Feng.Li's Java See

抓紧时间,大步向前。
随笔 - 95, 文章 - 4, 评论 - 58, 引用 - 0
数据加载中……

计算几何算法总集

 

计算几何算法总集

#include<stdio.h>

#include<math.h>

struct Point{

       double x,y;

};

int dblcmp(double d)

{

    if(fabs(d)<0.000000001)return 0;

    return (d>0)?1:-1;

}

double det(double x1,double y1,double x2,double y2)

{ return x1*y2-x2*y1;}

double cross(Point a,Point b,Point c)

{//叉积 

       return det(b.x-a.x, b.y-a.y, c.x-a.x, c.y-a.y);

}

int xycmp(double p,double mini,double maxi)

{ return dblcmp(p-mini)*dblcmp(p-maxi);}

double min(double a,double b)

{ if(a<b)return a; else return b;}

double max(double a,double b)

{   if(a>b)return a; else return b;}

int betweencmp(Point a,Point b,Point c )

{//abc重合时为0

 //abc内部 时为-1

 //abc外部 时为 1

   if( fabs(b.x-c.x)>fabs(b.y-c.y))

      return xycmp(a.x,min(b.x,c.x),max(b.x,c.x));

   else

      return xycmp(a.x,min(b.y,c.y),max(b.y,c.y));

}

int segscross(Point a,Point b,Point c,Point d,Point &p)

{// 线段 ab ,cd 规范相交返回 1 ,并求交点 P ; 不规范相交返回 2 ;没有交点返回 0

   double s1,s2,s3,s4;

   int d1,d2,d3,d4;

   d1=dblcmp(s1=cross(a,b,c));

   d2=dblcmp(s2=cross(a,b,d));

   d3=dblcmp(s3=cross(c,d,a));

   d4=dblcmp(s4=cross(c,d,b));

   if( ((d1^d2)==-2) && ((d3^d4)==-2))

   {

      p.x=(c.x*s2-d.x*s1)/(s2-s1);

      p.y=(c.y*s2-d.y*s1)/(s2-s1);

      return 1;

   }

   if( ((d1==0)&& (betweencmp(c,a,b)<=0)) ||

        ((d2==0)&& (betweencmp(d,a,b)<=0)) ||

        ((d3==0)&& (betweencmp(a,c,d)<=0)) ||

        ((d4==0)&& (betweencmp(b,c,d)<=0)) )

        return 2;

    return 0;

}

double area(Point a,Point b)

{ return a.x*b.y-a.y*b.x;}

double areas(Point A[],int n)

{// n 个点的面积   A中的点按逆时针方向存放

 //多边形是任意的凸或凹多边形,

   double re=0;

   int i;

   if(n<3)return 0;

   for(i=0;i<n;i++)

      re+=area(A[i],A[(i+1)%n]);

   re=fabs(re/2);

}

void MidPoint(Point A[],int n,Point &p)

{//求多边形的重心 A中的点按逆时针方向存放

     int i;

     double areass,px=0,py=0,tem;

     areass=areas(A, n);

     for(i=0;i<n;i++)

     { tem=area(A[i],A[(i+1)%n]);

        px+=tem*(A[i].x+A[(i+1)%n].x);

        py+=tem*(A[i].y+A[(i+1)%n].y);

     }

     p.x=fabs(px)/(6*areass);

     p.y=fabs(py)/(6*areass);

}

int main()

{

   Point a,b,c,d,p;

   Point   A[10000];

   int n;

   a.x=0;a.y=0;

   b.x=1;b.y=1;

   c.x=0;c.y=2;

   d.x=3;d.y=0;

   int i=segscross(a,b,c,d,p);

   printf("%d"n%lf %lf"n",i,p.x,p.y);

   while(1);

}

//另一版本

#include <stdlib.h>

#define infinity 1e20

#define EP 1e-10

struct TPoint{

       float x,y;

       };

struct TLineSeg{

       TPoint a,b;

};

//求平面上两点之间的距离

float distance(TPoint p1,TPoint p2)

{

       return(sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)));

}

/********************************************************

 返回(P1-P0)*(P2-P0)的叉积。

 若结果为正,则<P0,P1><P0,P2>的顺时针方向;

 若为0<P0,P1><P0,P2>共线;

 若为负则<P0,P1><P0,P2>的在逆时针方向;

 可以根据这个函数确定两条线段在交点处的转向,

 比如确定p0p1p1p2p1处是左转还是右转,只要求

 (p2-p0)*(p1-p0),若<0则左转,>0则右转,=0则共线

*********************************************************/

float multiply(TPoint p1,TPoint p2,TPoint p0)

{

       return((p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y)); 

}

//确定两条线段是否相交

int intersect(TLineSeg u,TLineSeg v)

{

       return( (max(u.a.x,u.b.x)>=min(v.a.x,v.b.x))&&

               (max(v.a.x,v.b.x)>=min(u.a.x,u.b.x))&&

               (max(u.a.y,u.b.y)>=min(v.a.y,v.b.y))&&

               (max(v.a.y,v.b.y)>=min(u.a.y,u.b.y))&&

               (multiply(v.a,u.b,u.a)*multiply(u.b,v.b,u.a)>=0)&&

               (multiply(u.a,v.b,v.a)*multiply(v.b,u.b,v.a)>=0));

}

//判断点p是否在线段l

int online(TLineSeg l,TPoint p)

{

       return( (multiply(l.b,p,l.a)==0)&&( ((p.x-l.a.x)*(p.x-l.b.x)<0 )||( (p.y-l.a.y)*(p.y-l.b.y)<0 )) );

}

//判断两个点是否相等

int Euqal_Point(TPoint p1,TPoint p2)

{

return((abs(p1.x-p2.x)<EP)&&(abs(p1.y-p2.y)<EP));

}

//一种线段相交判断函数,当且仅当u,v相交并且交点不是u,v的端点时函数为true;

int intersect_A(TLineSeg u,TLineSeg v)

{

       return((intersect(u,v))&&

              (!Euqal_Point(u.a,v.a))&&

              (!Euqal_Point(u.a,v.b))&&

              (!Euqal_Point(u.b,v.a))&&

              (!Euqal_Point(u.b,v.b)));

}

/*===============================================

   判断点q是否在多边形Polygon内,

   其中多边形是任意的凸或凹多边形,

   Polygon中存放多边形的逆时针顶点序列

================================================*/

int InsidePolygon(int vcount,TPoint Polygon[],TPoint q)

{

       int c=0,i,n;

       TLineSeg l1,l2;

             

       l1.a=q;

       l1.b=q;

       l1.b.x=infinity;

       n=vcount;

       for (i=0;i<vcount;i++)

       {

              l2.a=Polygon[i];

              l2.b=Polygon[(i+1)%n];

              if ( (intersect_A(l1,l2))||

                    (

                      (online(l1,Polygon[(i+1)%n]))&&

                      (

                       (!online(l1,Polygon[(i+2)%n]))&&

                      (multiply(Polygon[i],Polygon[(i+1)%n],l1.a)*multiply(Polygon[(i+1)%n],Polygon[(i+2)%n],l1.a)>0)

                       ||

                       (online(l1,Polygon[(i+2)%n]))&&

                       (multiply(Polygon[i],Polygon[(i+2)%n],l1.a)*multiply(Polygon[(i+2)%n],Polygon[(i+3)%n],l1.a)>0)          

                      )

                    )

                 ) c++;

              }

              return(c%2!=0);

}

/********************************************"

*      计算多边形的面积                        *

*                                            *

*     要求按照逆时针方向输入多边形顶点           *

*     可以是凸多边形或凹多边形                  *

"********************************************/

float area_of_polygon(int vcount,float x[],float y[])

{

 int i;

 float s;

 if (vcount<3) return 0;

 s=y[0]*(x[vcount-1]-x[1]);

 for (i=1;i<vcount;i++)

     s+=y[i]*(x[(i-1)]-x[(i+1)%vcount]);

 return s/2;

}

void Graham_scan(TPoint PointSet[],TPoint ch[],int n,int &len)

{//寻找凸包 graham 扫描法

       int i,j,k=0,top=2;

       TPoint tmp;

      

       //选取PointSety坐标最小的点PointSet[k],如果这样的点右多个,则取最左边的一个

       for(i=1;i<n;i++)

              if ((PointSet[i].y<PointSet[k].y)||((PointSet[i].y==PointSet[k].y)&&(PointSet[i].x<PointSet[k].x)))

           k=i;

       tmp=PointSet[0];

       PointSet[0]=PointSet[k];

       PointSet[k]=tmp; //现在PointSety坐标最小的点在PointSet[0]

//对顶点按照相对PointSet[0]的极角从小到大进行排序,极角相同的按照距离PointSet[0]从近到远进行排序

       for (i=1;i<n-1;i++)

              {     k=i;

                     for (j=i+1;j<n;j++)

                            if ( (multiply(PointSet[j],PointSet[k],PointSet[0])>0)

                                 ||

                                 ( (multiply(PointSet[j],PointSet[k],PointSet[0])==0)

                                  &&(distance(PointSet[0],PointSet[j])<distance(PointSet[0],PointSet[k])) )

                               ) k=j;

                     tmp=PointSet[i];

                     PointSet[i]=PointSet[k];

                     PointSet[k]=tmp;

              }

       ch[0]=PointSet[0];

       ch[1]=PointSet[1];

       ch[2]=PointSet[2];

       for (i=3;i<n;i++)

              {

                     while (multiply(PointSet[i],ch[top],ch[top-1])>=0) top--;

                     ch[++top]=PointSet[i];

                     }

       len=top+1;

}

////////////////////////////////////////////////////////////////////////////

const eps=1e-8;

struct TPoint{

   double x,y;

};

struct TLine{

//表示一个直线 a,b,c是参数 a*x+b*y+c=0;

   double a,b,c;

};

struct TCircle{

//表示圆

   double r;

   TPoint Centre;

};

//三角形描述

typedef TPoint [3] TTriangle //////////////////////////////

bool same(double x,double y)

{ return fabs(x-y)<eps ? 1:0;}

double distance(TPoint p1,TPoint p2)

{ return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y) )}

TLine lineFromSegment(TPoint p1,TPoint p2)

{//求两点形成的直线

   TPoint tem;

   tem.a=p2.y-p1.y;

   tem.b=p1.x-p2.x;

   tem.c=2*p1.x*p1.y-p1.x*p2.y+p2.x*p1.y;

   return tem;

}

double triangleArea(TTriangle t)

{//三角形面积 

 return abs(t[0].x*t[1].y+t[1].x*t[2].y+t[2].x*t[0].y-t[1].x*t[0].y-t[2].x*t[1].y-t[0].x*t[2].y)/2;

}

TCircle circumcirlceOfTriangle(TTringle t)

{//三角形的外接圆

   TCircle tem;

   double a,b,c,c1,c2;

   double xa,ya.xb,yb,xc,yc;

   a=distance(t[0],t[1]);

   b=distance(t[1],t[2]);

   b=distance(t[0],t[2]);

   tem.r=a*b*c/triangleArea(t)/4;

   xa=t[0].x;ya=t[0].y;

   xb=t[1].x;yb=t[1].y;

   xc=t[2].x;yc=t[2].y;

   c1=(xa*xa+ya*ya-xb*xb-yb*yb)/2;

   c2=(xa*xa+ya*ya-xc*xc-yc*yc)/2;

   tem.centre.x=(c1*(ya-yc)-c2*(ya-yb))/((xa-xb)*(ya-yc)-(xa-xc)*(ya-yb));

   tem.centre.y=(c1*(xa-xc)-c2*(xa-xb))/((ya-yb)*(xa-xc)-(ya-yc)*(xa-xb));

   return tem;

}

TCircle incircleOfTriangle(TTriangle t)

{//三角形的内接圆

   TCircle tem;

   double a,b,c,angleA,angleB,angleC,p,p2,p3,f1,f2;

   double xa,ya,xb,yb,xc,yc;

   a=distance(t[0],t[1]);

   b=distance(t[1],t[2]);

   c=distance(t[2],t[0]);

   tem.r=2*triangleArea(t)/(a+b+c);

   angleA=arccos((b*b+c*c-a*a)/(2*b*c));

   angleB=arccos((a*a+c*c-b*b)/(2*a*c));

   angleC=arccos((b*b+a*a-c*c)/(2*b*c));

   p=sin(angleA/2.0);

   p2=sin(angleB/2.0);

   p3=sin(angleC/2.0);

   xa=t[0].x;ya=t[0].y;

   xb=t[1].x;yb=t[1].y;

   xc=t[2].x;yc=t[2].y;

   f1=((tem.r/p2)*(tem.r/p2)-(tem.r/p)*(tem.r/p)+xa*xa-xb*xb+ya*ya-yb*yb)/2;

   f1=((tem.r/p3)*(tem.r/p3)-(tem.r/p)*(tem.r/p)+xa*xa-xc*xc+ya*ya-yc*yc)/2;

   tem.centre.x=(f1*(ya-yc)-f2*(ya-yb))/((xa-xb)*(ya-yc)-(xa-xc)*(ya-yb));

   tem.centre.y=(f1*(xa-xc)-f2*(xa-xb))/((ya-yb)*(xa-xc)-(ya-yc)*(xa-xb));

   return tem;

}

bool isPointInTriangle(TPoint p,TTriangle t)

{//判断点是否在三角形内 

   TTriangle tem;

   double area;

   int i,j;

   area=0;

   for(i=0;i<=2;i++)

   {

      for(j=0;j<=2;j++)

      {

         if(i==j)tem[j]=p;

         else tem[j]=T[j];

      }

      area+=triangleArea(tem);

   }

   return same(area,triangleArea(t));

}

TPoint symmetricalPointofLine(TPoint p,TLine L)

{//求点p 关于直线 L 的对称点

   TPoint p2;

   double d;

   d=L.a*L.a+L.b*L.b;

   p2.x=(L.b*L.b*p.x-L.a*L.a*p.x-2*L.a*L.b*p.y-2*L.a*L.c)/d;

   p2.y=(L.a*L.a*p.y-L.b*L.b*p.y-2*L.a*L.b*p.x-2*L.b*L.c)/d;

   return p2;

}

                        平面点集最接近对算法(完全正确)

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

struct POINT

{

   double x,y;

}X[50005];

struct A_POINT

{

   bool operator <= (A_POINT a) const

    {     return (y <= a.y); }

   int p;

   double x,y;

};

int cmp1(const void *a,const void *b)

{

    POINT *c,*d;c=(POINT *)a;d=(POINT *)b;

    return c->x>d->x? 1 :-1 ;

}

int cmp2(const void *a,const void *b)

{

    A_POINT *c,*d;c=(A_POINT *)a;d=(A_POINT *)b;

    return c->y>d->y? 1 :-1 ;

}

double dist(POINT a,POINT b)

{

       double dx=a.x-b.x,dy=a.y-b.y;

       return sqrt(dx*dx+dy*dy);

}

double distY(A_POINT a,A_POINT b)

{

       double dx=a.x-b.x,dy=a.y-b.y;

       return sqrt(dx*dx+dy*dy);

}

template <class Type>

void Merge(Type Y[], Type Z[], int l, int m, int r)

{// [l : m] [m + 1 : r]

    Type *a = &Z[l];

    Type *b = &Z[m + 1];

    Type *c = &Y[l];

    int anum = m-l+1, ap = 0;

    int bnum = r-m, bp = 0;

    int cnum = r-l+1, cp = 0;

    while (ap < anum && bp < bnum)

    {

        if (a[ap] <= b[bp])

        {   c[cp++] = a[ap++];}

        else

        {    c[cp++] = b[bp++];}

    }

    while (ap < anum)

    {   c[cp++] = a[ap++]; }

    while (bp < bnum)

   {    c[cp++] = b[bp++];}

}

void closest(POINT X[], A_POINT Y[], A_POINT Z[], int l, int r,

             POINT &a, POINT &b, double &d)

{

    if ((r-l)== 1) // two node

    {

        a = X[l]; b = X[r];d = dist(X[l], X[r]);

        return;

    } 

    if ((r-l)== 2)

    {

        double d1 = dist(X[l], X[l + 1]);

        double d2 = dist(X[l + 1], X[r]);

        double d3 = dist(X[l], X[r]);      

        if (d1 <= d2 && d1 <= d3)

        {   a = X[l]; b = X[l + 1]; d = d1; }

        else if (d2 <= d3)

        {   a = X[l + 1]; b = X[r]; d = d2; }

        else

        { a = X[l]; b = X[r]; d = d3;}

        return;

    }

    int mid = (l + r) / 2;

    int f = l;

    int g = mid + 1;

    int i;

    for (i=l; i<=r; i++)

    {

        if (Y[i].p > mid)

       { Z[g++] = Y[i]; }

        else

        { Z[f++] = Y[i]; }

    }

    closest(X, Z, Y, l, mid, a, b, d);

    double dr; POINT ar, br;

    closest(X, Z, Y, mid+1, r, ar, br, dr);

    if (dr < d)

    {   a = ar; b = br; d = dr;}

    Merge(Y, Z, l, mid, r); // 重构数组Y

    int k = l;

    for (i=l; i<=r; i++)

    {

        if (fabs(Y[mid].x - Y[i].x) < d)

        {   Z[k++] = Y[i]; }

    } 

    int j;

    for (i=l; i<k; i++)

    {

        for (j=i+1; j<k && Z[j].y-Z[i].y<d; j++)

        {

            double dp = distY(Z[i], Z[j]);

            if (dp < d)

            {   d = dp; a = X[Z[i].p]; b = X[Z[j].p];}

        }

    }

}

bool closest_Pair(POINT X[], int n, POINT &a, POINT &b,double &d)

{

    if (n < 2) return false; 

    qsort(X,n,sizeof(X[0]),cmp1);

    A_POINT *Y = new A_POINT[n];

    int i;

    for (i=0; i<n; i++)

    {

        Y[i].p = i; // 同一点在数组X中的坐标

        Y[i].x = X[i].x;

        Y[i].y = X[i].y;

    }

    qsort(Y,n,sizeof(Y[0]),cmp2);

    A_POINT *Z = new A_POINT[n];

    closest(X, Y, Z, 0, n - 1, a, b, d);

    delete []Y;

    delete []Z;

    return true;

}

int main()

    int n;

    POINT a, b;

    double d;

    while(1)

    {

       scanf("%d",&n);

       for(int i=0;i<n;i++)

         scanf("%lf%lf",&X[i].x,&X[i].y);

       closest_Pair(X,n,a,b,d);

       printf("%lf",d);

    }

}

                        平面点集最接远对算法(完全正确)

#include<stdio.h>

#include<math.h>

#define M 50009

const double INF=1E200;

const double EP=1E-10;

#define PI acos(-1)

/*基本几何数据结构*/

//(x,y)

struct POINT

{   int x,y; };

// 返回两点之间欧氏距离

double distance(POINT p1, POINT p2)

{   return sqrt( (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y)); }

inline int sqd(POINT a,POINT b)

{//距离平方

       return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);

}

//叉积就是2向量形成的平行四边形的面积

double multiply(POINT sp,POINT ep,POINT op)

{      return((sp.x-op.x)*(ep.y-op.y)-(ep.x-op.x)*(sp.y-op.y)); }

int partition(POINT a[],int p,int r)

{

   int i=p,j=r+1,k;

   double ang,dis;

   POINT R,S;

   k=(p+r)/2;//防止快排退化

   R=a[p];  a[p]=a[k]; a[k]=R; R=a[p];

   dis=distance(R,a[0]);

   while(1)

   {

      while(1)

      {

         ++i;

         if(i>r)

         {   i=r; break; }

         ang=multiply(R,a[i],a[0]);

         if(ang>0)

            break;

         else if(ang==0)

         {   if(distance(a[i],a[0])>dis)     break; }

      }

      while(1)

      {   --j;

         if(j<p)

         {   j=p;   break; }

         ang=multiply(R,a[j],a[0]);

         if(ang<0)   break;

         else if(ang==0)

         {   if(distance(a[j],a[0])<dis)    break; }

      }

      if(i>=j)break;

      S=a[i]; a[i]=a[j]; a[j]=S;

   }

a[p]=a[j]; a[j]=R; return j;

}

void anglesort(POINT a[],int p,int r)

{

   if(p<r)

   {

      int q=partition(a,p,r);

      anglesort(a,p,q-1);

      anglesort(a,q+1,r);

   }

}

void Graham_scan(POINT PointSet[],POINT ch[],int n,int &len)

{

      int i,k=0,top=2;

      POINT tmp;

      // 选取PointSety坐标最小的点PointSet[k],如果这样的点有多个,则取最左边的一个

      for(i=1;i<n;i++)

            if ( PointSet[i].y<PointSet[k].y ||

            (PointSet[i].y==PointSet[k].y) && (PointSet[i].x<PointSet[k].x) )

               k=i;

      tmp=PointSet[0];

      PointSet[0]=PointSet[k];

      PointSet[k]=tmp; // 现在PointSety坐标最小的点在PointSet[0]

      /* 对顶点按照相对PointSet[0]的极角从小到大进行排序,极角相同

                  的按照距离PointSet[0]从近到远进行排序 */

      anglesort(PointSet,1,n-1);

               ch[0]=PointSet[0];

               ch[1]=PointSet[1];

               ch[2]=PointSet[2];

               for (i=3;i<n;i++)

                  {

                     while (multiply(PointSet[i],ch[top],ch[top-1])>=0) top--;

                     ch[++top]=PointSet[i];

                  }

               len=top+1;

}

int main()

{

   POINT a[M],b[M];

   int n,i,l;

   double x,y;

   scanf("%d",&n);

   for(i=0;i<n;i++)scanf("%d%d",&a[i].x,&a[i].y);

   Graham_scan(a,b,n,l);

   int max=0;

       for(int i=0;i<l;i++)for(int j=i+1;j<l;j++)

       {

              int tmp=sqd(b[i],b[j]);

              if(max<tmp)max=tmp;

       }

       printf("%d"n",max);

   //while(1);

return 0;

}

                                凸包算法(nlogn)

#include<stdio.h>

#include<math.h>

#define M 50009

const double INF=1E200;

const double EP=1E-10;

#define PI acos(-1)

/*基本几何数据结构*/

//(x,y)

struct POINT

{   int x,y; };

// 返回两点之间欧氏距离

double distance(POINT p1, POINT p2)

{   return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)); }

inline int sqd(POINT a,POINT b)

{     return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);}

//叉积就是2向量形成的平行四边形的面积

double multiply(POINT sp,POINT ep,POINT op)

{   return((sp.x-op.x)*(ep.y-op.y)-(ep.x-op.x)*(sp.y-op.y)); }

int partition(POINT a[],int p,int r)

{

   int i=p,j=r+1,k;

   double ang,dis;

   POINT R,S;

   k=(p+r)/2;//防止快排退化

   R=a[p]; a[p]=a[k]; a[k]=R; R=a[p];

   dis=distance(R,a[0]);

   while(1)

   {

      while(1)

      {

         ++i;

         if(i>r)

         { i=r; break; }

         ang=multiply(R,a[i],a[0]);

         if(ang>0)   break;

         else if(ang==0)

         { if(distance(a[i],a[0])>dis)   break; }

      }

      while(1)

      {

         --j;

         if(j<p)

         {   j=p; break;   }

         ang=multiply(R,a[j],a[0]);

         if(ang<0) break;

         else if(ang==0)

         { if(distance(a[j],a[0])<dis) break; }

      }

      if(i>=j)break;

      S=a[i]; a[i]=a[j]; a[j]=S;

   }

a[p]=a[j]; a[j]=R; return j;

}

void anglesort(POINT a[],int p,int r)

{

   if(p<r)

   {

      int q=partition(a,p,r);

      anglesort(a,p,q-1);

      anglesort(a,q+1,r);

   }

}

void Graham_scan(POINT PointSet[],POINT ch[],int n,int &len)

{

      int i,k=0,top=2;

      POINT tmp;

      // 选取PointSety坐标最小的点PointSet[k],如果这样的点有多个,则取最左边的一个

      for(i=1;i<n;i++)

            if ( PointSet[i].y<PointSet[k].y ||

            (PointSet[i].y==PointSet[k].y) && (PointSet[i].x<PointSet[k].x) )

               k=i;

      tmp=PointSet[0];

      PointSet[0]=PointSet[k];

      PointSet[k]=tmp; // 现在PointSety坐标最小的点在PointSet[0]

      /* 对顶点按照相对PointSet[0]的极角从小到大进行排序,极角相同

                  的按照距离PointSet[0]从近到远进行排序 */

      anglesort(PointSet,1,n-1);

               ch[0]=PointSet[0];

               ch[1]=PointSet[1];

               ch[2]=PointSet[2];

               for (i=3;i<n;i++)

                  {

                     while (multiply(PointSet[i],ch[top],ch[top-1])>=0) top--;

                     ch[++top]=PointSet[i];

                  }

               len=top+1;

}

int main()

{

   POINT a[M],b[M];

   int n,i,l;

   double x,y;

   scanf("%d",&n);

   for(i=0;i<n;i++)scanf("%d%d",&a[i].x,&a[i].y);

   Graham_scan(a,b,n,l);

   int max=0;

       for(int i=0;i<l;i++)

    for(int j=i+1;j<l;j++)

       {

              int tmp=sqd(b[i],b[j]);

              if(max<tmp)max=tmp;

       }

       printf("%d"n",max);

   //while(1);

return 0;

}

posted on 2007-09-07 15:32 小锋 阅读(1072) 评论(0)  编辑  收藏 所属分类: algorithm


只有注册用户登录后才能发表评论。


网站导航: