数是否已经足够多,遗留的bug是否已经少到不会影响软件的交付”等等这样的表述。这样,无论是理解上还是判断上都更加容易,版本发布标准也就变得不难理解了。

  在决定发布版本之前,需要去统计这样几件事:我们已经发现了多少个bug;用量化的方法进行管理时,我们还有多少个bug没有发现;我们统计到的未发现的bug数是否能达到客户的要求;如果无法满足客户的要求,那我们至少还需要发现多少个bug。当这一系列问题都解决了以后,开发、测试人员是终于可以“收”工拿项目奖,还是需要返工加班、继续努力,也就一目了然了。

  知道了要做什么,接下来要考虑的就是“怎么做”。出于这样的原因,方正国际软件有限公司(以下简称方正国际)几年来一直都在内部实施着利用统计学的原理对软件缺陷进行管理和监控。用统计学的方法监控和预测缺陷的发展情况,从而对发现的缺陷进行管理,确定还未发现的缺陷情况、为了按时交付每一个阶段应当发现的缺陷情况,以此相应调整测试工作的时间和进度。

  这就是方正国际近两年来一直在内部实施的基于Gompertz模型的缺陷预测与管理,以及在此基础上开发的缺陷预测与管理的工具。在已经采集到的多个项目数据的基础上,现在该工具已经在公司内部使用。应用这个工具,让测试人员在测试初期就对自己大致的工作量有了比较准确的估计,并对测试的每个阶段发现的bug实施分析和监控;根据预实对照的目标达成情况来调整开发、测试的进度;而且在最终交付时,给客户一个高质量的、可靠的工作产品。简单用个例子来说明吧。在项目A还未进入但即将进入测试阶段时,测试经理就会根据历史的情况、经验等方法,估计出进入测试阶段后的第一周,大概可以发现多少件缺陷;同样,再估计出版本交付时可能出现的缺陷数目,以及版本交付后会出现的缺陷的数目。利用这三个数据的信息,就大致可以得到:要达到预定的目标,在进入测试阶段后,每周、甚至每天大概需要发现多少缺陷。以此为依据,测试经理就可以对团队中的测试人员的任务进行分配、对工作进行评价。当然,这仅仅是Gompertz模型使用的场景之一。

  统计学是很强大的,统计学知识的应用也是很广泛的。那么,在缺陷预测中的统计学原理,或者说是理论依据是什么呢?基于Gompertz模型的缺陷预测工具到底是怎样对测试活动和质量进行监控的呢?接下来,我们会逐步与大家分享。

  未完待续......

趋势预测、基于时间信息的预测相关基础知识

  在展开Gompertz模型趋势预测的说明前,首先给关注统计学知识在软件行业应用的网友介绍趋势预测的基础知识。

  如何理解预测技术呢?简单来说,预测(prediction)是根据事物发展的历史资料及当前情况,运用一定的理论和方法,对未来趋势做出的一种科学推测。再简单点,就像传说中或是童话里的占卜师一样,当你想知道将来的事情时,你需要告诉占卜师你的出生情况,他就能将你的一生预测出来。不同的是,他只能告诉你,你的一生是顺利或是不顺,或再详细点告诉你可能在哪段时间会发生不寻常的事情;而我们所说的预测技术却可以详细到周,甚至详细到天。当然,这里还有个本质的区别,那就是我们这里说的预测是有科学基础的,而占卜师的预测只是常常出现在童话里或者传说中罢了。

  预测技术的应用主要针对未来的趋势,即是经常讲的趋势预测?这里我们也来个“顾名思义”。“趋势”一词在词典里的解释是“事物发展的动向”,也就是会呈现出某种规律。简单点,某一事物未来是好是坏,是多是少,是升是降,或者先好后坏,先多后少,先升后降等等,也就是对未来进行预测。再用上面的例子来说明,小李急切地想知道自己的未来,并求助于占卜师,而占卜师则预测到他在40岁时会有场灾祸,那么恐怕小李紧接着要问的就是“我该怎样做才能化解我的灾祸”。趋势预测就是要解决类似的问题。预测并不是最终目的,而是一种手段,当预测到的趋势不符合规定的标准时,就应当及时采取措施来进行调整或缓解,这也是趋势预测的目标之一,通过分析预测的结果,揭发它的发展趋势,从而使得人们能够尽早地发现问题,或得到一个科学论断和标准。现在从童话回到现实中来。在软件领域,缺陷的趋势预测是预测技术应用较为广泛的领域之一,它是利用统计的手段来预测产品或解决方案中的遗留缺陷、测试阶段的单位时间内应当查出的缺陷等,因此对软件质量的提高和测试阶段的管理起着重要作用。

  在软件领域中,一条重要的原则就是“do it right the first time”。这条原则告诉软件行业的工作人员:应当在第一次就将事情做对。然而实际中的情况是,软件开发完成后总还是存在缺陷,所以才需要测试,才需要品质保证;考虑业务的复杂性、开发工具的更新、需求的不稳定性、开发人员的能力经验欠缺等因素,几乎不能在第一次就将事情完全的做对,取而代之的是不断的验证、测试、修改再确认,才能最终确保软件产品或服务的正确性。然而有一件事可以确定,某个软件系统中的缺陷数目应当是一定的,随着软件系统生命周期的推进,发现的缺陷数应当由少到多,再从多到少并趋近于零。那么,如果无法做到“第一次将事情做对”,也要“尽早将事情做对”,在缺陷可能带来巨大的风险之前,就将它“扼杀在摇篮里”。如果没有预测,不知道未来趋势,也就无法判断当前处于怎样的状态下,更无法知道,在当前阶段,是不是已经有缺陷遗留到了下一阶段。这一点其实很容易理解,本来需要在2周内每天完成30项任务,但第一周只完成了10项,那接下来的一周内就需要加班加点完成剩下的50项任务;如果未能完成,那就可能导致无法交付任务,带来足以让你后悔的结果。

成长曲线

  终于要介绍到预测方法啦。有了前面两篇文章的基础,大家应该都对预测有了认识。还是那句话,知道了要做什么,接下来就该想要“怎么做”。明白了预测的重要性,那就该去想想,怎么去预测?不过别心急,我们一步一步来,这篇文章会介绍预测工具的基础知识——成长曲线。

  什么是成长曲线?成长曲线就是描绘观测样本从初始阶段不断发展壮大所经历的全部过程的曲线。在软件领域的成长曲线的过程中,要观测的样本值会经历萌芽、发展、稳定等阶段。成长曲线在很多方面都有应用,比如在报纸上、经济类刊物上常常能看到的经济成长曲线、品牌成长曲线;再比如细心的妈妈都会把宝宝出生后的成长情况记录下来,绘成儿童成长曲线等等。

  在软件领域中同样有成长曲线,软件领域中的成长曲线反映了软件系统中的要观测的某个属性随着各种因素(如时间、成本等)变化发展的情况。成长曲线可以拟合事物发展的趋势,曲线拟合(Curve fitting)就是用连续曲线近似地刻画或比拟平面上离散的点表示的坐标之间的函数关系的一种数据处理方法。在数值分析中,曲线拟合就是用解析表达式逼近离散数据,即离散数据的公式化,就是选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。

  接着回到软件领域中的成长曲线上。对于一个系统来说,进入开发阶段后,开发人员每天都要完成一定量的代码行,而代码行的总数在项目计划阶段就应当是估算好的,那么,开发人员应当按照怎样的速度完成这些代码;已经完成了一部分代码后,能否判断出这样的速度是否合理、能否按期完成任务;前期完成过多代码可能会造成后期工作量太小,而前期完成太少代码又可能会带来后期的工作繁重。也许这时,你就会迫切需要一个工具来对开发人员的工作进行监控。进入测试阶段也是一样。所以这里提到的软件领域中的成长曲线的预测,就是针对软件的开发阶段和测试阶段的。再以测试为例,成长曲线能够反映缺陷从最初的测试出的缺陷较少,到中期不断发展增多,再到最终测出的缺陷数稳定不变的全部过程。成长曲线应当是连续的,它能够表示一段时间内事物持续发展的情况,能够表示事物在一个持续的时间段内发展的全过程。

  成长曲线有很多种形式。常见的线性曲线也可以看作是成长曲线的一种,只是在现实中,线性曲线的使用不如非线性曲线广泛。下面将几种常见的成长曲线归纳介绍,希望对大家的理解有所帮助。

  1、Rayleigh模型

  Rayleigh模型是Weibull分布的一种特殊形式,是一种常用的模型。Weibull分布最重要的一个特征是它的概率密度函数的尾部逐渐逼近0,但永远达不到0,在许多工程领域都使用了很多年。Rayleigh模型既可以对软件开发全生命周期进行预测,也可以仅对测试阶段的缺陷分布进行预测,得到所期望的时间间隔t与所发现缺陷的关系。对于成熟的组织,当项目周期、软件规模和缺陷密度已经确定时,就可以得到确定的缺陷分布曲线,并可以据此控制项目过程的缺陷率。如果项目进行中实际的缺陷值与预估的缺陷值有较大差别时,说明中间出现问题,需要加以控制。

  1)Rayleigh模型的函数形式

  Rayleigh模型的累积分布函数(CDF):F(t)=K*(1-exp^(-(t/c)^2));

  Rayleigh模型的概率密度函数(PDF):f(t)=2*K*t/(c^2)*( exp^(-(t/c)^2))。

  上面两个函数中,t是时间自变量,c是一个常量(c=2^(1/2)tm,tm是f(t)到达峰值对应的时间),K是曲线与坐标形成的面积(总缺陷数),也是我们要估计的参数。多年的预测经验得到缺陷在tm时间的比率(F(tm)/K)约等于0.4,即在f(t)到达最大值时,已出现的缺陷大约占总缺陷的40%。按照这个推导,在某一时间就可以估算出总的缺陷数以及具体的Rayleigh分布参数,从而将缺陷的计算过程简化。

  2)Rayleigh函数对应的图

图1 Rayleigh模型的CDF图

图2 Rayleigh模型的PDF图

  由图1——CDF图可以看出,累积密度最终趋近一个最大值(K);由图2——PDF图可以看出,缺陷随时间逐渐降低最终趋向于0。

)使用Rayleigh曲线来建模软件开发质量涉及两个假设:

  在开发过程中观察到的缺陷率与应用中的缺陷率成正比关系。对应于图1来说,也就是如果开发过程中观测到的缺陷率越高,CDF中图的幅度越高,K值越大;

  给定同样的错误植入率,假如更多的缺陷被发现并更早将其移出,那么在后期阶段遗留的缺陷就更少,应用领域的质量就更好。对应于图2来说,曲线与X、Y轴围成区域的面积是一定的(总的缺陷数是确定的),如果在前期移除较多缺陷,即曲线的峰值点前移,那么后期曲线的面积就会小,代表后期遗留的缺陷数减少。

  4)使用场景:收集数据应当越早越好;且需要持续的追踪缺陷数。

  5)优势:随时间信息的缺陷密度可预测,因此在测试阶段使得找到并验证缺陷的估计成为可能。

  6)Rayleigh模型没有考虑到变化调整的机制,所以可能会影响到缺陷的预测。

  2、指数模型

  指数模型是针对测试阶段,尤其是验收类测试阶段的缺陷分布的模型,其基本原理是在这个阶段出现的缺陷(或者失效模式,我们这里讨论的是缺陷)是整个产品可靠性的良好指证。它是Weibull系列的另一个特例。指数模型是许多其他可靠性增长模型的基础。指数模型可分为故障/失效计数模型(fault/failure count model)和失效间隔时间模型(time between failures model)。基本的指数模型的累积缺陷分布函数(CDF)为y=K*a*b^t,修正指数模型在基本指数模型曲线函数上加一个常数因子。

  1)指数模型的函数形式

  指数模型的累积缺陷分布函数(CDF):F(t)=K*(1-exp(-λ*t));

  指数模型的缺陷概率密度函数(PDF):f(t)=K*(λ*exp(-λ*t))。

  其中,t是时间,K是总缺陷数,λ与K是需要估计的两个参数。

  2)指数模型对应的函数图

图3 指数模型的CDF图

图4 指数模型的PDF图

2)指数模型的关键假设:测试工作量在测试阶段中是均匀的。

  3)使用:指数模型预测缺陷时是基于正式的测试阶段的数据的,因此它主要适用于这些阶段,最好在开发过程后期——例如最后的测试阶段。但在交付用户使用后,用户发现的缺陷模型,与交付用户之前的模型往往有很大差别,这是由于交付客户后影响客户的测试的不确定因素更多。

  4)优势:最简单最有用的模型之一,易于使用和实现。

  5)缺陷:假设测试的工作量在整个测试阶段是均匀的。

  3、NHPP模型(非齐次泊松过程模型)

  NHPP模型是对在给定间隔内观察到的故障数建模,它是指数模型的一个直接应用。

  1)NHPP模型的函数形式:其中,参数的含义与指数模型相同

  NHPP模型的累积缺陷分布函数(CDF):F(t)=K*(1-exp(-λ*t));

  NHPP模型的缺陷概率密度函数(PDF):f(t)=K*λ*c^(-λ*t)。

  2)NHPP模型对应的函数图:见指数模型

  3)由于NHPP模型是指数模型的应用,所以NHPP 模型的特征与指数模型的特征相同。

  4)缺陷:大多数NHPP模型都基于这样的假设:每个缺陷的严重性和被监测到的可能性相同,在排除一个缺陷时不引入另一个新的缺陷,但实际情况并非如此。缺陷之间是存在着关联关系的。

  4、S型可靠性增长模型

  S型增长模型是软件领域应用较为广泛的模型之一,下一篇,将会详细进行介绍。

  未完待续。。。

posted on 2011-11-04 15:17 顺其自然EVO 阅读(277) 评论(0)  编辑  收藏 所属分类: 测试学习专栏

<2011年11月>
303112345
6789101112
13141516171819
20212223242526
27282930123
45678910

导航

统计

常用链接

留言簿(55)

随笔分类

随笔档案

文章分类

文章档案

搜索

最新评论

阅读排行榜

评论排行榜