$ iperf -s ------------------------------------------------------------ Server listening on TCP port 5001 TCP window size: 85.3 KByte (default) ------------------------------------------------------------ [ 4] local 127.0.0.1 port 5001 connected with 127.0.0.1 port 35589 [ ID] Interval Transfer Bandwidth [ 4] 0.0-10.0 sec 26.3 GBytes 22.6 Gbits/sec $ iperf -c 127.0.0.1 ------------------------------------------------------------ Client connecting to 127.0.0.1, TCP port 5001 TCP window size: 49.5 KByte (default) ------------------------------------------------------------ [ 3] local 127.0.0.1 port 35589 connected with 127.0.0.1 port 5001 [ ID] Interval Transfer Bandwidth [ 3] 0.0-10.0 sec 26.3 GBytes 22.6 Gbits/sec |
iperf测试案例介绍
4. iperf主要参数
iperf中的可选参数比较多,具体可以参见其用户手册。
http://webfolder.wirelessleiden.nl/iperf/
一般来说,我们在做性能测试的时候需要指定包长,不同的包长会得到不同的吞吐量,通过-l指定,而使用-b指定带宽。
5. 测试吞吐量,抖动和丢包率
如何需要同时测试以上三个参数,那么只能通过UDP获得。使用-u参数进行UDP测试(iperf默认为TCP)。
在测试的最后server端会给出一个报告。
[ 3] local 192.168.1.1 port 2152 connected with 192.168.101.2 port 56768 [ ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams [ 3] 0.0- 1.0 sec 1.40 MBytes 11.7 Mbits/sec 0.069 ms 0/14671 (0%) [ 3] 1.0- 2.0 sec 1.40 MBytes 11.8 Mbits/sec 0.050 ms 0/14703 (0%) [ 3] 2.0- 3.0 sec 1.40 MBytes 11.8 Mbits/sec 0.052 ms 0/14708 (0%) [ 3] 3.0- 4.0 sec 1.40 MBytes 11.8 Mbits/sec 0.057 ms 0/14704 (0%) [ 3] 4.0- 5.0 sec 1.40 MBytes 11.8 Mbits/sec 0.072 ms 0/14706 (0%) [ 3] 5.0- 6.0 sec 1.40 MBytes 11.8 Mbits/sec 0.075 ms 0/14705 (0%) [ 3] 6.0- 7.0 sec 1.40 MBytes 11.8 Mbits/sec 0.060 ms 0/14707 (0%) [ 3] 7.0- 8.0 sec 1.40 MBytes 11.8 Mbits/sec 0.073 ms 0/14703 (0%) [ 3] 8.0- 9.0 sec 1.40 MBytes 11.8 Mbits/sec 0.073 ms 0/14706 (0%) [ 3] 0.0-10.0 sec 14.0 MBytes 11.8 Mbits/sec 0.064 ms 0/147020 (0%) |
要获得带宽数据,需要不断在client端增加带宽值,直到server端出现轻微的丢包为止,此时server端显示的带宽就是被测系统的吞吐量。
6. 测试时延
那么有朋友会问,iperf不能用来测试时延,而时延又是比较重要的QOS参数,有什么办法吗?
其实最简单的办法就是使用Ping程序。我们经常用它来测试特定主机能否通过IP到达,
程序会按时间和反应成功的次数,估计丢包率和分组来回时间(即网络时延)。
当然,如果我们能成功构造一个回环测试路径,那么测试时延就轻而易举了,我们可以使用iperf发送数据,同时结合tcpdump抓包工具,经过wireshark分析.cap文件就可以得出包来回时间,也就是往返时延。
7. 使用TCP测试带宽应注意的问题
有时候,我们需要使用TCP来测试网络带宽。这里有一个参数需要特别注意,那就是TCP窗口大小,可以使用-w参数指定。
网络通道的容量capacity = bandwidth * round-trip time
而理论TCP窗口的大小就是网络通道的容量。
比如,网络带宽为40Mbit/s,回环路径消耗时间是2ms,那么TCP的窗口大小不小于40Mbit/s×2ms = 80kbit = 10Kbytes
此时我们可以查询iperf默认的TCP窗口大小来决定是否需要设置此参数,在此例中,窗口大小应设计大于10Kbytes,当然,这仅仅是理论值,在实际测试中可能需要作出调整。
参数说明
-s 以server模式启动,eg:iperf -s
-c 以client模式启动,host是server端地址,eg:iperf -c 222.35.11.23
通用参数
-f [k|m|K|M] 分别表示以Kbits, Mbits, KBytes, MBytes显示报告,默认以Mbits为单位,eg:iperf -c 222.35.11.23 -f K
-i sec 以秒为单位显示报告间隔,eg:iperf -c 222.35.11.23 -i 2
iperf是client端向server端发送数据
server端显示的是接收速率,最好加i参数,进行速率跟踪
client 显示的是发送速率
server 显示接收速率
-l 缓冲区大小,默认是8KB,eg:iperf -c 222.35.11.23 -l 16
可以使用不同的包长,进行测试
-m 显示tcp最大mtu值
-o 将报告和错误信息输出到文件eg:iperf -c 222.35.11.23 -o c:iperflog.txt
-p 指定服务器端使用的端口或客户端所连接的端口eg:iperf -s -p 9999;iperf -c 222.35.11.23 -p 9999
-u 使用udp协议
测试htb的时候最好用udp,udp通信开销小,测试的带宽更准确
-w 指定TCP窗口大小,默认是8KB
如果窗口太小,有可能丢包
-B 绑定一个主机地址或接口(当主机有多个地址或接口时使用该参数)
-C 兼容旧版本(当server端和client端版本不一样时使用)
-M 设定TCP数据包的最大mtu值
-N 设定TCP不延时
-V 传输ipv6数据包
server专用参数
-D 以服务方式运行ipserf,eg:iperf -s -D
-R 停止iperf服务,针对-D,eg:iperf -s -R
client端专用参数
-d 同时进行双向传输测试
-n 指定传输的字节数,eg:iperf -c 222.35.11.23 -n 100000
-r 单独进行双向传输测试
-b 指定发送带宽,默认是1Mbit/s
在测试qos的时候,这是最有用的参数。
-t 测试时间,默认10秒,eg:iperf -c 222.35.11.23 -t 5
默认是10s
-F 指定需要传输的文件
-T 指定ttl值
测试实例:
使用:
此软件需要安装到两端需要互测的机器上,然后一段作为服务端监听,一端作为客户端连接。具体命令可以iperf -h 查看下。
服务端:
iperf -s -u
-s 标记此端为服务端
-u标记自己为UDP监听
-p 指定自己监听端口
客户端:
iperf -c 1.1.1.1 -i 1 -u -t 60 -F /root/a.zip -P 5
-c标记自己为客户端
-i 设定输出值间隔
-u使用传输协议为UDP
-t 设定测试时间为60秒
-F 指定传输文件(该项可有可无)
-P 指定进程数,如果设置为5,那么也就相当与对端建立五个连接
注意事项:
1.发包测试需要分为UDP测试与TCP测试,其中服务端需要用-u命令去区分监听协议。
2.TCP协议测试不能计算出时延与丢包率,而且还不能指定发送带宽。
案例:
[root@localhost ~]# iperf -c 192.168.1.100 -u -i 1 -t 10 -b 2M #指定2M带宽向对端发送数据 ------------------------------------------------------------ Client connecting to 192.168.1.100, UDP port 5001 Sending 1470 byte datagrams UDP buffer size: 108 KByte (default) ------------------------------------------------------------ [ 3] local 192.200.40.112 port 32784 connected with 218.60.1.20 port 5001 #与对端连接上的信息 [ ID] Interval Transfer Bandwidth #输出行的解释 [ 3] 0.0- 1.0 sec 12.0 GBytes 103 Gbits/sec [ 3] 1.0- 2.0 sec 244 KBytes 2.00 Mbits/sec [ 3] 2.0- 3.0 sec 244 KBytes 2.00 Mbits/sec [ 3] 3.0- 4.0 sec 244 KBytes 2.00 Mbits/sec [ 3] 4.0- 5.0 sec 244 KBytes 2.00 Mbits/sec [ 3] 5.0- 6.0 sec 245 KBytes 2.01 Mbits/sec [ 3] 6.0- 7.0 sec 244 KBytes 2.00 Mbits/sec [ 3] 7.0- 8.0 sec 244 KBytes 2.00 Mbits/sec [ 3] 8.0- 9.0 sec 244 KBytes 2.00 Mbits/sec [ 3] 9.0-10.0 sec 244 KBytes 2.00 Mbits/sec [ 3] 0.0-10.0 sec 12.0 GBytes 10.3 Gbits/sec [ 3] Sent 1702 datagrams [ 3] Server Report: #输出报告 [ 3] 0.0-10.6 sec 263 KBytes 204 Kbits/sec 36.313 ms 1518/ 1701 (89%) #间距 ,传输总字节,速率,时延,丢包率。 [ 3] 0.0-10.6 sec 1 datagrams received out-of-order #乱序 |
服务端:
[root@localhost ~]# iperf -s -u #设定此端为服务端 ------------------------------------------------------------ #本段设置信息 Server listening on UDP port 5001 Receiving 1470 byte datagrams UDP buffer size: 108 KByte (default) ------------------------------------------------------------ [ 3] local 218.60.1.20 port 5001 connected with 218.241.145.36 port 32784 #如果对端连接上了本端才会出现该信息 [ ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams [ 3] 0.0-10.6 sec 263 KBytes 204 Kbits/sec 36.314 ms 1518/ 1701 (89%) [ 3] 0.0-10.6 sec 1 datagrams received out-of-order |
iPerf同样也可以用于测量UDP数据包吞吐量、丢包和延迟指标。与TCP测试不同的是,UDP测试不采取尽可能快地发送流量的方式。与之相对的是,iPerf尝试发送1 Mbps的流量,这个流量是打包在1470字节的UDP数据包中(成为以太网的一帧)。我们可以通过指定一个目标带宽参数来增加数据量,单位可以是Kbps 或Mbps(-b #K 或 --b #M)。举例如下:
测量UDP丢包和延迟
然而,上面的例子只说明了iPerf客户端能够以多快的速度传输数据。为了得到更多关于UDP发送的数据,我们必须查看服务器上的结果:
测量UDP丢包和延迟
这样,我们就可以看到吞吐量(间隔1秒测量的),以及丢包数(丢失的数据屯接收到的数据对比)和延迟(如jitter——在连续传输中的平滑平均值差)。延迟和丢失可以通过应用的改变而被兼容。比如,视频流媒体通过缓冲输入而能够容忍更多的延迟,而语音通讯则随着延迟增长性能下降明显。
UDP测试可以通过改变报文缓冲长度进行优化,长度单位为Kbytes 或 Mbytes(-l #K or #M)。与以太网帧的1500比特的MTU(最大转换单位)不同的是,802.11数据帧可以达到2304比特(在加密之前)。
但是,如果你正在测试的路径中包括Ethernet和802.11,那么要控制你的测试数据包长度,使它在一个Ethernet帧以内,以避免分片。
另一个有趣的iPerf UDP测试选项是服务类型(Type of Service, ToS),它的大小范围从0x10 (最小延迟) 到0x2 (最少费用)。在使用802.11e来控制服务质量的WLAN中,ToS是映射在Wi-Fi多媒体(WMM)存取范畴的。
对比两种方式
在802.11a/b/g网络中,无线电的传输性能变化在在两个方向上都很相似。比如,当距离导致数据传输率下降或干扰造成重要数据包丢失时,发送和接收的应用吞吐量都受到影响。
在802.11n网络中,MIMO天线和多维空间流使问题又有所不同。从笔记本发送到AP上的数据帧可能(有意地)使用一个完全与从AP发送到笔记本上帧时不同的空间路径。这样的结果是,现在对两个方向的测试都很重要的。幸运的是,iPerf本身就已经拥有这个功能,这是由两个选项所控制的:
--d选项是用于告诉iPerf服务器马上连接回iPerf客户端的由--L 所指定端口,以支持同时测试两个方向的传输。
--r选项虽然有些类似,但是它是告诉iPerf服务器等到客户端测试完成后再在相反的方向中重复之前的测试。
最后,如果你需要支持多点传送应用,那么可以使用-B选项指定多点传送组IP地址来启动多个iPerf服务器。然后再打开你的iPerf客户端,连接之前启动的多点传送组iPerf服务器。
使用测试工具iPerf监控无线网络性能:图形化测试结果
如本文介绍的,iPerf程序可以在命令行下运行,它或者也在一个名为JPerf的Java实现前端工具上运行。JPerf不仅能简化复杂命令行参数的构造,而且它还保存测试结果——同时实时图形化显示结果。
图1 使用JPerf运行iPerf
事实上,iPerf测试工具被嵌入到一些其它的网络流量分析工具中——包括底层LAN分析工具,如AirMagnet。比如,在下面的屏幕截图中显示了一个Wi-Fi笔记本上运行的AirMagnet作为iPerf客户端与安装在有线网络上的常规iPerf服务器进行交互的情况。
图2 使用AirMagnet运行iPerf
总结
正如我们所看到的,iPerf简化了对基于TCP数据流应用和UDP数据包应用的端对端性能测定。然而,iPerf仍然无法模拟所有类型的应用——比如,对于交互式上网的模拟就不是很好。同时,用于iPerf Wi-Fi测试的WLAN适配器也会影响你的测试——为了获得更好的测试结果,我们可以配置一个类似于“实际”用户的有代表性的适配器。
尽管如此,iPerf仍然是一个非常方便的工具,它可以帮助你生成和检测WLAN应用流量。同时,因为iPerf可以方便以开源软件方式获取,因此使用它来在其它位置重复创建测试环境是一个很好的方法——如分公司、供应商技术支持等等。想要了解更多关于iPerf的信息,可以阅读NLANR上的更老的文件或者浏览SourceForge上新的项目页面。