qileilove

blog已经转移至github,大家请访问 http://qaseven.github.io/

用python做测试实现高性能测试工具(3)—优化系统架构

  在上一篇中对代码进行了优化,离需求进了一步,但还是很大距离,代码进一步优化我也不知道怎么办了,不会高深的算法。只能从改进系统架构考虑。
  方案3: 改变系统架构
  在开始多进程之前,先简单说明一下python GIL, 之前自己对他也有些误解。因为python GIL的机制存在,同时运行的线程只有一个,但这个线程在不同时刻可以运行在不同的核上,这个调度是由操作系统完成的,如果你写个死循环,开的线程足够多,是可以把整个系统的CPU消耗干净的,此时你在Linux下通过top可以看到,us 占用的CPU不大,但sy占用的CPU会很大,CPU主要消耗在系统调度上了。下面是测试代码,大家可以试试。
import threading
class MultipleThread(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
def run(self):
while 1:
print "here"
for i in xrange(100):
multiple_thread=MultipleThread()
multiple_thread.start()
multiple_thread.join()
  既然因为GIL的存在,同时只能运行一个线程,那多线程可以提高效率,当然可以!开个3-4个线程可以明显的提高性能,大概能提高个2-3倍左右吧,但继续增加线程就是副作用了。
  系统多线程的系统架构:
  发送和接受都不存在瓶颈,主要瓶颈在在红线部分,decode和 encode部分。多线程改成多进程比较简单,工作量不大,只要把需要多进程共享的信息,由Queue改成multiprocessing.Queue()就可以了,把继承的DiameterMsgParser(threading.Thread)改成DiameterMsgParser(multiprocessing.Process),有个比较麻烦的是log的输出,python自带的logging模块在多进程下写同一个文件会引起混乱。这个在后面单独说明。
import multiprocessing
import logging
class Worker(multiprocessing.Process):
def __init__(self,mp_name,input_queue):
multiprocessing.Process.__init__(self,name=mp_name)
self.input_queue=input_queue
def run(self):
for i in xrange(100):
self.input_queue.put_nowait(i)
logging.debug("test "+str(i))
  多线程改成多进程后,在sunfire 4170 (16 core , 2.4G ) 上能支持到5000 meesages (双向), CPU占有率 30-40%,用的是标准的python2.7,因为在solaris上没安装成功pypy,所以在此机器上,我没有测试pypy对性能影响多大。但我在一个2核的linux机器上测试python和 pypy,在多进程的情况下的效率,pypy对效率的提升没有达到倍数的级别,没找到什么原因, 后面有CPU核数比较多的机器再测试下。
相关文章
用python做测试实现高性能测试工具(2)—优化代码

posted on 2014-01-06 14:00 顺其自然EVO 阅读(306) 评论(0)  编辑  收藏 所属分类: selenium and watir webdrivers 自动化测试学习


只有注册用户登录后才能发表评论。


网站导航:
 
<2014年1月>
2930311234
567891011
12131415161718
19202122232425
2627282930311
2345678

导航

统计

常用链接

留言簿(55)

随笔分类

随笔档案

文章分类

文章档案

搜索

最新评论

阅读排行榜

评论排行榜