2009年9月23日
#
一、POI概述
Apache POI是Apache软件基金会的开放源码函式库,POI提供API给Java程序对Microsoft Office格式档案读和写的功能。
结构:
HSSF - 提供读写Microsoft Excel格式档案的功能。
XSSF - 提供读写Microsoft Excel OOXML格式档案的功能。
HWPF - 提供读写Microsoft Word格式档案的功能。
HSLF - 提供读写Microsoft PowerPoint格式档案的功能。
HDGF - 提供读写Microsoft Visio格式档案的功能。
使用必须引入依赖
org.apache.poi
poi
3.17
注:3.17版本是支持jdk6的最后版本
二、HSSF概况
HSSF 是Horrible SpreadSheet Format的缩写,通过HSSF,你可以用纯Java代码来读取、写入、修改Excel文件。HSSF 为读取操作提供了两类API:usermodel和eventusermodel,即“用户模型”和“事件-用户模型”。
三、 POI EXCEL文档结构类
HSSFWorkbook excel文档对象
HSSFSheet excel的sheet
HSSFRow excel的行
HSSFCell excel的单元格
HSSFFont excel字体
HSSFName 名称
HSSFDataFormat 日期格式
HSSFHeader sheet头
HSSFFooter sheet尾
HSSFCellStyle cell样式
HSSFDateUtil 日期
HSSFPrintSetup 打印
HSSFErrorConstants 错误信息表
四、EXCEL的读写操作
1、读取“区域数据.xls”并储存于list集合中,“区域数据.xls”如下图
public List
importXLS(){
ArrayList
list = new ArrayList<>();
try {
//1、获取文件输入流
InputStream inputStream = new FileInputStream("/Users/Shared/区域数据.xls");
//2、获取Excel工作簿对象
HSSFWorkbook workbook = new HSSFWorkbook(inputStream);
//3、得到Excel工作表对象
HSSFSheet sheetAt = workbook.getSheetAt(0);
//4、循环读取表格数据
for (Row row : sheetAt) {
//首行(即表头)不读取
if (row.getRowNum() == 0) {
continue;
}
//读取当前行中单元格数据,索引从0开始
String areaNum = row.getCell(0).getStringCellValue();
String province = row.getCell(1).getStringCellValue();
String city = row.getCell(2).getStringCellValue();
String district = row.getCell(3).getStringCellValue();
String postcode = row.getCell(4).getStringCellValue();
Area area = new Area();
area.setCity(city);
area.setDistrict(district);
area.setProvince(province);
area.setPostCode(postcode);
list.add(area);
}
//5、关闭流
workbook.close();
} catch (IOException e) {
e.printStackTrace();
}
return list;
}
2、导出数据到“区域数据.xls”文件中,页面数据如下图:
public void exportExcel() throws IOException {
Page
page = areaService.pageQuery(null);
List
list = page.getContent();
//1.在内存中创建一个excel文件
HSSFWorkbook hssfWorkbook = new HSSFWorkbook();
//2.创建工作簿
HSSFSheet sheet = hssfWorkbook.createSheet();
//3.创建标题行
HSSFRow titlerRow = sheet.createRow(0);
titlerRow.createCell(0).setCellValue("省");
titlerRow.createCell(1).setCellValue("市");
titlerRow.createCell(2).setCellValue("区");
titlerRow.createCell(3).setCellValue("邮编");
titlerRow.createCell(4).setCellValue("简码");
titlerRow.createCell(5).setCellValue("城市编码");
//4.遍历数据,创建数据行
for (Area area : list) {
//获取最后一行的行号
int lastRowNum = sheet.getLastRowNum();
HSSFRow dataRow = sheet.createRow(lastRowNum + 1);
dataRow.createCell(0).setCellValue(area.getProvince());
dataRow.createCell(1).setCellValue(area.getCity());
dataRow.createCell(2).setCellValue(area.getDistrict());
dataRow.createCell(3).setCellValue(area.getPostcode());
dataRow.createCell(4).setCellValue(area.getShortcode());
dataRow.createCell(5).setCellValue(area.getCitycode());
}
//5.创建文件名
String fileName = "区域数据统计.xls";
//6.获取输出流对象
HttpServletResponse response = ServletActionContext.getResponse();
ServletOutputStream outputStream = response.getOutputStream();
//7.获取mimeType
ServletContext servletContext = ServletActionContext.getServletContext();
String mimeType = servletContext.getMimeType(fileName);
//8.获取浏览器信息,对文件名进行重新编码
HttpServletRequest request = ServletActionContext.getRequest();
fileName = FileUtils.filenameEncoding(fileName, request);
//9.设置信息头
response.setContentType(mimeType);
response.setHeader("Content-Disposition","attachment;filename="+fileName);
//10.写出文件,关闭流
hssfWorkbook.write(outputStream);
hssfWorkbook.close();
}
工具类
public class FileUtils {
public static String filenameEncoding(String filename, HttpServletRequest request) throws IOException {
String agent = request.getHeader("User-Agent"); //获取浏览器
if (agent.contains("Firefox")) {
BASE64Encoder base64Encoder = new BASE64Encoder();
filename = "=?utf-8?B?"
+ base64Encoder.encode(filename.getBytes("utf-8"))
+ "?=";
} else if(agent.contains("MSIE")) {
filename = URLEncoder.encode(filename, "utf-8");
} else if(agent.contains ("Safari")) {
filename = new String (filename.getBytes ("utf-8"),"ISO8859-1");
} else {
filename = URLEncoder.encode(filename, "utf-8");
}
return filename;
}
}
写出xls文件:
五、 EXCEL常用操作方法
1、 得到Excel常用对象
POIFSFileSystem fs=newPOIFSFileSystem(new FileInputStream("d:/test.xls"));
//得到Excel工作簿对象
HSSFWorkbook wb = new HSSFWorkbook(fs);
//得到Excel工作表对象
HSSFSheet sheet = wb.getSheetAt(0);
//得到Excel工作表的行
HSSFRow row = sheet.getRow(i);
//得到Excel工作表指定行的单元格
HSSFCell cell = row.getCell((short) j);
cellStyle = cell.getCellStyle();//得到单元格样式
2、建立Excel常用对象
HSSFWorkbook wb = new HSSFWorkbook();//创建Excel工作簿对象
HSSFSheet sheet = wb.createSheet("new sheet");//创建Excel工作表对象
HSSFRow row = sheet.createRow((short)0); //创建Excel工作表的行
cellStyle = wb.createCellStyle();//创建单元格样式
row.createCell((short)0).setCellStyle(cellStyle); //创建Excel工作表指定行的单元格
row.createCell((short)0).setCellValue(1); //设置Excel工作表的值
3、设置sheet名称和单元格内容
wb.setSheetName(1, "第一张工作表",HSSFCell.ENCODING_UTF_16);
cell.setEncoding((short) 1);
cell.setCellValue("单元格内容");
4、取得sheet的数目
wb.getNumberOfSheets()
5、 根据index取得sheet对象
HSSFSheet sheet = wb.getSheetAt(0);
6、取得有效的行数
int rowcount = sheet.getLastRowNum();
7、取得一行的有效单元格个数
row.getLastCellNum();
8、单元格值类型读写
cell.setCellType(HSSFCell.CELL_TYPE_STRING); //设置单元格为STRING类型
cell.getNumericCellValue();//读取为数值类型的单元格内容
9、设置列宽、行高
sheet.setColumnWidth((short)column,(short)width);
row.setHeight((short)height);
10、添加区域,合并单元格
Region region = new Region((short)rowFrom,(short)columnFrom,(short)rowTo
,(short)columnTo);//合并从第rowFrom行columnFrom列
sheet.addMergedRegion(region);// 到rowTo行columnTo的区域
//得到所有区域
sheet.getNumMergedRegions()
11、保存Excel文件
FileOutputStream fileOut = new FileOutputStream(path);
wb.write(fileOut);
12、根据单元格不同属性返回字符串数值
public String getCellStringValue(HSSFCell cell) {
String cellValue = "";
switch (cell.getCellType()) {
case HSSFCell.CELL_TYPE_STRING://字符串类型
cellValue = cell.getStringCellValue();
if(cellValue.trim().equals("")||cellValue.trim().length()<=0)
cellValue=" ";
break;
case HSSFCell.CELL_TYPE_NUMERIC: //数值类型
cellValue = String.valueOf(cell.getNumericCellValue());
break;
case HSSFCell.CELL_TYPE_FORMULA: //公式
cell.setCellType(HSSFCell.CELL_TYPE_NUMERIC);
cellValue = String.valueOf(cell.getNumericCellValue());
break;
case HSSFCell.CELL_TYPE_BLANK:
cellValue=" ";
break;
case HSSFCell.CELL_TYPE_BOOLEAN:
break;
case HSSFCell.CELL_TYPE_ERROR:
break;
default:
break;
}
return cellValue;
}
13、常用单元格边框格式
HSSFCellStyle style = wb.createCellStyle();
style.setBorderBottom(HSSFCellStyle.BORDER_DOTTED);//下边框
style.setBorderLeft(HSSFCellStyle.BORDER_DOTTED);//左边框
style.setBorderRight(HSSFCellStyle.BORDER_THIN);//右边框
style.setBorderTop(HSSFCellStyle.BORDER_THIN);//上边框
14、设置字体和内容位置
HSSFFont f = wb.createFont();
f.setFontHeightInPoints((short) 11);//字号
f.setBoldweight(HSSFFont.BOLDWEIGHT_NORMAL);//加粗
style.setFont(f);
style.setAlignment(HSSFCellStyle.ALIGN_CENTER);//左右居中
style.setVerticalAlignment(HSSFCellStyle.VERTICAL_CENTER);//上下居中
style.setRotation(short rotation);//单元格内容的旋转的角度
HSSFDataFormat df = wb.createDataFormat();
style1.setDataFormat(df.getFormat("0.00%"));//设置单元格数据格式
cell.setCellFormula(string);//给单元格设公式
style.setRotation(short rotation);//单元格内容的旋转的角度
15、插入图片
//先把读进来的图片放到一个ByteArrayOutputStream中,以便产生ByteArray
ByteArrayOutputStream byteArrayOut = new ByteArrayOutputStream();
BufferedImage bufferImg = ImageIO.read(new File("ok.jpg"));
ImageIO.write(bufferImg,"jpg",byteArrayOut);
//读进一个excel模版
FileInputStream fos = new FileInputStream(filePathName+"/stencil.xlt");
fs = new POIFSFileSystem(fos);
//创建一个工作薄
HSSFWorkbook wb = new HSSFWorkbook(fs);
HSSFSheet sheet = wb.getSheetAt(0);
HSSFPatriarch patriarch = sheet.createDrawingPatriarch();
HSSFClientAnchor anchor = new HSSFClientAnchor(0,0,1023,255,(short) 0,0,(short)10,10);
patriarch.createPicture(anchor , wb.addPicture(byteArrayOut.toByteArray(),HSSFWorkbook.PICTURE_TYPE_JPEG));
16、调整工作表位置
HSSFWorkbook wb = new HSSFWorkbook();
HSSFSheet sheet = wb.createSheet("format sheet");
HSSFPrintSetup ps = sheet.getPrintSetup();
sheet.setAutobreaks(true);
ps.setFitHeight((short)1);
ps.setFitWidth((short)1);
1、在学习从文件读取数据中,写了个示例代码,读取不在同一个目录的file.txt,运行后报这个Python OSError: [Errno 22] Invalid argument:错误:
(1)、首先,在F盘的python_stu中新增了一个file.txt,同时在F盘的python_stu文件目录底下新增一个file文件夹,里面有个file_reader.py来读取python_stu文件目录底下的file.txt,代码分别如下:
file.txt:
测试
测试2
测试3
file_reader.py:
with open('F:\python_stu\file.txt') as file_obj:
contents = file_obj.read();
print(contents.rstrip());
(2)、运行后报错:
(3)、出现这种错误的原因是由于读取不到这个文件,看Traceback报的错误,最后一行,很明显读取不到file.txt,前面的F:\\python_stu没错,后面的名称怎么变了,还是x0cile.txt。
(4)、解决办法,可修改上述第一行代码为:
with open('F:\python_stu/file.txt') as file_obj:
或者:
with open('F:/python_stu/file.txt') as file_obj:
或者:
with open('F://python_stu//file.txt') as file_obj:
又或者:
with open('F:\\python_stu\\file.txt') as file_obj:
还有一些我就不附上了,上面第一种方式不统一,最好不要用,用统一的方式,而且有时候还有注意一些转义字符,比如 \t,\n也会导致报错。
前面学习了使用命令hdfs haadmin -failover手动进行故障转移,在该模式下,即使现役NameNode已经失效,系统也不会自动从现役NameNode转移到待机NameNode,下面学习如何配置部署HA自动进行故障转移。自动故障转移为HDFS部署增加了两个新组件:ZooKeeper和ZKFailoverController(ZKFC)进程。ZooKeeper是维护少量协调数据,通知客户端这些数据的改变和监视客户端故障的高可用服务。HA的自动故障转移依赖于ZooKeeper的以下功能:
- 故障检测:集群中的每个NameNode在ZooKeeper中维护了一个持久会话,如果机器崩溃,ZooKeeper中的会话将终止,ZooKeeper通知另一个NameNode需要触发故障转移。
- 现役NameNode选择:ZooKeeper提供了一个简单的机制用于唯一的选择一个节点为active状态。如果目前现役NameNode崩溃,另一个节点可能从ZooKeeper获得特殊的排外锁以表明它应该成为现役NameNode。
ZKFC是自动故障转移中的另一个新组件,是ZooKeeper的客户端,也监视和管理NameNode的状态。每个运行NameNode的主机也运行了一个ZKFC进程,ZKFC负责:
- 健康监测:ZKFC使用一个健康检查命令定期地ping与之在相同主机的NameNode,只要该NameNode及时地回复健康状态,ZKFC认为该节点是健康的。如果该节点崩溃,冻结或进入不健康状态,健康监测器标识该节点为非健康的。
- ZooKeeper会话管理:当本地NameNode是健康的,ZKFC保持一个在ZooKeeper中打开的会话。如果本地NameNode处于active状态,ZKFC也保持一个特殊的znode锁,该锁使用了ZooKeeper对短暂节点的支持,如果会话终止,锁节点将自动删除。
- 基于ZooKeeper的选择:如果本地NameNode是健康的,且ZKFC发现没有其它的节点当前持有znode锁,它将为自己获取该锁。如果成功,则它已经赢得了选择,并负责运行故障转移进程以使它的本地NameNode为active。故障转移进城与前面描述的手动故障转移相似,首先如果必要保护之前的现役NameNode,然后本地NameNode转换为active状态。
在典型部署中,ZooKeeper守护进程运行在三个或者五个节点上,但由于ZooKeeper本身需要较少的资源,所以将ZooKeeper部署在与现役NameNode和待机NameNode相同的主机上,还可以将ZooKeeper部署到与YARN的ResourceManager相同的节点上。建议配置ZooKeeper将数据存储在与HDFS元数据不同的硬盘上以得到最好的性能和隔离性。在配置自动故障转移之前需要先停掉集群,目前在集群运行时还不可能将手动故障转移的安装转换为自动故障转移的安装。接下来看看如何配置HA的自动故障转移。首先在hdfs-site.xml中添加下面的参数,该参数的值默认为false:
- <property>
- <name>dfs.ha.automatic-failover.enabled</name>
- <value>true</value>
- </property>
在core-site.xml文件中添加下面的参数,该参数的值为ZooKeeper服务器的地址,ZKFC将使用该地址。
- <property>
- <name>ha.zookeeper.quorum</name> <value>zk1.example.com:2181,zk2.example.com:2181,zk3.example.com:2181</value>
- </property>
在HA或者HDFS联盟中,上面的两个参数还需要以NameServiceID为后缀,比如dfs.ha.automatic-failover.enabled.mycluster。除了上面的两个参数外,还有其它几个参数用于自动故障转移,比如ha.zookeeper.session-timeout.ms,但对于大多数安装来说都不是必须的。
在添加了上述的配置参数后,下一步就是在ZooKeeper中初始化要求的状态,可以在任一NameNode中运行下面的命令实现该目的,该命令将在ZooKeeper中创建znode:
在启用自动故障转移的集群中,start-dfs.sh脚本将在任何运行NameNode的主机上自动启动ZKFC守护进程,一旦ZKFC启动完毕,它们将自动选择一个NameNode为现役NameNode。如果手动管理集群中的服务,需要在每台运行NameNode的主机上手动启动ZKFC,命令为:
- hadoop-daemon.sh start zkfc
- hdfs zkfc
如果正在运行一个安全的集群,可能想确保存储在ZooKeeper中的信息也是安全的,这将阻止恶意的客户端修改ZooKeeper中的元数据或者潜在地触发一个错误的故障转移。为了保护ZooKeeper中的信息,首先在core-site.xml中添加下面的参数:
- <property>
- <name>ha.zookeeper.auth</name>
- <value>@/path/to/zk-auth.txt</value>
- </property>
- <property>
- <name>ha.zookeeper.acl</name>
- <value>@/path/to/zk-acl.txt</value>
- </property>
参数值中的@字符表示参数值保存在@后的硬盘文件中。第一个配置文件指定了ZooKeeper的认证列表,其格式与ZK CLI使用的相同,例如:digest:hdfs-zkfcs:mypassword,其中hdfs-zkfcs为ZooKeeper的用户名,mypassword为密码。其次使用下面的命令为该认证生成一个ZooKeeper访问控制列表:
- $ java -cp $ZK_HOME/lib/*:$ZK_HOME/zookeeper-3.4.2.jar org.apache.zookeeper.server.auth.DigestAuthenticationProvider hdfs-zkfcs:mypassword
- output: hdfs-zkfcs:mypassword->hdfs-zkfcs:P/OQvnYyU/nF/mGYvB/xurX8dYs=
拷贝->之后的字符串并添加digest:前缀,然后粘贴到zk-acls.txt中,例如:digest:hdfs-zkfcs:vlUvLnd8MlacsE80rDuu6ONESbM=:rwcda。要想使ACLs生效,需要再次运行zkfc –formatZK。最后可能像下面这样在ZK CLI中验证ACLs:
- [zk: localhost:2181(CONNECTED) 1] getAcl /hadoop-ha
- 'digest,'hdfs-zkfcs:vlUvLnd8MlacsE80rDuu6ONESbM=
- : cdrwa
在安装完成自动故障转移后,或许需要测试一下。首先定位现役NameNode,可以通过访问NameNode的web页面来确定哪个NameNode是active状态的。一旦确定了处于active状态的NameNode,就需要在该节点上制造点故障,比如使用命令kill -9 <pid of NN>模拟JVM崩溃,或重启主机或拔掉网线来模拟不同的中断。一旦触发了自动故障转移,另一个NameNode应该自动在几秒钟内变为active状态。检测到故障并触发故障转移由参数ha.zookeeper.session-timeout.ms控制,该参数为与core-site.xml中,默认为5秒。如果测试不成功,可能是配置问题,检查ZKFC和NameNode进程的日志以进一步诊断问题,通常错误都是很明显的。
理想情况下,我们应用对Yarn资源的请求应该立刻得到满足,但现实情况资源往往是有限的,特别是在一个很繁忙的集群,一个应用资源的请求经常需要等待一段时间才能的到相应的资源。在Yarn中,负责给应用分配资源的就是Scheduler。其实调度本身就是一个难题,很难找到一个完美的策略可以解决所有的应用场景。为此,Yarn提供了多种调度器和可配置的策略供我们选择。
一、调度器的选择
在Yarn中有三种调度器可以选择:FIFO Scheduler
,Capacity Scheduler
,FairS cheduler
。
FIFO Scheduler
把应用按提交的顺序排成一个队列,这是一个先进先出队列,在进行资源分配的时候,先给队列中最头上的应用进行分配资源,待最头上的应用需求满足后再给下一个分配,以此类推。
FIFO Scheduler
是最简单也是最容易理解的调度器,也不需要任何配置,但它并不适用于共享集群。大的应用可能会占用所有集群资源,这就导致其它应用被阻塞。在共享集群中,更适合采用Capacity Scheduler
或Fair Scheduler
,这两个调度器都允许大任务和小任务在提交的同时获得一定的系统资源。
下面“Yarn调度器对比图”展示了这几个调度器的区别,从图中可以看出,在FIFO 调度器中,小任务会被大任务阻塞。
而对于Capacity调度器,有一个专门的队列用来运行小任务,但是为小任务专门设置一个队列会预先占用一定的集群资源,这就导致大任务的执行时间会落后于使用FIFO调度器时的时间。
在Fair调度器中,我们不需要预先占用一定的系统资源,Fair调度器会为所有运行的job动态的调整系统资源。如下图所示,当第一个大job提交时,只有这一个job在运行,此时它获得了所有集群资源;当第二个小任务提交后,Fair调度器会分配一半资源给这个小任务,让这两个任务公平的共享集群资源。
需要注意的是,在下图Fair调度器中,从第二个任务提交到获得资源会有一定的延迟,因为它需要等待第一个任务释放占用的Container。小任务执行完成之后也会释放自己占用的资源,大任务又获得了全部的系统资源。最终的效果就是Fair调度器即得到了高的资源利用率又能保证小任务及时完成。
Yarn调度器对比图:
二、Capacity Scheduler(容器调度器)的配置
2.1 容器调度介绍
Capacity 调度器允许多个组织共享整个集群,每个组织可以获得集群的一部分计算能力。通过为每个组织分配专门的队列,然后再为每个队列分配一定的集群资源,这样整个集群就可以通过设置多个队列的方式给多个组织提供服务了。除此之外,队列内部又可以垂直划分,这样一个组织内部的多个成员就可以共享这个队列资源了,在一个队列内部,资源的调度是采用的是先进先出(FIFO)策略。
通过上面那幅图,我们已经知道一个job可能使用不了整个队列的资源。然而如果这个队列中运行多个job,如果这个队列的资源够用,那么就分配给这些job,如果这个队列的资源不够用了呢?其实Capacity调度器仍可能分配额外的资源给这个队列,这就是“弹性队列”(queue elasticity)的概念。
在正常的操作中,Capacity调度器不会强制释放Container,当一个队列资源不够用时,这个队列只能获得其它队列释放后的Container资源。当然,我们可以为队列设置一个最大资源使用量,以免这个队列过多的占用空闲资源,导致其它队列无法使用这些空闲资源,这就是”弹性队列”需要权衡的地方。
2.2 容器调度的配置
假设我们有如下层次的队列:
root ├── prod └── dev ├── eng └── science
下面是一个简单的Capacity调度器的配置文件,文件名为capacity-scheduler.xml
。在这个配置中,在root队列下面定义了两个子队列prod
和dev
,分别占40%和60%的容量。需要注意,一个队列的配置是通过属性yarn.sheduler.capacity.<queue-path>.<sub-property>
指定的,<queue-path>
代表的是队列的继承树,如root.prod
队列,<sub-property>
一般指capacity
和maximum-capacity
。
我们可以看到,dev
队列又被分成了eng
和science
两个相同容量的子队列。dev
的maximum-capacity
属性被设置成了75%,所以即使prod
队列完全空闲dev
也不会占用全部集群资源,也就是说,prod
队列仍有25%的可用资源用来应急。我们注意到,eng
和science
两个队列没有设置maximum-capacity
属性,也就是说eng
或science
队列中的job可能会用到整个dev
队列的所有资源(最多为集群的75%)。而类似的,prod
由于没有设置maximum-capacity属性,它有可能会占用集群全部资源。
Capacity容器除了可以配置队列及其容量外,我们还可以配置一个用户或应用可以分配的最大资源数量、可以同时运行多少应用、队列的ACL认证等。
2.3 队列的设置
关于队列的设置,这取决于我们具体的应用。比如,在MapReduce中,我们可以通过mapreduce.job.queuename
属性指定要用的队列。如果队列不存在,我们在提交任务时就会收到错误。如果我们没有定义任何队列,所有的应用将会放在一个default
队列中。
注意:对于Capacity调度器,我们的队列名必须是队列树中的最后一部分,如果我们使用队列树则不会被识别。比如,在上面配置中,我们使用prod
和eng
作为队列名是可以的,但是如果我们用root.dev.eng
或者dev.eng
是无效的。
三、Fair Scheduler(公平调度器)的配置
3.1 公平调度
Fair调度器的设计目标是为所有的应用分配公平的资源(对公平的定义可以通过参数来设置)。在上面的“Yarn调度器对比图”展示了一个队列中两个应用的公平调度;当然,公平调度在也可以在多个队列间工作。举个例子,假设有两个用户A和B,他们分别拥有一个队列。当A启动一个job而B没有任务时,A会获得全部集群资源;当B启动一个job后,A的job会继续运行,不过一会儿之后两个任务会各自获得一半的集群资源。如果此时B再启动第二个job并且其它job还在运行,则它将会和B的第一个job共享B这个队列的资源,也就是B的两个job会用于四分之一的集群资源,而A的job仍然用于集群一半的资源,结果就是资源最终在两个用户之间平等的共享。过程如下图所示:
3.2 启用Fair Scheduler
调度器的使用是通过yarn-site.xml
配置文件中的yarn.resourcemanager.scheduler.class
参数进行配置的,默认采用Capacity Scheduler调度器。如果我们要使用Fair调度器,需要在这个参数上配置FairScheduler类的全限定名: org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler
。
3.3 队列的配置
Fair调度器的配置文件位于类路径下的fair-scheduler.xml
文件中,这个路径可以通过yarn.scheduler.fair.allocation.file
属性进行修改。若没有这个配置文件,Fair调度器采用的分配策略,这个策略和3.1节介绍的类似:调度器会在用户提交第一个应用时为其自动创建一个队列,队列的名字就是用户名,所有的应用都会被分配到相应的用户队列中。
我们可以在配置文件中配置每一个队列,并且可以像Capacity 调度器一样分层次配置队列。比如,参考capacity-scheduler.xml
来配置fair-scheduler:
队列的层次是通过嵌套<queue>
元素实现的。所有的队列都是root
队列的孩子,即使我们没有配到<root>
元素里。在这个配置中,我们把dev
队列有分成了eng
和science
两个队列。
Fair调度器中的队列有一个权重属性(这个权重就是对公平的定义),并把这个属性作为公平调度的依据。在这个例子中,当调度器分配集群40:60
资源给prod
和dev
时便视作公平,eng
和science
队列没有定义权重,则会被平均分配。这里的权重并不是百分比,我们把上面的40和60分别替换成2和3,效果也是一样的。注意,对于在没有配置文件时按用户自动创建的队列,它们仍有权重并且权重值为1。
每个队列内部仍可以有不同的调度策略。队列的默认调度策略可以通过顶级元素<defaultQueueSchedulingPolicy>
进行配置,如果没有配置,默认采用公平调度。
尽管是Fair调度器,其仍支持在队列级别进行FIFO调度。每个队列的调度策略可以被其内部的<schedulingPolicy>
元素覆盖,在上面这个例子中,prod
队列就被指定采用FIFO进行调度,所以,对于提交到prod
队列的任务就可以按照FIFO规则顺序的执行了。需要注意,prod
和dev
之间的调度仍然是公平调度,同样eng
和science
也是公平调度。
尽管上面的配置中没有展示,每个队列仍可配置最大、最小资源占用数和最大可运行的应用的数量。
3.4 队列的设置
Fair调度器采用了一套基于规则的系统来确定应用应该放到哪个队列。在上面的例子中,<queuePlacementPolicy>
元素定义了一个规则列表,其中的每个规则会被逐个尝试直到匹配成功。例如,上例第一个规则specified
,则会把应用放到它指定的队列中,若这个应用没有指定队列名或队列名不存在,则说明不匹配这个规则,然后尝试下一个规则。primaryGroup
规则会尝试把应用放在以用户所在的Unix组名命名的队列中,如果没有这个队列,不创建队列转而尝试下一个规则。当前面所有规则不满足时,则触发default
规则,把应用放在dev.eng
队列中。
当然,我们可以不配置queuePlacementPolicy
规则,调度器则默认采用如下规则:
<queuePlacementPolicy> <rule name="specified" /> <rule name="user" /> </queuePlacementPolicy>
上面规则可以归结成一句话,除非队列被准确的定义,否则会以用户名为队列名创建队列。
还有一个简单的配置策略可以使得所有的应用放入同一个队列(default),这样就可以让所有应用之间平等共享集群而不是在用户之间。这个配置的定义如下:
<queuePlacementPolicy> <rule name="default" /> </queuePlacementPolicy>
实现上面功能我们还可以不使用配置文件,直接设置yarn.scheduler.fair.user-as-default-queue=false
,这样应用便会被放入default 队列,而不是各个用户名队列。另外,我们还可以设置yarn.scheduler.fair.allow-undeclared-pools=false
,这样用户就无法创建队列了。
3.5 抢占(Preemption)
当一个job提交到一个繁忙集群中的空队列时,job并不会马上执行,而是阻塞直到正在运行的job释放系统资源。为了使提交job的执行时间更具预测性(可以设置等待的超时时间),Fair调度器支持抢占。
抢占就是允许调度器杀掉占用超过其应占份额资源队列的containers,这些containers资源便可被分配到应该享有这些份额资源的队列中。需要注意抢占会降低集群的执行效率,因为被终止的containers需要被重新执行。
可以通过设置一个全局的参数yarn.scheduler.fair.preemption=true
来启用抢占功能。此外,还有两个参数用来控制抢占的过期时间(这两个参数默认没有配置,需要至少配置一个来允许抢占Container):
- minimum share preemption timeout - fair share preemption timeout
如果队列在minimum share preemption timeout
指定的时间内未获得最小的资源保障,调度器就会抢占containers。我们可以通过配置文件中的顶级元素<defaultMinSharePreemptionTimeout>
为所有队列配置这个超时时间;我们还可以在<queue>
元素内配置<minSharePreemptionTimeout>
元素来为某个队列指定超时时间。
与之类似,如果队列在fair share preemption timeout
指定时间内未获得平等的资源的一半(这个比例可以配置),调度器则会进行抢占containers。这个超时时间可以通过顶级元素<defaultFairSharePreemptionTimeout>
和元素级元素<fairSharePreemptionTimeout>
分别配置所有队列和某个队列的超时时间。上面提到的比例可以通过<defaultFairSharePreemptionThreshold>
(配置所有队列)和<fairSharePreemptionThreshold>
(配置某个队列)进行配置,默认是0.5。
在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显。主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些Counters得出的平均值,而由于数据倾斜的原因造成map处理数据量的差异过大,使得这些平均值能代表的价值降低。Hive的执行是分阶段的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个reduce中,就是解决数据倾斜的根本所在。规避错误来更好的运行比解决错误更高效。在查看了一些资料后,总结如下。
1数据倾斜的原因
1.1操作:
关键词 | 情形 | 后果 |
Join | 其中一个表较小, 但是key集中 | 分发到某一个或几个Reduce上的数据远高于平均值 |
大表与大表,但是分桶的判断字段0值或空值过多 | 这些空值都由一个reduce处理,灰常慢 |
group by | group by 维度过小, 某值的数量过多 | 处理某值的reduce灰常耗时 |
Count Distinct | 某特殊值过多 | 处理此特殊值的reduce耗时 |
1.2原因:
1)、key分布不均匀
2)、业务数据本身的特性
3)、建表时考虑不周
4)、某些SQL语句本身就有数据倾斜
1.3表现:
任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。
单一reduce的记录数与平均记录数差异过大,通常可能达到3倍甚至更多。 最长时长远大于平均时长。
2数据倾斜的解决方案
2.1参数调节:
hive.map.aggr=true
Map 端部分聚合,相当于Combiner
hive.groupby.skewindata=true
有数据倾斜的时候进行负载均衡,当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。
2.2 SQL语句调节:
如何Join:
关于驱动表的选取,选用join key分布最均匀的表作为驱动表
做好列裁剪和filter操作,以达到两表做join的时候,数据量相对变小的效果。
大小表Join:
使用map join让小的维度表(1000条以下的记录条数) 先进内存。在map端完成reduce.
大表Join大表:
把空值的key变成一个字符串加上随机数,把倾斜的数据分到不同的reduce上,由于null值关联不上,处理后并不影响最终结果。
count distinct大量相同特殊值
count distinct时,将值为空的情况单独处理,如果是计算count distinct,可以不用处理,直接过滤,在最后结果中加1。如果还有其他计算,需要进行group by,可以先将值为空的记录单独处理,再和其他计算结果进行union。
group by维度过小:
采用sum() group by的方式来替换count(distinct)完成计算。
特殊情况特殊处理:
在业务逻辑优化效果的不大情况下,有些时候是可以将倾斜的数据单独拿出来处理。最后union回去。
3典型的业务场景
3.1空值产生的数据倾斜
场景:如日志中,常会有信息丢失的问题,比如日志中的 user_id,如果取其中的 user_id 和 用户表中的user_id 关联,会碰到数据倾斜的问题。
解决方法1: user_id为空的不参与关联(红色字体为修改后)
select * from log a join users b on a.user_id is not null and a.user_id = b.user_id union all select * from log a where a.user_id is null;
解决方法2 :赋与空值分新的key值
select * from log a left outer join users b on case when a.user_id is null then concat(‘hive’,rand() ) else a.user_id end = b.user_id;
结论:方法2比方法1效率更好,不但io少了,而且作业数也少了。解决方法1中 log读取两次,jobs是2。解决方法2 job数是1 。这个优化适合无效 id (比如 -99 , ’’, null 等) 产生的倾斜问题。把空值的 key 变成一个字符串加上随机数,就能把倾斜的数据分到不同的reduce上 ,解决数据倾斜问题。
3.2不同数据类型关联产生数据倾斜
场景:用户表中user_id字段为int,log表中user_id字段既有string类型也有int类型。当按照user_id进行两个表的Join操作时,默认的Hash操作会按int型的id来进行分配,这样会导致所有string类型id的记录都分配到一个Reducer中。
解决方法:把数字类型转换成字符串类型
select * from users a left outer join logs b on a.usr_id = cast(b.user_id as string)
3.3小表不小不大,怎么用 map join 解决倾斜问题
使用 map join 解决小表(记录数少)关联大表的数据倾斜问题,这个方法使用的频率非常高,但如果小表很大,大到map join会出现bug或异常,这时就需要特别的处理。 以下例子:
select * from log a left outer join users b on a.user_id = b.user_id;
users 表有 600w+ 的记录,把 users 分发到所有的 map 上也是个不小的开销,而且 map join 不支持这么大的小表。如果用普通的 join,又会碰到数据倾斜的问题。
解决方法:
select /*+mapjoin(x)*/* from log a
left outer join (
select /*+mapjoin(c)*/d.* from (
select distinct user_id from log ) c join users d
on c.user_id = d.user_id ) x
on a.user_id = b.user_id;
假如,log里user_id有上百万个,这就又回到原来map join问题。所幸,每日的会员uv不会太多,有交易的会员不会太多,有点击的会员不会太多,有佣金的会员不会太多等等。所以这个方法能解决很多场景下的数据倾斜问题。
4总结
使map的输出数据更均匀的分布到reduce中去,是我们的最终目标。由于Hash算法的局限性,按key Hash会或多或少的造成数据倾斜。大量经验表明数据倾斜的原因是人为的建表疏忽或业务逻辑可以规避的。在此给出较为通用的步骤:
1、采样log表,哪些user_id比较倾斜,得到一个结果表tmp1。由于对计算框架来说,所有的数据过来,他都是不知道数据分布情况的,所以采样是并不可少的。
2、数据的分布符合社会学统计规则,贫富不均。倾斜的key不会太多,就像一个社会的富人不多,奇特的人不多一样。所以tmp1记录数会很少。把tmp1和users做map join生成tmp2,把tmp2读到distribute file cache。这是一个map过程。
3、map读入users和log,假如记录来自log,则检查user_id是否在tmp2里,如果是,输出到本地文件a,否则生成<user_id,value>的key,value对,假如记录来自member,生成<user_id,value>的key,value对,进入reduce阶段。
4、最终把a文件,把Stage3 reduce阶段输出的文件合并起写到hdfs。
如果确认业务需要这样倾斜的逻辑,考虑以下的优化方案:
1、对于join,在判断小表不大于1G的情况下,使用map join
2、对于group by或distinct,设定 hive.groupby.skewindata=true
3、尽量使用上述的SQL语句调节进行优化
Hive的一般学习者和培训者在谈性能优化的时候一般都会从语法和参数这些雕虫小技的角度谈优化,而不会革命性的优化Hive的性能,产生这种现象的原因有:1,历史原因和思维定势:大家学习SQL的时候一般都是就单机DB,这个时候你的性能优化技巧确实主要是SQL语法和参数调优;2,Hive的核心的性能问题往往是产生在超过规模数据集,例如说100亿条级别的数据集,以及每天处理上千上万个Hive作业的情况下产生的;上面的第二点是我们现在Hive性能调优部分要彻底解决的内容;要从根本上解决和显著的解决实际企业中Hive真正的性能优化问题,必须考虑到底什么是Hive性能的限制,我们按照优先级来说:第一重要的是:战略性架构 解决海量数据下大量Job过于频繁的IO问题,而这个问题实质上涉及了架构方面的分表 数据复用 以及分区表等调优的方式; 补充:1,海量的数据中有些数据是高频使用的数据,而有些是很少使用的,如果能够分离成为不同的表,会极大的提升效率;很多的作业可能会有共同点,抽离出来先进行计算并保留计算结果,后面的作业都可以复用;同时,底层的基础功能也可以先计算,在上层应用的时候直接拿数据结果,而不是每次都重复计算; 2,合理从用静态分区表和动态分区表,可以避免数据全局扫描及计算资源更合理的利用; 3,数据倾斜的一站式解决方案;第二重要的是:引擎和物理层面,很多内容都是普通Hive使用这不知道的! 从Hive语法和Job内部的角度去进行优化,这要求MapReduce以及Hive如何被翻译成为MapReduce要非常精通;第三重要的是:一些关键的参数;归根到底,Hive的性能优化主要考虑的是如何最大化和最有效的使用CPU Memory IO;
Hive背后的Mapper调优:
1,Mapper数过大,会产生大量小文件,由于Mapper是基于虚拟机的,过多的Mapper创建和初始化及关闭虚拟机都会消耗大量的硬件资源;
Mapper数太小,并发度过小,Job执行时间过长,无法充分利用分布式硬件资源;
2,Mapper数据由什么决定呢?
输入文件数目;
输入文件的大小;
配置参数;
默认情况下:例如一个文件800M,BLock大小是128M,那么Mapper数目就是7个,6个Mapper处理的数据是 128M, 1个Mapper处理的数据是32M;再例如,一个目录下有三个文件分别大小问5M 10M 150M
此时会产生4个Mapper,处理的数据分别是5M 10M 128M 22M;
减少Mapper的个数,就要合并小文件,这种小文件有可能是直接来自于数据源的小文件,也可能是Reducer产生的小文件;
set hive.input.format=org.apache.Hadoop.hive.ql.io.CombineHiveInputFormat;
set hive.merge.mapFiles=true;
set hive.merge.mapredFiles=true;
set hive.merge.size.per.task=256000000
set mapred.max.split.size=256000000
set mapred.min.split.size.per.node=128000000
增加Mapper的个数,一般是通过控制Hive SQL中上一个Job的Reducer个数来控制的,例如在Join操作的时候会把多个表分解为多个Job;
set mapred.map.tasks=2;
set hive.merge.mapFiles=true;
set hive.merge.mapredFiles=true;
set hive.merge.size.per.task=256000000
例如我们有5个300M的文件;按照上面的配置会产生10个Mapper,5个Mapper处理的都是256M的数据,另外5个Mapper处理的都是44M的数据,问题是:大的Mapper会数据倾斜
如何解决,设置set mapred.map.tasks=6,此时根据MapRed的运行机制,会划分6个Mapper,每个Mapper的处理数据的大小是250M, min(1500M/6, 256M) =250M
Hive背后的Reducer调优:
1,Reducer数目过大的话,会产生很多小文件,每个Reducer都会产生一个文件,如果这些小文件是下一个JOB的输入,则会需要对小文件进行合并;同样启动 初始化和销毁Reducer的虚拟机也需要消耗大量的硬件;
Reducer数据过小的话,Reduce的时间会比较长,也可能会出现数据倾斜;
2,如何控制Reducer的个数呢?
set hive.exec.reducers.byte.per.reducer=1G
set hive.exec.reducers.max=999
Reducer个数=min(999, Reducer的数据输入总量/1G);
set mapred.reduce.tasks = 10, 默认是1; 如果说当前的Reducer的结果很大,且被接下来多个Job使用其结果,我们该如何设置参数呢?一般都需要调大该参数;
什么情况下只有一个Reducer?如果不进行Group by但却需要汇总,或者说Order by,当然如果最后Reducer的数据小于默认的1G的话,也会只有一个Reducer;
1,Hive在分布式运行的时候最害怕的是数据倾斜,这是由于分布式系统的特性决定的,因为分布式系统之所以很快是由于作业平均分配给了不同的节点,不同节点同心协力,从而达到更快处理完作业的目的;
顺便说明一下,处理数据倾斜的能力是hadoop和Spark工程师最核心的竞争力之一;
2,Hive中数据倾斜的原因:
数据在分布式节点上分布不平衡;
join时某些key可能特别大;
groupBy的时候某个Key可能特别多;
count(distinct)有可能出现数据倾斜,因为其内部首先会进行groupBy操作;
3,join,我们希望join时候key是分散,如果一个key的数据量特别大,有可能会出现数据倾斜和OOM,一个核心点是:小表join大表,在reduce阶段左侧的小表会加载进内存,减少OOM的风险;
4,大表join大表的情况:数据倾斜,例如null值,解决办法一般是要打散null值,例如说使用随机数等,如果数据倾斜比较严重,采用这种方式可以提升至少一倍的速度;
5,mapJoin:小表join(超)大表的时候,可以采用mapJoin的方式把小表全部加载到Mapper端的内存中/*+MAPJOIN(table_name)*/;
6,小表join(超)大表的时候,是否会自动进行mapJoin,想进行mapJoin,需要设置:set hive.auto.convert.join=true,Hive在进行join的时候会判断左表的大小来决定是否进行mapJoin:
set hive.mapjoin.smalltable.filesize=128000000;
set hive.mapjoin.cache.numrows=100000;
上述参数可以根据实际的硬件机器的内存进行调整,对性能有至关重要的影响,因为没有了Shuffle;
对于mapJoin我们能够使用Mapper端JVM中多大的内存呢?
set hive.mapjoin.followby.gby.localtask.max.momery.usage = 0.8
set hive.mapjoin.localtask.max.memory.uage=0.9
7,groupBy,我们可以设置在Mapper端进行部分聚合,最后在Reducer端进行全局聚合
set hive.map.aggr=true;
set hive.groupby.mapaggr.checkinterval=100000
set hive.groupby.skewindata = true 内部会产生两个Job,第一个Job会通过自己的算法打散倾斜的Key并进行聚合操作且保留结果,第二个Job会完成全部的groupBy操作,会产生Mapper-Reducer-Reducer的结构
8, count(distinct),如果某个字段特别多,容易产生数据倾斜,解决思路:
在查询语句中例如对null进行过滤,在结果中加1
9, 笛卡尔积:join时候没有on条件,或者on条件无效,这个时候会使用Reducer进行笛卡尔积的操作;
1. 两者分别是什么?
Apache Hive是一个构建在Hadoop基础设施之上的数据仓库。通过Hive可以使用HQL语言查询存放在HDFS上的数据。HQL是一种类SQL语言,这种语言最终被转化为Map/Reduce. 虽然Hive提供了SQL查询功能,但是Hive不能够进行交互查询--因为它只能够在Haoop上批量的执行Hadoop。
Apache HBase是一种Key/Value系统,它运行在HDFS之上。和Hive不一样,Hbase的能够在它的数据库上实时运行,而不是运行MapReduce任务。Hive被分区为表格,表格又被进一步分割为列簇。列簇必须使用schema定义,列簇将某一类型列集合起来(列不要求schema定义)。例如,“message”列簇可能包含:“to”, ”from” “date”, “subject”, 和”body”. 每一个 key/value对在Hbase中被定义为一个cell,每一个key由row-key,列簇、列和时间戳。在Hbase中,行是key/value映射的集合,这个映射通过row-key来唯一标识。Hbase利用Hadoop的基础设施,可以利用通用的设备进行水平的扩展。
2. 两者的特点
Hive帮助熟悉SQL的人运行MapReduce任务。因为它是JDBC兼容的,同时,它也能够和现存的SQL工具整合在一起。运行Hive查询会花费很长时间,因为它会默认遍历表中所有的数据。虽然有这样的缺点,一次遍历的数据量可以通过Hive的分区机制来控制。分区允许在数据集上运行过滤查询,这些数据集存储在不同的文件夹内,查询的时候只遍历指定文件夹(分区)中的数据。这种机制可以用来,例如,只处理在某一个时间范围内的文件,只要这些文件名中包括了时间格式。
HBase通过存储key/value来工作。它支持四种主要的操作:增加或者更新行,查看一个范围内的cell,获取指定的行,删除指定的行、列或者是列的版本。版本信息用来获取历史数据(每一行的历史数据可以被删除,然后通过Hbase compactions就可以释放出空间)。虽然HBase包括表格,但是schema仅仅被表格和列簇所要求,列不需要schema。Hbase的表格包括增加/计数功能。
3. 限制
Hive目前不支持更新操作。另外,由于hive在hadoop上运行批量操作,它需要花费很长的时间,通常是几分钟到几个小时才可以获取到查询的结果。Hive必须提供预先定义好的schema将文件和目录映射到列,并且Hive与ACID不兼容。
HBase查询是通过特定的语言来编写的,这种语言需要重新学习。类SQL的功能可以通过Apache Phonenix实现,但这是以必须提供schema为代价的。另外,Hbase也并不是兼容所有的ACID特性,虽然它支持某些特性。最后但不是最重要的--为了运行Hbase,Zookeeper是必须的,zookeeper是一个用来进行分布式协调的服务,这些服务包括配置服务,维护元信息和命名空间服务。
4. 应用场景
Hive适合用来对一段时间内的数据进行分析查询,例如,用来计算趋势或者网站的日志。Hive不应该用来进行实时的查询。因为它需要很长时间才可以返回结果。
Hbase非常适合用来进行大数据的实时查询。Facebook用Hbase进行消息和实时的分析。它也可以用来统计Facebook的连接数。
5. 总结
Hive和Hbase是两种基于Hadoop的不同技术--Hive是一种类SQL的引擎,并且运行MapReduce任务,Hbase是一种在Hadoop之上的NoSQL 的Key/vale数据库。当然,这两种工具是可以同时使用的。就像用Google来搜索,用FaceBook进行社交一样,Hive可以用来进行统计查询,HBase可以用来进行实时查询,数据也可以从Hive写到Hbase,设置再从Hbase写回Hive。
摘要: 目录 1,环境准备 2,安装Hive和配置环境变量 3,安装MySQL 4,在mysql上创建hive元数据库,并对hive进行授权 5,安装jar包到hive 6,配置hive-site.xml 7,元数据存储初始化 8,启动验证hive 9,报错及解决方法
1,环境准备:
准备好Hadoop集群,参照...
阅读全文
TCP和UDP是OSI模型中的运输层中的协议。TCP提供可靠的通信传输,而UDP则常被用于让广播和细节控制交给应用的通信传输。
UDP(User Datagram Protocol)
UDP不提供复杂的控制机制,利用IP提供面向无连接的通信服务。并且它是将应用程序发来的数据在收到的那一刻,立刻按照原样发送到网络上的一种机制。
即使是出现网络拥堵的情况下,UDP也无法进行流量控制等避免网络拥塞的行为。此外,传输途中如果出现了丢包,UDO也不负责重发。甚至当出现包的到达顺序乱掉时也没有纠正的功能。如果需要这些细节控制,那么不得不交给由采用UDO的应用程序去处理。换句话说,UDP将部分控制转移到应用程序去处理,自己却只提供作为传输层协议的最基本功能。UDP有点类似于用户说什么听什么的机制,但是需要用户充分考虑好上层协议类型并制作相应的应用程序。
TCP(Transmission Control Protocol)
TCP充分实现爱呢了数据传输时各种控制功能,可以进行丢包的重发控制,还可以对次序乱掉的分包进行顺序控制。而这些在UDP中都没有。此外,TCP作为一种面向有连接的协议,只有在确认通信对端存在时才会发送数据,从而可以控制通信流量的浪费。
TCP通过检验和、序列号、确认应答、重发控制、连接管理以及窗口控制等机制实现可靠性传输。此处不一一叙述。
TCP与UDP如何加以区分使用?
TCP用于在传输层有必要实现可靠性传输的情况。由于它是面向有连接并具备顺序控制、重发控制等机制的。所以它可以为应用提供可靠传输。
另一方面,UDP主要用于那些对高速传输和实时性有较高要求的通信或广播通信。举一个IP电话进行通话的例子。如果使用TCP,数据在传送途中如果丢失会被重发,但是这样无法流畅地传输通话人的声音,会导致无法进行正常交流。而采用UDP,它不会进行重发处理。从而也就不会有声音大幅度延迟到达的问题。即使有部分数据丢失,也只是影响某一小部分的通话。此外,在多播与广播通信中也使用UDP而不是UDP。RIP、DHCP等基于广播的协议也要依赖于UDP。
TCP与UDP区别总结:
1、TCP面向连接(如打电话要先拨号建立连接);UDP是无连接的,即发送数据之前不需要建立连接
2、TCP提供可靠的服务。也就是说,通过TCP连接传送的数据,无差错,不丢失,不重复,且按序到达;UDP尽最大努力交付,即不保证可靠交付
3、TCP面向字节流,实际上是TCP把数据看成一连串无结构的字节流;UDP是面向报文的
UDP没有拥塞控制,因此网络出现拥塞不会使源主机的发送速率降低(对实时应用很有用,如IP电话,实时视频会议等)
4、每一条TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信
5、TCP首部开销20字节;UDP的首部开销小,只有8个字节
6、TCP的逻辑通信信道是全双工的可靠信道,UDP则是不可靠信道
UDP如何实现可靠传输
由于在传输层UDP已经是不可靠的连接,那就要在应用层自己实现一些保障可靠传输的机制
简单来讲,要使用UDP来构建可靠的面向连接的数据传输,就要实现类似于TCP协议的
超时重传(定时器)
有序接受 (添加包序号)
应答确认 (Seq/Ack应答机制)
滑动窗口流量控制等机制 (滑动窗口协议)
等于说要在传输层的上一层(或者直接在应用层)实现TCP协议的可靠数据传输机制,比如使用UDP数据包+序列号,UDP数据包+时间戳等方法。
目前已经有一些实现UDP可靠传输的机制,比如
UDT(UDP-based Data Transfer Protocol)
基于UDP的数据传输协议(UDP-based Data Transfer Protocol,简称UDT)是一种互联网数据传输协议。UDT的主要目的是支持高速广域网上的海量数据传输,而互联网上的标准数据传输协议TCP在高带宽长距离网络上性能很差。 顾名思义,UDT建于UDP之上,并引入新的拥塞控制和数据可靠性控制机制。UDT是面向连接的双向的应用层协议。它同时支持可靠的数据流传输和部分可靠的数据报传输。 由于UDT完全在UDP上实现,它也可以应用在除了高速数据传输之外的其它应用领域,例如点到点技术(P2P),防火墙穿透,多媒体数据传输等等。
一、
1、什么是Hbase。
是一个高可靠性、高性能、列存储、可伸缩、实时读写的分布式数据库系统。
适合于存储非结构化数据,基于列的而不是基于行的模式
如图:Hadoop生态中hbase与其他部分的关系。
2、关系数据库已经流行很多年,并且hadoop已经有了HDFS和MapReduce,为什么需要HBase?
Hadoop可以很好地解决大规模数据的离线批量处理问题,但是,受限于HadoopMapReduce编程框架的高延迟数据处理机制,使得Hadoop无法满足大规模数据实时处理应用的需求
HDFS面向批量访问模式,不是随机访问模式
传统的通用关系型数据库无法应对在数据规模剧增时导致的系统扩展性和性能问题(分库分表也不能很好解决)
传统关系数据库在数据结构变化时一般需要停机维护;空列浪费存储空间
因此,业界出现了一类面向半结构化数据存储和处理的高可扩展、低写入/查询延迟的系统,例如,键值数据库、文档数据库和列族数据库(如BigTable和HBase等)
HBase已经成功应用于互联网服务领域和传统行业的众多在线式数据分析处理系统中
3、HBase与传统的关系数据库的区别
(1)数据类型:关系数据库采用关系模型,具有丰富的数据类型和存储方式,HBase则采用了更加简单的数据模型,它把数据存储为未经解释的字符串
(2)数据操作:关系数据库中包含了丰富的操作,其中会涉及复杂的多表连接。HBase操作则不存在复杂的表与表之间的关系,只有简单的插入、查询、删除、清空等,因为HBase在设计上就避免了复杂的表和表之间的关系
(3)存储模式:关系数据库是基于行模式存储的。HBase是基于列存储的,每个列族都由几个文件保存,不同列族的文件是分离的
(4)数据索引:关系数据库通常可以针对不同列构建复杂的多个索引,以提高数据访问性能。HBase只有一个索引——行键,通过巧妙的设计,HBase中的所有访问方法,或者通过行键访问,或者通过行键扫描,从而使得整个系统不会慢下来
(5)数据维护:在关系数据库中,更新操作会用最新的当前值去替换记录中原来的旧值,旧值被覆盖后就不会存在。而在HBase中执行更新操作时,并不会删除数据旧的版本,而是生成一个新的版本,旧有的版本仍然保留
(6)可伸缩性:关系数据库很难实现横向扩展,纵向扩展的空间也比较有限。相反,HBase和BigTable这些分布式数据库就是为了实现灵活的水平扩展而开发的,能够轻易地通过在集群中增加或者减少硬件数量来实现性能的伸缩
二、Hbase数据模型
1、模型概述
HBase是一个稀疏、多维度、排序的映射表,这张表的索引是行键、列族、列限定符和时间戳
每个值是一个未经解释的字符串,没有数据类型
用户在表中存储数据,每一行都有一个可排序的行键和任意多的列
表在水平方向由一个或者多个列族组成,一个列族中可以包含任意多个列,同一个列族里面的数据存储在一起
列族支持动态扩展,可以很轻松地添加一个列族或列,无需预先定义列的数量以及类型,所有列均以字符串形式存储,用户需要自行进行数据类型转换
HBase中执行更新操作时,并不会删除数据旧的版本,而是生成一个新的版本,旧有的版本仍然保留(这是和HDFS只允许追加不允许修改的特性相关的)
2、数据坐标
HBase中需要根据行键、列族、列限定符和时间戳来确定一个单元格,因此,可以视为一个“四维坐标”,即[行键,列族, 列限定符,时间戳]
键 |
值 |
[“201505003”,“Info”,“email”, 1174184619081] |
“xie@qq.com” |
[“201505003”,“Info”,“email”, 1174184620720] |
“you@163.com”
|
3、概念视图
4、物理视图
三、HBase实现原理
1、HBase的实现包括三个主要的功能组件:
(1)库函数:链接到每个客户端
(2)一个Master主服务器
(3)许多个Region服务器
主服务器Master负责管理和维护HBase表的分区信息,维护Region服务器列表,分配Region,负载均衡
Region服务器负责存储和维护分配给自己的Region,处理来自客户端的读写请求
客户端并不是直接从Master主服务器上读取数据,而是在获得Region的存储位置信息后,直接从Region服务器上读取数据
客户端并不依赖Master,而是通过Zookeeper来获得Region位置信息,大多数客户端甚至从来不和Master通信,这种设计方式使得Master负载很小
2、Region
开始只有一个Region,后来不断分裂
Region拆分操作非常快,接近瞬间,因为拆分之后的Region读取的仍然是原存储文件,直到“合并”过程把存储文件异步地写到独立的文件之后,才会读取新文件
同一个Region不会被分拆到多个Region服务器
每个Region服务器存储10-1000个Region
元数据表,又名.META.表,存储了Region和Region服务器的映射关系
当HBase表很大时, .META.表也会被分裂成多个Region
根数据表,又名-ROOT-表,记录所有元数据的具体位置
-ROOT-表只有唯一一个Region,名字是在程序中被写死的
Zookeeper文件记录了-ROOT-表的位置
客户端访问数据时的“三级寻址”
为了加速寻址,客户端会缓存位置信息,同时,需要解决缓存失效问题
寻址过程客户端只需要询问Zookeeper服务器,不需要连接Master服务器
3、HBase的三层结构中各层次的名称和作用
层次 |
名称 |
作用 |
第一层 |
Zookeper文件 |
记录了-ROOT-表的位置信息 |
第二层 |
-ROOT-表 |
记录了.META.表的Region位置信息
-ROOT-表只能有一个Region。通过-ROOT-表,就可以访问.META.表中的数据 |
第三层 |
.META.表 |
记录了用户数据表的Region位置信息,.META.表可以有多个Region,保存了HBase中所有用户数据表的Region位置信息 |
四、HBase运行机制
1、HBase系统架构
(1、客户端包含访问HBase的接口,同时在缓存中维护着已经访问过的Region位置信息,用来加快后续数据访问过程
(2、Zookeeper可以帮助选举出一个Master作为集群的总管,并保证在任何时刻总有唯一一个Master在运行,这就避免了Master的“单点失效”问题
(Zookeeper是一个很好的集群管理工具,被大量用于分布式计算,提供配置维护、域名服务、分布式同步、组服务等。)
(3. Master
主服务器Master主要负责表和Region的管理工作:
管理用户对表的增加、删除、修改、查询等操作
实现不同Region服务器之间的负载均衡
在Region分裂或合并后,负责重新调整Region的分布
对发生故障失效的Region服务器上的Region进行迁移
(4. Region服务器
Region服务器是HBase中最核心的模块,负责维护分配给自己的Region,并响应用户的读写请求
2、Region
(1、用户读写数据过程
用户写入数据时,被分配到相应Region服务器去执行
用户数据首先被写入到MemStore和Hlog中
只有当操作写入Hlog之后,commit()调用才会将其返回给客户端
当用户读取数据时,Region服务器会首先访问MemStore缓存,如果找不到,再去磁盘上面的StoreFile中寻找
(2、缓存的刷新
系统会周期性地把MemStore缓存里的内容刷写到磁盘的StoreFile文件中,清空缓存,并在Hlog里面写入一个标记、
每次刷写都生成一个新的StoreFile文件,因此,每个Store包含多个StoreFile文件
每个Region服务器都有一个自己的HLog文件,每次启动都检查该文件,确认最近一次执行缓存刷新操作之后是否发生新的写入操作;如果发现更新,则先写入MemStore,再刷写到StoreFile,最后删除旧的Hlog文件,开始为用户提供服务
(3、StroreFile的合并
每次刷写都生成一个新的StoreFile,数量太多,影响查找速度
调用Store.compact()把多个合并成一个
合并操作比较耗费资源,只有数量达到一个阈值才启动合并
3、Store工作原理
Store是Region服务器的核心
多个StoreFile合并成一个
触发分裂操作,1个父Region被分裂成两个子Region
单个StoreFile过大时,又 4、HLog工作原理
分布式环境必须要考虑系统出错。HBase采用HLog保证系统恢复
HBase系统为每个Region服务器配置了一个HLog文件,它是一种预写式日志(WriteAhead Log)
用户更新数据必须首先写入日志后,才能写入MemStore缓存,并且,直到MemStore缓存内容对应的日志已经写入磁盘,该缓存内容才能被刷写到磁盘
Zookeeper会实时监测每个Region服务器的状态,当某个Region服务器发生故障时,Zookeeper会通知Master
Master首先会处理该故障Region服务器上面遗留的HLog文件,这个遗留的HLog文件中包含了来自多个Region对象的日志记录
系统会根据每条日志记录所属的Region对象对HLog数据进行拆分,分别放到相应Region对象的目录下,然后,再将失效的Region重新分配到可用的Region服务器中,并把与该Region对象相关的HLog日志记录也发送给相应的Region服务器
Region服务器领取到分配给自己的Region对象以及与之相关的HLog日志记录以后,会重新做一遍日志记录中的各种操作,把日志记录中的数据写入到MemStore缓存中,然后,刷新到磁盘的StoreFile文件中,完成数据恢复
共用日志优点:提高对表的写操作性能;缺点:恢复时需要分拆日志
五、HBase性能
1、
行键(RowKey)
行键是按照字典序存储,因此,设计行键时,要充分利用这个排序特点,将经常一起读取的数据存储到一块,将最近可能会被访问的数据放在一块。
举个例子:如果最近写入HBase表中的数据是最可能被访问的,可以考虑将时间戳作为行键的一部分,由于是字典序排序,所以可以使用Long.MAX_VALUE- timestamp作为行键,这样能保证新写入的数据在读取时可以被快速命中。
InMemory:创建表的时候,可以通过HColumnDescriptor.setInMemory(true)将表放到Region服务器的缓存中,保证在读取的时候被cache命中。
Max Version:创建表的时候,可以通过HColumnDescriptor.setMaxVersions(int maxVersions)设置表中数据的最大版本,如果只需要保存最新版本的数据,那么可以设置setMaxVersions(1)。
Time To Live创建表的时候,可以通过HColumnDescriptor.setTimeToLive(inttimeToLive)设置表中数据的存储生命期,过期数据将自动被删除,例如如果只需要存储最近两天的数据,那么可以设置setTimeToLive(2* 24 * 60 * 60)。
2、HBaseMaster默认基于Web的UI服务端口为60010,HBase region服务器默认基于Web的UI服务端口为60030.如果master运行在名为master.foo.com的主机中,mater的主页地址就是http://master.foo.com:60010,用户可以通过Web浏览器输入这个地址查看该页面
可以查看HBase集群的当前状态
3、
NoSQL区别于关系型数据库的一点就是NoSQL不使用SQL作为查询语言,至于为何在NoSQL数据存储HBase上提供SQL接口
易使用,减少编码
4、HBase只有一个针对行健的索引
访问HBase表中的行,只有三种方式:
通过单个行健访问
通过一个行健的区间来访问
全表扫描
总结:
1、HBase数据库是BigTable的开源实现,和BigTable一样,支持大规模海量数据,分布式并发数据处理效率极高,易于扩展且支持动态伸缩,适用于廉价设备
2、HBase可以支持NativeJava API、HBaseShell、ThriftGateway、Hive等多种访问接口,可以根据具体应用场合选择相应访问方式
3、HBase实际上就是一个稀疏、多维、持久化存储的映射表,它采用行键、列键和时间戳进行索引,每个值都是未经解释的字符串。
4、HBase采用分区存储,一个大的表会被分拆许多个Region,这些Region会被分发到不同的服务器上实现分布式存储
5、HBase的系统架构包括客户端、Zookeeper服务器、Master主服务器、Region服务器。客户端包含访问HBase的接口;Zookeeper服务器负责提供稳定可靠的协同服务;Master主服务器主要负责表和Region的管理工作;Region服务器负责维护分配给自己的Region,并响应用户的读写请求
python 获得本机MAC地址:
import uuid
def get_mac_address():
mac=uuid.UUID(int=uuid.getnode()).hex[-12:]
return ":".join([mac[e:e+2] for e in range(0,11,2)])
python获取IP的方法:使用socket
import socketmyname=socket.getfqdn(socket.gethostname( ))
myaddr=socket.gethostbyname(myname)
print(myname)
print(myaddr)
spring中使用Quartz时 时间配置例子:
<!-- 定义调用对象和调用对象的方法 end -->
<!-- 定义调用时间 begin -->
<bean id="realweatherTime" class="org.springframework.scheduling.quartz.CronTriggerBean">
<property name="jobDetail">
<ref bean="realweatherTask" />
</property>
<property name="cronExpression">
<value>0 10/30 * * * ?</value><!-- 表示每小时的10,40时执行任务 -->
</property>
</bean>
<!-- 定义调用时间 end -->
<!-- 定义调用对象和调用对象的方法 end -->
<!-- 定义调用时间 begin -->
<bean id="weatherTime" class="org.springframework.scheduling.quartz.CronTriggerBean">
<property name="jobDetail">
<ref bean="weatherTask" />
</property>
<property name="cronExpression">
<!-- <value>0 30 8,13 * * ?</value> --><!-- 表示每天的8:30和13:30时执行任务 -->
<value>0 0,30 0-23 * * ?</value><!---表示每天从0-23时中每时的整点或半点执行任务->
</property>
</bean>
<!-- 定义调用时间 end -->1、 CronTrigger时间格式配置说明
CronTrigger配置格式:
格式: [秒] [分] [小时] [日] [月] [周] [年]
序号 | 说明 | 是否必填 | 允许填写的值 | 允许的通配符 |
1 | 秒 | 是 | 0-59 | , - * / |
2 | 分 | 是 | 0-59 | , - * / |
3 | 小时 | 是 | 0-23 | , - * / |
4 | 日 | 是 | 1-31 | , - * ? / L W |
5 | 月 | 是 | 1-12 or JAN-DEC | , - * / |
6 | 周 | 是 | 1-7 or SUN-SAT | , - * ? / L # |
7 | 年 | 否 | empty 或 1970-2099 | , - * / |
通配符说明:
* :表示所有值. 例如:在分的字段上设置 "*",表示每一分钟都会触发。
? :表示不指定值。使用的场景为不需要关心当前设置这个字段的值。例如:要在每月的10号触发一个操作,但不关心是周几,所以需要周位置的那个字段设置为"?" 具体设置为 0 0 0 10 * ?
- :表示区间。例如 在小时上设置 "10-12",表示 10,11,12点都会触发。
, :表示指定多个值,例如在周字段上设置 "MON,WED,FRI" 表示周一,周三和周五触发
/ :用于递增触发。如在秒上面设置"5/15" 表示从5秒开始,每增15秒触发(5,20,35,50)。 在月字段上设置'1/3'所示每月1号开始,每隔三天触发一次。
L :表示最后的意思。在日字段设置上,表示当月的最后一天(依据当前月份,如果是二月还会依据是否是润年[leap]), 在周字段上表示星期六,相当于"7"或"SAT"。如果在"L"前加上数字,则表示该数据的最后一个。
例如在周字段上设置"6L"这样的格式,则表示“本月最后一个星期五"
W :表示离指定日期的最近那个工作日(周一至周五). 例如在日字段上设置"15W",表示离每月15号最近的那个工作日触发。如果15号正好是周六,则找最近的周五(14号)触发, 如果15号是周未,则找最近的下周一(16号)触发.如果15号正好在工作日(周一至周五),则就在该天触发。如果指定格式为 "1W",它则表示每月1号往后最近的工作日触发。如果1号正是周六,则将在3号下周一触发。(注,"W"前只能设置具体的数字,不允许区间"-").
'L'和 'W'可以一组合使用。如果在日字段上设置"LW",则表示在本月的最后一个工作日触发
# :序号(表示每月的第几周星期几),例如在周字段上设置"6#3"表示在每月的第三个周星期六.注意如果指定"6#5",正好第五周没有星期六,则不会触发该配置(用在母亲节和父亲节再合适不过了)
周字段的设置,若使用英文字母是不区分大小写的 MON 与mon相同.
常用示例:
格式: [秒] [分] [小时] [日] [月] [周] [年]
0 0 12 * * ? 每天12点触发
0 15 10 ? * * 每天10点15分触发
0 15 10 * * ? 每天10点15分触发
0 15 10 * * ? * 每天10点15分触发
0 15 10 * * ? 2005 2005年每天10点15分触发
0 * 14 * * ? 每天下午的 2点到2点59分每分触发
0 0/5 14 * * ? 每天下午的 2点到2点59分(整点开始,每隔5分触发)
0 0/5 14,18 * * ? 每天下午的 18点到18点59分(整点开始,每隔5分触发)
0 0-5 14 * * ? 每天下午的 2点到2点05分每分触发
0 10,44 14 ? 3 WED 3月分每周三下午的 2点10分和2点44分触发
0 15 10 ? * MON-FRI 从周一到周五每天上午的10点15分触发
0 15 10 15 * ? 每月15号上午10点15分触发
0 15 10 L * ? 每月最后一天的10点15分触发
0 15 10 ? * 6L 每月最后一周的星期五的10点15分触发
0 15 10 ? * 6L 2002-2005 从2002年到2005年每月最后一周的星期五的10点15分触发
0 15 10 ? * 6#3 每月的第三周的星期五开始触发
0 0 12 1/5 * ? 每月的第一个中午开始每隔5天触发一次
0 11 11 11 11 ? 每年的11月11号 11点11分触发(光棍节)
spring中使用Quartz时 时间配置例子:
<!-- 定义调用对象和调用对象的方法 end -->
<!-- 定义调用时间 begin -->
<bean id="realweatherTime" class="org.springframework.scheduling.quartz.CronTriggerBean">
<property name="jobDetail">
<ref bean="realweatherTask" />
</property>
<property name="cronExpression">
<value>0 10/30 * * * ?</value><!-- 表示每小时的10,40时执行任务 -->
</property>
</bean>
<!-- 定义调用时间 end -->
<!-- 定义调用对象和调用对象的方法 end -->
<!-- 定义调用时间 begin -->
<bean id="weatherTime" class="org.springframework.scheduling.quartz.CronTriggerBean">
<property name="jobDetail">
<ref bean="weatherTask" />
</property>
<property name="cronExpression">
<!-- <value>0 30 8,13 * * ?</value> --><!-- 表示每天的8:30和13:30时执行任务 -->
<value>0 0,30 0-23 * * ?</value><!---表示每天从0-23时中每时的整点或半点执行任务->
</property>
</bean>
<!-- 定义调用时间 end -->
1.有时表格内容太多,只显示部分,其余部分已省略号表示,用css处理如下:
.template td{
word-break:keep-all;/* 不换行 */
white-space:nowrap;/* 不换行 */
overflow:hidden;/* 内容超出宽度时隐藏超出部分的内容 */
text-overflow:ellipsis;/* 当对象内文本溢出时显示省略标记(...) ;需与overflow:hidden;一起使用。*/
}
template 是该表单所在的table class属性。
代码如下:
引用
function fmoney(s, n)
{
n = n > 0 && n <= 20 ? n : 2;
s = parseFloat((s + "").replace(/[^\d\.-]/g, "")).toFixed(n) + "";
var l = s.split(".")[0].split("").reverse(),
r = s.split(".")[1];
t = "";
for(i = 0; i < l.length; i ++ )
{
t += l[i] + ((i + 1) % 3 == 0 && (i + 1) != l.length ? "," : "");
}
return t.split("").reverse().join("") + "." + r;
}
调用:fmoney("12345.675910", 3),返回12,345.676
还原函数:
引用
function rmoney(s)
{
return parseFloat(s.replace(/[^\d\.-]/g, ""));
}
示例(可保存一下代码为html文件,运行查看效果):
引用
<SCRIPT>
function fmoney(s, n)
{
n = n > 0 && n <= 20 ? n : 2;
s = parseFloat((s + "").replace(/[^\d\.-]/g, "")).toFixed(n) + "";
var l = s.split(".")[0].split("").reverse(),
r = s.split(".")[1];
t = "";
for(i = 0; i < l.length; i ++ )
{
t += l[i] + ((i + 1) % 3 == 0 && (i + 1) != l.length ? "," : "");
}
return t.split("").reverse().join("") + "." + r;
}
function rmoney(s)
{
return parseFloat(s.replace(/[^\d\.-]/g, ""));
}
function g(id)
{
return document.getElementById(id);
}
window.onload = function()
{
var num,
txt = g("txt"),
txt2 = g("txt2"),
btn = g("btn"),
btn2 = g("btn2"),
span = g("span");
btn.onclick = function()
{
num = parseInt(g("num").value);
txt.value = fmoney(txt.value, num);
txt2.value = fmoney(txt2.value, num);
}
;
btn2.onclick = function()
{
num = parseInt(g("num").value);
span.innerHTML = "=" + fmoney(rmoney(txt.value) + rmoney(txt2.value), num);
}
;
}
;
</SCRIPT>
小数点位数:
<select id="num">
<option value="2">2</option>
<option value="3">3</option>
<option value="4">4</option>
<option value="5">5</option>
</select>
<input type="text" id="txt" value="12345.675910"> +
<input type="text" id="txt2" value="1223"> <span id="span"></span>
<br>
<input type="button" id="btn" value="
格式化">
<input type="button" id="btn2" value="相加">
一、简介
Java在java.math包中提供的API类BigDecimal,用来对超过16位有效位的数进行精确的运算。双精度浮点型变量double可以处理16位有效数。在实际应用中,需要对更大或者更小的数进行运算和处理。float和double只能用来做科学计算或者是工程计算,在商业计算中要用java.math.BigDecimal。BigDecimal所创建的是对象,我们不能使用传统的+、-、*、/等算术运算符直接对其对象进行数学运算,而必须调用其相对应的方法。方法中的参数也必须是BigDecimal的对象。构造器是类的特殊方法,专门用来创建对象,特别是带有参数的对象。
二、构造器描述
BigDecimal(int) 创建一个具有参数所指定整数值的对象。
BigDecimal(double) 创建一个具有参数所指定双精度值的对象。
BigDecimal(long) 创建一个具有参数所指定长整数值的对象。
BigDecimal(String) 创建一个具有参数所指定以字符串表示的数值的对象。
三、方法描述
add(BigDecimal) BigDecimal对象中的值相加,然后返回这个对象。
subtract(BigDecimal) BigDecimal对象中的值相减,然后返回这个对象。
multiply(BigDecimal) BigDecimal对象中的值相乘,然后返回这个对象。
divide(BigDecimal) BigDecimal对象中的值相除,然后返回这个对象。
toString() 将BigDecimal对象的数值转换成字符串。
doubleValue() 将BigDecimal对象中的值以双精度数返回。
floatValue() 将BigDecimal对象中的值以单精度数返回。
longValue() 将BigDecimal对象中的值以长整数返回。
intValue() 将BigDecimal对象中的值以整数返回。
四、格式化及例子
由于NumberFormat类的format()方法可以使用BigDecimal对象作为其参数,可以利用BigDecimal对超出16位有效数字的货币值,百分值,以及一般数值进行格式化控制。
以利用BigDecimal对货币和百分比格式化为例。首先,创建BigDecimal对象,进行BigDecimal的算术运算后,分别建立对货币和百分比格式化的引用,最后利用BigDecimal对象作为format()方法的参数,输出其格式化的货币值和百分比。
public static void main(String[] args) {
NumberFormat currency = NumberFormat.getCurrencyInstance(); //建立货币格式化引用
NumberFormat percent = NumberFormat.getPercentInstance(); //建立百分比格式化引用
percent.setMaximumFractionDigits(3); //百分比小数点最多3位
BigDecimal loanAmount = new BigDecimal("15000.48"); //贷款金额
BigDecimal interestRate = new BigDecimal("0.008"); //利率
BigDecimal interest = loanAmount.multiply(interestRate); //相乘
System.out.println("贷款金额:\t" + currency.format(loanAmount));
System.out.println("利率:\t" + percent.format(interestRate));
System.out.println("利息:\t" + currency.format(interest)); }
运行结果如下:
贷款金额: ¥15,000.48
利率: 0.8%
利息: ¥120.00
五、BigDecimal比较
BigDecimal是通过使用compareTo(BigDecimal)来比较的,具体比较情况如下:
public static void main(String[] args) {
BigDecimal a = new BigDecimal("1");
BigDecimal b = new BigDecimal("2");
BigDecimal c = new BigDecimal("1");
int result1 = a.compareTo(b);
int result2 = a.compareTo(c);
int result3 = b.compareTo(a);
System.out.println(result1);
System.out.println(result2);
System.out.println(result3);
}
打印结果是:-1、0、1,即左边比右边数大,返回1,相等返回0,比右边小返回-1。
注意不能使用equals方法来比较大小。
使用BigDecimal的坏处是性能比double和float差,在处理庞大,复杂的运算时尤为明显,因根据实际需求决定使用哪种类型。
如果你只是寻求多行转换成一列,比如把同一个id的某个字段col变成一行数据库,把多个col用逗号链接起来。下面几个SQL可以立竿见影。
《1》最简短的方式,使用WMSYS.WM_CONCAT:
SELECT id, REPLACE(wmsys.wm_concat(col), ',', '/') str
FROM Table1
GROUP BY id;
《2》使用sys_connect_by_path:
SELECT t.id id, MAX(substr(sys_connect_by_path(t.col, ','), 2)) str
FROM (SELECT id, col, row_number() over(PARTITION BY id ORDER BY col) rn
FROM Table1) t
START WITH rn = 1
CONNECT BY rn = PRIOR rn + 1
AND id = PRIOR id
GROUP BY t.id;
或者
SELECT t.id id, substr(sys_connect_by_path(t.col, ','), 2) str
FROM (SELECT id, col, row_number() over(PARTITION BY id ORDER BY col) rn
FROM Table1) t
WHERE connect_by_isleaf = 1
START WITH rn = 1
CONNECT BY rn = PRIOR rn + 1
AND id = PRIOR id;
《3》使用MODEL:
SELECT id, substr(str, 2) str FROM Table1
MODEL
RETURN UPDATED ROWS
PARTITION BY(ID)
DIMENSION BY(row_number() over(PARTITION BY ID ORDER BY col) AS rn)
MEASURES (CAST(col AS VARCHAR2(20)) AS str)
RULES UPSERT
ITERATE(3) UNTIL( presentv(str[iteration_number+2],1,0)=0)
(str[0] = str[0] || ',' || str[iteration_number+1])
ORDER BY 1;
下面是原文:
1.
概述
最近论坛很多人提的问题都与行列转换有关系,所以我对行列转换的相关知识做了一个总结,希望对大家有所帮助,同时有何错疏,恳请大家指出,我也是在写作过程中学习,算是一起和大家学习吧!
行列转换包括以下六种情况:
1)
列转行
2)
行转列
3)
多列转换成字符串
4)
多行转换成字符串
5)
字符串转换成多列
6)
字符串转换成多行
下面分别进行举例介绍。
首先声明一点,有些例子需要如下10g及以后才有的知识:
A.
掌握model子句
B.
正则表达式
C.
加强的层次查询
讨论的适用范围只包括8i,9i,10g及以后版本。
2.
列转行
CREATE TABLE t_col_row(
ID INT,
c1 VARCHAR2(10),
c2 VARCHAR2(10),
c3 VARCHAR2(10));
INSERT INTO t_col_row VALUES (1, 'v11', 'v21', 'v31');
INSERT INTO t_col_row VALUES (2, 'v12', 'v22', NULL);
INSERT INTO t_col_row VALUES (3, 'v13', NULL, 'v33');
INSERT INTO t_col_row VALUES (4, NULL, 'v24', 'v34');
INSERT INTO t_col_row VALUES (5, 'v15', NULL, NULL);
INSERT INTO t_col_row VALUES (6, NULL, NULL, 'v35');
INSERT INTO t_col_row VALUES (7, NULL, NULL, NULL);
COMMIT;
SELECT * FROM t_col_row;
2.1
UNION ALL
适用范围:8i,9i,10g及以后版本
SELECT id, 'c1' cn, c1 cv
FROM t_col_row
UNION ALL
SELECT id, 'c2' cn, c2 cv
FROM t_col_row
UNION ALL
SELECT id, 'c3' cn, c3 cv FROM t_col_row;
若空行不需要转换,只需加一个where条件,
WHERE COLUMN IS NOT NULL 即可。
2.2
MODEL
适用范围:10g及以后
SELECT id, cn, cv FROM t_col_row
MODEL
RETURN UPDATED ROWS
PARTITION BY (ID)
DIMENSION BY (0 AS n)
MEASURES ('xx' AS cn,'yyy' AS cv,c1,c2,c3)
RULES UPSERT ALL
(
cn[1] = 'c1',
cn[2] = 'c2',
cn[3] = 'c3',
cv[1] = c1[0],
cv[2] = c2[0],
cv[3] = c3[0]
)
ORDER BY ID,cn;
2.3
COLLECTION
适用范围:8i,9i,10g及以后版本
要创建一个对象和一个集合:
CREATE TYPE cv_pair AS OBJECT(cn VARCHAR2(10),cv VARCHAR2(10));
CREATE TYPE cv_varr AS VARRAY(8) OF cv_pair;
SELECT id, t.cn AS cn, t.cv AS cv
FROM t_col_row,
TABLE(cv_varr(cv_pair('c1', t_col_row.c1),
cv_pair('c2', t_col_row.c2),
cv_pair('c3', t_col_row.c3))) t
ORDER BY 1, 2;
3.
行转列
CREATE TABLE t_row_col AS
SELECT id, 'c1' cn, c1 cv
FROM t_col_row
UNION ALL
SELECT id, 'c2' cn, c2 cv
FROM t_col_row
UNION ALL
SELECT id, 'c3' cn, c3 cv FROM t_col_row;
SELECT * FROM t_row_col ORDER BY 1,2;
3.1
AGGREGATE FUNCTION
适用范围:8i,9i,10g及以后版本
SELECT id,
MAX(decode(cn, 'c1', cv, NULL)) AS c1,
MAX(decode(cn, 'c2', cv, NULL)) AS c2,
MAX(decode(cn, 'c3', cv, NULL)) AS c3
FROM t_row_col
GROUP BY id
ORDER BY 1;
MAX聚集函数也可以用sum、min、avg等其他聚集函数替代。
被指定的转置列只能有一列,但固定的列可以有多列,请看下面的例子:
SELECT mgr, deptno, empno, ename FROM emp ORDER BY 1, 2;
SELECT mgr,
deptno,
MAX(decode(empno, '7788', ename, NULL)) "7788",
MAX(decode(empno, '7902', ename, NULL)) "7902",
MAX(decode(empno, '7844', ename, NULL)) "7844",
MAX(decode(empno, '7521', ename, NULL)) "7521",
MAX(decode(empno, '7900', ename, NULL)) "7900",
MAX(decode(empno, '7499', ename, NULL)) "7499",
MAX(decode(empno, '7654', ename, NULL)) "7654"
FROM emp
WHERE mgr IN (7566, 7698)
AND deptno IN (20, 30)
GROUP BY mgr, deptno
ORDER BY 1, 2;
这里转置列为empno,固定列为mgr,deptno。
还有一种行转列的方式,就是相同组中的行值变为单个列值,但转置的行值不变为列名:
ID CN_1 CV_1 CN_2 CV_2 CN_3 CV_3
1 c1 v11 c2 v21 c3 v31
2 c1 v12 c2 v22 c3
3 c1 v13 c2 c3 v33
4 c1 c2 v24 c3 v34
5 c1 v15 c2 c3
6 c1 c2 c3 v35
7 c1 c2 c3
这种情况可以用分析函数实现:
SELECT id,
MAX(decode(rn, 1, cn, NULL)) cn_1,
MAX(decode(rn, 1, cv, NULL)) cv_1,
MAX(decode(rn, 2, cn, NULL)) cn_2,
MAX(decode(rn, 2, cv, NULL)) cv_2,
MAX(decode(rn, 3, cn, NULL)) cn_3,
MAX(decode(rn, 3, cv, NULL)) cv_3
FROM (SELECT id,
cn,
cv,
row_number() over(PARTITION BY id ORDER BY cn, cv) rn
FROM t_row_col)
GROUP BY ID;
3.2
PL/SQL
适用范围:8i,9i,10g及以后版本
这种对于行值不固定的情况可以使用。
下面是我写的一个包,包中
p_rows_column_real用于前述的第一种不限定列的转换;
p_rows_column用于前述的第二种不限定列的转换。
CREATE OR REPLACE PACKAGE pkg_dynamic_rows_column AS
TYPE refc IS REF CURSOR;
PROCEDURE p_print_sql(p_txt VARCHAR2);
FUNCTION f_split_str(p_str VARCHAR2, p_division VARCHAR2, p_seq INT)
RETURN VARCHAR2;
PROCEDURE p_rows_column(p_table IN VARCHAR2,
p_keep_cols IN VARCHAR2,
p_pivot_cols IN VARCHAR2,
p_where IN VARCHAR2 DEFAULT NULL,
p_refc IN OUT refc);
PROCEDURE p_rows_column_real(p_table IN VARCHAR2,
p_keep_cols IN VARCHAR2,
p_pivot_col IN VARCHAR2,
p_pivot_val IN VARCHAR2,
p_where IN VARCHAR2 DEFAULT NULL,
p_refc IN OUT refc);
END;
/
CREATE OR REPLACE PACKAGE BODY pkg_dynamic_rows_column AS
PROCEDURE p_print_sql(p_txt VARCHAR2) IS
v_len INT;
BEGIN
v_len := length(p_txt);
FOR i IN 1 .. v_len / 250 + 1 LOOP
dbms_output.put_line(substrb(p_txt, (i - 1) * 250 + 1, 250));
END LOOP;
END;
FUNCTION f_split_str(p_str VARCHAR2, p_division VARCHAR2, p_seq INT)
RETURN VARCHAR2 IS
v_first INT;
v_last INT;
BEGIN
IF p_seq < 1 THEN
RETURN NULL;
END IF;
IF p_seq = 1 THEN
IF instr(p_str, p_division, 1, p_seq) = 0 THEN
RETURN p_str;
ELSE
RETURN substr(p_str, 1, instr(p_str, p_division, 1) - 1);
END IF;
ELSE
v_first := instr(p_str, p_division, 1, p_seq - 1);
v_last := instr(p_str, p_division, 1, p_seq);
IF (v_last = 0) THEN
IF (v_first > 0) THEN
RETURN substr(p_str, v_first + 1);
ELSE
RETURN NULL;
END IF;
ELSE
RETURN substr(p_str, v_first + 1, v_last - v_first - 1);
END IF;
END IF;
END f_split_str;
PROCEDURE p_rows_column(p_table IN VARCHAR2,
p_keep_cols IN VARCHAR2,
p_pivot_cols IN VARCHAR2,
p_where IN VARCHAR2 DEFAULT NULL,
p_refc IN OUT refc) IS
v_sql VARCHAR2(4000);
TYPE v_keep_ind_by IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER;
v_keep v_keep_ind_by;
TYPE v_pivot_ind_by IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER;
v_pivot v_pivot_ind_by;
v_keep_cnt INT;
v_pivot_cnt INT;
v_max_cols INT;
v_partition VARCHAR2(4000);
v_partition1 VARCHAR2(4000);
v_partition2 VARCHAR2(4000);
BEGIN
v_keep_cnt := length(p_keep_cols) - length(REPLACE(p_keep_cols, ',')) + 1;
v_pivot_cnt := length(p_pivot_cols) -
length(REPLACE(p_pivot_cols, ',')) + 1;
FOR i IN 1 .. v_keep_cnt LOOP
v_keep(i) := f_split_str(p_keep_cols, ',', i);
END LOOP;
FOR j IN 1 .. v_pivot_cnt LOOP
v_pivot(j) := f_split_str(p_pivot_cols, ',', j);
END LOOP;
v_sql := 'select max(count(*)) from ' || p_table || ' group by ';
FOR i IN 1 .. v_keep.LAST LOOP
v_sql := v_sql || v_keep(i) || ',';
END LOOP;
v_sql := rtrim(v_sql, ',');
EXECUTE IMMEDIATE v_sql
INTO v_max_cols;
v_partition := 'select ';
FOR x IN 1 .. v_keep.COUNT LOOP
v_partition1 := v_partition1 || v_keep(x) || ',';
END LOOP;
FOR y IN 1 .. v_pivot.COUNT LOOP
v_partition2 := v_partition2 || v_pivot(y) || ',';
END LOOP;
v_partition1 := rtrim(v_partition1, ',');
v_partition2 := rtrim(v_partition2, ',');
v_partition := v_partition || v_partition1 || ',' || v_partition2 ||
', row_number() over (partition by ' || v_partition1 ||
' order by ' || v_partition2 || ') rn from ' || p_table;
v_partition := rtrim(v_partition, ',');
v_sql := 'select ';
FOR i IN 1 .. v_keep.COUNT LOOP
v_sql := v_sql || v_keep(i) || ',';
END LOOP;
FOR i IN 1 .. v_max_cols LOOP
FOR j IN 1 .. v_pivot.COUNT LOOP
v_sql := v_sql || ' max(decode(rn,' || i || ',' || v_pivot(j) ||
',null))' || v_pivot(j) || '_' || i || ',';
END LOOP;
END LOOP;
IF p_where IS NOT NULL THEN
v_sql := rtrim(v_sql, ',') || ' from (' || v_partition || ' ' ||
p_where || ') group by ';
ELSE
v_sql := rtrim(v_sql, ',') || ' from (' || v_partition ||
') group by ';
END IF;
FOR i IN 1 .. v_keep.COUNT LOOP
v_sql := v_sql || v_keep(i) || ',';
END LOOP;
v_sql := rtrim(v_sql, ',');
p_print_sql(v_sql);
OPEN p_refc FOR v_sql;
EXCEPTION
WHEN OTHERS THEN
OPEN p_refc FOR
SELECT 'x' FROM dual WHERE 0 = 1;
END;
PROCEDURE p_rows_column_real(p_table IN VARCHAR2,
p_keep_cols IN VARCHAR2,
p_pivot_col IN VARCHAR2,
p_pivot_val IN VARCHAR2,
p_where IN VARCHAR2 DEFAULT NULL,
p_refc IN OUT refc) IS
v_sql VARCHAR2(4000);
TYPE v_keep_ind_by IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER;
v_keep v_keep_ind_by;
TYPE v_pivot_ind_by IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER;
v_pivot v_pivot_ind_by;
v_keep_cnt INT;
v_group_by VARCHAR2(2000);
BEGIN
v_keep_cnt := length(p_keep_cols) - length(REPLACE(p_keep_cols, ',')) + 1;
FOR i IN 1 .. v_keep_cnt LOOP
v_keep(i) := f_split_str(p_keep_cols, ',', i);
END LOOP;
v_sql := 'select ' || 'cast(' || p_pivot_col ||
' as varchar2(200)) as ' || p_pivot_col || ' from ' || p_table ||
' group by ' || p_pivot_col;
EXECUTE IMMEDIATE v_sql BULK COLLECT
INTO v_pivot;
FOR i IN 1 .. v_keep.COUNT LOOP
v_group_by := v_group_by || v_keep(i) || ',';
END LOOP;
v_group_by := rtrim(v_group_by, ',');
v_sql := 'select ' || v_group_by || ',';
FOR x IN 1 .. v_pivot.COUNT LOOP
v_sql := v_sql || ' max(decode(' || p_pivot_col || ',' || chr(39) ||
v_pivot(x) || chr(39) || ',' || p_pivot_val ||
',null)) as "' || v_pivot(x) || '",';
END LOOP;
v_sql := rtrim(v_sql, ',');
IF p_where IS NOT NULL THEN
v_sql := v_sql || ' from ' || p_table || p_where || ' group by ' ||
v_group_by;
ELSE
v_sql := v_sql || ' from ' || p_table || ' group by ' || v_group_by;
END IF;
p_print_sql(v_sql);
OPEN p_refc FOR v_sql;
EXCEPTION
WHEN OTHERS THEN
OPEN p_refc FOR
SELECT 'x' FROM dual WHERE 0 = 1;
END;
END;
/
4.
多列转换成字符串
CREATE TABLE t_col_str AS
SELECT * FROM t_col_row;
这个比较简单,用||或concat函数可以实现:
SELECT concat('a','b') FROM dual;
4.1
|| OR CONCAT
适用范围:8i,9i,10g及以后版本
SELECT * FROM t_col_str;
SELECT ID,c1||','||c2||','||c3 AS c123
FROM t_col_str;
5.
多行转换成字符串
CREATE TABLE t_row_str(
ID INT,
col VARCHAR2(10));
INSERT INTO t_row_str VALUES(1,'a');
INSERT INTO t_row_str VALUES(1,'b');
INSERT INTO t_row_str VALUES(1,'c');
INSERT INTO t_row_str VALUES(2,'a');
INSERT INTO t_row_str VALUES(2,'d');
INSERT INTO t_row_str VALUES(2,'e');
INSERT INTO t_row_str VALUES(3,'c');
COMMIT;
SELECT * FROM t_row_str;
5.1
MAX + DECODE
适用范围:8i,9i,10g及以后版本
SELECT id,
MAX(decode(rn, 1, col, NULL)) ||
MAX(decode(rn, 2, ',' || col, NULL)) ||
MAX(decode(rn, 3, ',' || col, NULL)) str
FROM (SELECT id,
col,
row_number() over(PARTITION BY id ORDER BY col) AS rn
FROM t_row_str) t
GROUP BY id
ORDER BY 1;
5.2
ROW_NUMBER + LEAD
适用范围:8i,9i,10g及以后版本
SELECT id, str
FROM (SELECT id,
row_number() over(PARTITION BY id ORDER BY col) AS rn,
col || lead(',' || col, 1) over(PARTITION BY id ORDER BY col) ||
lead(',' || col, 2) over(PARTITION BY id ORDER BY col) ||
lead(',' || col, 3) over(PARTITION BY id ORDER BY col) AS str
FROM t_row_str)
WHERE rn = 1
ORDER BY 1;
5.3
MODEL
适用范围:10g及以后版本
SELECT id, substr(str, 2) str FROM t_row_str
MODEL
RETURN UPDATED ROWS
PARTITION BY(ID)
DIMENSION BY(row_number() over(PARTITION BY ID ORDER BY col) AS rn)
MEASURES (CAST(col AS VARCHAR2(20)) AS str)
RULES UPSERT
ITERATE(3) UNTIL( presentv(str[iteration_number+2],1,0)=0)
(str[0] = str[0] || ',' || str[iteration_number+1])
ORDER BY 1;
5.4
SYS_CONNECT_BY_PATH
适用范围:8i,9i,10g及以后版本
SELECT t.id id, MAX(substr(sys_connect_by_path(t.col, ','), 2)) str
FROM (SELECT id, col, row_number() over(PARTITION BY id ORDER BY col) rn
FROM t_row_str) t
START WITH rn = 1
CONNECT BY rn = PRIOR rn + 1
AND id = PRIOR id
GROUP BY t.id;
适用范围:10g及以后版本
SELECT t.id id, substr(sys_connect_by_path(t.col, ','), 2) str
FROM (SELECT id, col, row_number() over(PARTITION BY id ORDER BY col) rn
FROM t_row_str) t
WHERE connect_by_isleaf = 1
START WITH rn = 1
CONNECT BY rn = PRIOR rn + 1
AND id = PRIOR id;
5.5
WMSYS.WM_CONCAT
适用范围:10g及以后版本
这个函数预定义按','分隔字符串,若要用其他符号分隔可以用,replace将','替换。
SELECT id, REPLACE(wmsys.wm_concat(col), ',', '/') str
FROM t_row_str
GROUP BY id;
6.
字符串转换成多列
其实际上就是一个字符串拆分的问题。
CREATE TABLE t_str_col AS
SELECT ID,c1||','||c2||','||c3 AS c123
FROM t_col_str;
SELECT * FROM t_str_col;
6.1
SUBSTR + INSTR
适用范围:8i,9i,10g及以后版本
SELECT id,
c123,
substr(c123, 1, instr(c123 || ',', ',', 1, 1) - 1) c1,
substr(c123,
instr(c123 || ',', ',', 1, 1) + 1,
instr(c123 || ',', ',', 1, 2) - instr(c123 || ',', ',', 1, 1) - 1) c2,
substr(c123,
instr(c123 || ',', ',', 1, 2) + 1,
instr(c123 || ',', ',', 1, 3) - instr(c123 || ',', ',', 1, 2) - 1) c3
FROM t_str_col
ORDER BY 1;
6.2
REGEXP_SUBSTR
适用范围:10g及以后版本
SELECT id,
c123,
rtrim(regexp_substr(c123 || ',', '.*?' || ',', 1, 1), ',') AS c1,
rtrim(regexp_substr(c123 || ',', '.*?' || ',', 1, 2), ',') AS c2,
rtrim(regexp_substr(c123 || ',', '.*?' || ',', 1, 3), ',') AS c3
FROM t_str_col
ORDER BY 1;
7.
字符串转换成多行
CREATE TABLE t_str_row AS
SELECT id,
MAX(decode(rn, 1, col, NULL)) ||
MAX(decode(rn, 2, ',' || col, NULL)) ||
MAX(decode(rn, 3, ',' || col, NULL)) str
FROM (SELECT id,
col,
row_number() over(PARTITION BY id ORDER BY col) AS rn
FROM t_row_str) t
GROUP BY id
ORDER BY 1;
SELECT * FROM t_str_row;
7.1
UNION ALL
适用范围:8i,9i,10g及以后版本
SELECT id, 1 AS p, substr(str, 1, instr(str || ',', ',', 1, 1) - 1) AS cv
FROM t_str_row
UNION ALL
SELECT id,
2 AS p,
substr(str,
instr(str || ',', ',', 1, 1) + 1,
instr(str || ',', ',', 1, 2) - instr(str || ',', ',', 1, 1) - 1) AS cv
FROM t_str_row
UNION ALL
SELECT id,
3 AS p,
substr(str,
instr(str || ',', ',', 1, 1) + 1,
instr(str || ',', ',', 1, 2) - instr(str || ',', ',', 1, 1) - 1) AS cv
FROM t_str_row
ORDER BY 1, 2;
适用范围:10g及以后版本
SELECT id, 1 AS p, rtrim(regexp_substr(str||',', '.*?' || ',', 1, 1), ',') AS cv
FROM t_str_row
UNION ALL
SELECT id, 2 AS p, rtrim(regexp_substr(str||',', '.*?' || ',', 1, 2), ',') AS cv
FROM t_str_row
UNION ALL
SELECT id, 3 AS p, rtrim(regexp_substr(str||',', '.*?' || ',',1,3), ',') AS cv
FROM t_str_row
ORDER BY 1, 2;
7.2
VARRAY
适用范围:8i,9i,10g及以后版本
要创建一个可变数组:
CREATE OR REPLACE TYPE ins_seq_type IS VARRAY(8) OF NUMBER;
SELECT * FROM TABLE(ins_seq_type(1, 2, 3, 4, 5));
SELECT t.id,
c.column_value AS p,
substr(t.ca,
instr(t.ca, ',', 1, c.column_value) + 1,
instr(t.ca, ',', 1, c.column_value + 1) -
(instr(t.ca, ',', 1, c.column_value) + 1)) AS cv
FROM (SELECT id,
',' || str || ',' AS ca,
length(str || ',') - nvl(length(REPLACE(str, ',')), 0) AS cnt
FROM t_str_row) t
INNER JOIN TABLE(ins_seq_type(1, 2, 3)) c ON c.column_value <=
t.cnt
ORDER BY 1, 2;
7.3
SEQUENCE SERIES
这类方法主要是要产生一个连续的整数列,产生连续整数列的方法有很多,主要有:
CONNECT BY,ROWNUM+all_objects,CUBE等。
适用范围:8i,9i,10g及以后版本
SELECT t.id,
c.lv AS p,
substr(t.ca,
instr(t.ca, ',', 1, c.lv) + 1,
instr(t.ca, ',', 1, c.lv + 1) -
(instr(t.ca, ',', 1, c.lv) + 1)) AS cv
FROM (SELECT id,
',' || str || ',' AS ca,
length(str || ',') - nvl(length(REPLACE(str, ',')), 0) AS cnt
FROM t_str_row) t,
(SELECT LEVEL lv FROM dual CONNECT BY LEVEL <= 5) c
WHERE c.lv <= t.cnt
ORDER BY 1, 2;
SELECT t.id,
c.rn AS p,
substr(t.ca,
instr(t.ca, ',', 1, c.rn) + 1,
instr(t.ca, ',', 1, c.rn + 1) -
(instr(t.ca, ',', 1, c.rn) + 1)) AS cv
FROM (SELECT id,
',' || str || ',' AS ca,
length(str || ',') - nvl(length(REPLACE(str, ',')), 0) AS cnt
FROM t_str_row) t,
(SELECT rownum rn FROM all_objects WHERE rownum <= 5) c
WHERE c.rn <= t.cnt
ORDER BY 1, 2;
SELECT t.id,
c.cb AS p,
substr(t.ca,
instr(t.ca, ',', 1, c.cb) + 1,
instr(t.ca, ',', 1, c.cb + 1) -
(instr(t.ca, ',', 1, c.cb) + 1)) AS cv
FROM (SELECT id,
',' || str || ',' AS ca,
length(str || ',') - nvl(length(REPLACE(str, ',')), 0) AS cnt
FROM t_str_row) t,
(SELECT rownum cb FROM (SELECT 1 FROM dual GROUP BY CUBE(1, 2))) c
WHERE c.cb <= t.cnt
ORDER BY 1, 2;
适用范围:10g及以后版本
SELECT t.id,
c.lv AS p,
rtrim(regexp_substr(t.str || ',', '.*?' || ',', 1, c.lv), ',') AS cv
FROM (SELECT id,
str,
length(regexp_replace(str || ',', '[^' || ',' || ']', NULL)) AS cnt
FROM t_str_row) t
INNER JOIN (SELECT LEVEL lv FROM dual CONNECT BY LEVEL <= 5) c ON c.lv <= t.cnt
ORDER BY 1, 2;
7.4
HIERARCHICAL + DBMS_RANDOM
适用范围:10g及以后版本
SELECT id,
LEVEL AS p,
rtrim(regexp_substr(str || ',', '.*?' || ',', 1, LEVEL), ',') AS cv
FROM t_str_row
CONNECT BY id = PRIOR id
AND PRIOR dbms_random.VALUE IS NOT NULL
AND LEVEL <=
length(regexp_replace(str || ',', '[^' || ',' || ']', NULL))
ORDER BY 1, 2;
7.5
HIERARCHICAL + CONNECT_BY_ROOT
适用范围:10g及以后版本
SELECT id,
LEVEL AS p,
rtrim(regexp_substr(str || ',', '.*?' || ',', 1, LEVEL), ',') AS cv
FROM t_str_row
CONNECT BY id = connect_by_root id
AND LEVEL <=
length(regexp_replace(str || ',', '[^' || ',' || ']', NULL))
ORDER BY 1, 2;
7.6
MODEL
适用范围:10g及以后版本
SELECT id, p, cv FROM t_str_row
MODEL
RETURN UPDATED ROWS
PARTITION BY(ID)
DIMENSION BY( 0 AS p)
MEASURES( str||',' AS cv)
RULES UPSERT
(cv
[ FOR p
FROM 1 TO length(regexp_replace(cv[0],'[^'||','||']',null))
例子:
SELECT t.dutyname , substr(sys_connect_by_path(t.username, ','), 2) str
FROM (SELECT dutyname, username, row_number() over(PARTITION BY dutyname ORDER BY username) rn
FROM test) t
WHERE connect_by_isleaf = 1
START WITH rn = 1
CONNECT BY rn = PRIOR rn + 1
AND dutyname = PRIOR dutyname;
Https是什么?
Https是基于安全目的的Http通道,其安全基础由SSL层来保证。最初由netscape公司研发,主要提供了通讯双方的身份认证和加密通信方法。现在广泛应用于互联网上安全敏感通讯。
Https与Http主要区别
协议基础不同:Https在Http下加入了SSL层,
通讯方式不同:Https在数据通信之前需要客户端、服务器进行握手(身份认证),建立连接后,传输数据经过加密,通信端口443。
Http传输数据不加密,明文,通信端口80。
SSL协议基础
SSL协议位于TCP/IP协议与各种应用层协议之间,本身又分为两层:
SSL记录协议(SSL Record Protocol):建立在可靠传输层协议(TCP)之上,为上层协议提供数据封装、压缩、加密等基本功能。
SSL握手协议(SSL Handshake Procotol):在SSL记录协议之上,用于实际数据传输前,通讯双方进行身份认证、协商加密算法、交换加密密钥等。
SSL协议通信过程
(1) 浏览器发送一个连接请求给服务器;服务器将自己的证书(包含服务器公钥S_PuKey)、对称加密算法种类及其他相关信息返回客户端;
(2) 客户端浏览器检查服务器传送到CA证书是否由自己信赖的CA中心签发。若是,执行4步;否则,给客户一个警告信息:询问是否继续访问。
(3) 客户端浏览器比较证书里的信息,如证书有效期、服务器域名和公钥S_PK,与服务器传回的信息是否一致,如果一致,则浏览器完成对服务器的身份认证。
(4) 服务器要求客户端发送客户端证书(包含客户端公钥C_PuKey)、支持的对称加密方案及其他相关信息。收到后,服务器进行相同的身份认证,若没有通过验证,则拒绝连接;
(5) 服务器根据客户端浏览器发送到密码种类,选择一种加密程度最高的方案,用客户端公钥C_PuKey加密后通知到浏览器;
(6) 客户端通过私钥C_PrKey解密后,得知服务器选择的加密方案,并选择一个通话密钥key,接着用服务器公钥S_PuKey加密后发送给服务器;
(7) 服务器接收到的浏览器传送到消息,用私钥S_PrKey解密,获得通话密钥key。
(8) 接下来的数据传输都使用该对称密钥key进行加密。
上面所述的是双向认证 SSL 协议的具体通讯过程,服务器和用户双方必须都有证书。由此可见,SSL协议是通过非对称密钥机制保证双方身份认证,并完成建立连接,在实际数据通信时通过对称密钥机制保障数据安全性
1. CouchDB
•所用语言: Erlang
•特点:DB一致性,易于使用
•使用许可: Apache
•协议: HTTP/REST
•双向数据复制,
•持续进行或临时处理,
•处理时带冲突检查,
•因此,采用的是master-master复制(见编注2)
•MVCC – 写操作不阻塞读操作
•可保存文件之前的版本
•Crash-only(可靠的)设计
•需要不时地进行数据压缩
•视图:嵌入式 映射/减少
•格式化视图:列表显示
•支持进行服务器端文档验证
•支持认证
•根据变化实时更新
•支持附件处理
•因此, CouchApps(独立的 js应用程序)
•需要 jQuery程序库
最佳应用场景:适用于数据变化较少,执行预定义查询,进行数据统计的应用程序。适用于需要提供数据版本支持的应用程序。 例如: CRM、CMS系统。
master-master复制对于多站点部署是非常有用的。 (编注2:master-master复制:是一种数据库同步方法,允许数据在一组计算机之间共享数据,
并且可以通过小组中任意成员在组内进行数据更新。)
2. Redis
•所用语言:C/C++
•特点:运行异常快
•使用许可: BSD
•协议:类 Telnet
•有硬盘存储支持的内存数据库,
•但自2.0版本以后可以将数据交换到硬盘(注意, 2.4以后版本不支持该特性!)
•Master-slave复制(见编注3)
•虽然采用简单数据或以键值索引的哈希表,但也支持复杂操作,例如 ZREVRANGEBYSCORE。
•INCR & co (适合计算极限值或统计数据)
•支持 sets(同时也支持 union/diff/inter)
•支持列表(同时也支持队列;阻塞式 pop操作)
•支持哈希表(带有多个域的对象)
•支持排序 sets(高得分表,适用于范围查询)
•Redis支持事务 •支持将数据设置成过期数据(类似快速缓冲区设计)
•Pub/Sub允许用户实现消息机制
最佳应用场景:适用于数据变化快且数据库大小可遇见(适合内存容量)的应用程序。 例如:股票价格、数据分析、实时数据搜集、实时通讯。
(编注3:Master-slave复制:如果同一时刻只有一台服务器处理所有的复制请求,这被称为 Master-slave复制,通常应用在需要提供高可用性的服务器集群。)
3. MongoDB
•所用语言:C++
•特点:保留了SQL一些友好的特性(查询,索引)。
•使用许可: AGPL(发起者: Apache)
•协议: Custom, binary( BSON)
•Master/slave复制(支持自动错误恢复,使用 sets 复制)
•内建分片机制
•支持 javascript表达式查询
•可在服务器端执行任意的 javascript函数
•update-in-place支持比CouchDB更好
•在数据存储时采用内存到文件映射
•对性能的关注超过对功能的要求
•建议最好打开日志功能(参数 –journal)
•在32位操作系统上,数据库大小限制在约2.5Gb
•空数据库大约占 192Mb
•采用 GridFS存储大数据或元数据(不是真正的文件系统)
最佳应用场景:适用于需要动态查询支持;需要使用索引而不是 map/reduce功能;需要对大数据库有性能要求;需要使用 CouchDB但因为数据改变太频繁而占满内存的应用程序。 例如:你本打算采用 MySQL或 PostgreSQL,但因为它们本身自带的预定义栏让你望而却步。
4. Riak
•所用语言:Erlang和C,以及一些Javascript
•特点:具备容错能力
•使用许可: Apache
•协议: HTTP/REST或者 custom binary
•可调节的分发及复制(N, R, W)
•用 JavaScript or Erlang在操作前或操作后进行验证和安全支持。
•使用JavaScript或Erlang进行 Map/reduce
•连接及连接遍历:可作为图形数据库使用
•索引:输入元数据进行搜索(1.0版本即将支持)
•大数据对象支持( Luwak)
•提供“开源”和“企业”两个版本
•全文本搜索,索引,通过 Riak搜索服务器查询( beta版)
•支持Masterless多站点复制及商业许可的 SNMP监控
最佳应用场景:适用于想使用类似 Cassandra(类似Dynamo)数据库但无法处理 bloat及复杂性的情况。适用于你打算做多站点复制,但又需要对单个站点的扩展性,可用性及出错处理有要求的情况。 例如:销售数据搜集,工厂控制系统;对宕机时间有严格要求;可以作为易于更新的 web服务器使用。
5. Membase
•所用语言: Erlang和C
•特点:兼容 Memcache,但同时兼具持久化和支持集群
•使用许可: Apache 2.0
•协议:分布式缓存及扩展
•非常快速(200k+/秒),通过键值索引数据
•可持久化存储到硬盘
•所有节点都是唯一的( master-master复制)
•在内存中同样支持类似分布式缓存的缓存单元
•写数据时通过去除重复数据来减少 IO
•提供非常好的集群管理 web界面
•更新软件时软无需停止数据库服务
•支持连接池和多路复用的连接代理
最佳应用场景:适用于需要低延迟数据访问,高并发支持以及高可用性的应用程序 例如:低延迟数据访问比如以广告为目标的应用,高并发的 web 应用比如网络游戏(例如 Zynga)
6. Neo4j
•所用语言: Java
•特点:基于关系的图形数据库
•使用许可: GPL,其中一些特性使用 AGPL/商业许可
•协议: HTTP/REST(或嵌入在 Java中)
•可独立使用或嵌入到 Java应用程序
•图形的节点和边都可以带有元数据
•很好的自带web管理功能
•使用多种算法支持路径搜索
•使用键值和关系进行索引
•为读操作进行优化
•支持事务(用 Java api)
•使用 Gremlin图形遍历语言
•支持 Groovy脚本
•支持在线备份,高级监控及高可靠性支持使用 AGPL/商业许可 最佳应用场景:适用于图形一类数据。这是 Neo4j与其他nosql数据库的最显著区别 例如:社会关系,公共交通网络,地图及网络拓谱
7. Cassandra
•所用语言: Java
•特点:对大型表格和 Dynamo支持得最好
•使用许可: Apache
•协议: Custom, binary (节约型)
•可调节的分发及复制(N, R, W)
•支持以某个范围的键值通过列查询
•类似大表格的功能:列,某个特性的列集合
•写操作比读操作更快
•基于 Apache分布式平台尽可能地 Map/reduce
•我承认对 Cassandra有偏见,一部分是因为它本身的臃肿和复杂性,也因为 Java的问题(配置,出现异常,等等)
最佳应用场景:当使用写操作多过读操作(记录日志)如果每个系统组建都必须用 Java编写(没有人因为选用 Apache的软件被解雇) 例如:银行业,金融业(虽然对于金融交易不是必须的,但这些产业对数据库的要求会比它们更大)写比读更快,所以一个自然的特性就是实时数据分析
8. HBase (配合 ghshephard使用)
•所用语言: Java
•特点:支持数十亿行X上百万列
•使用许可: Apache
•协议:HTTP/REST (支持 Thrift,见编注4)
•在 BigTable之后建模
•采用分布式架构 Map/reduce
•对实时查询进行优化
•高性能 Thrift网关
•通过在server端扫描及过滤实现对查询操作预判
•支持 XML, Protobuf, 和binary的HTTP
•Cascading, hive, and pig source and sink modules
•基于 Jruby( JIRB)的shell
•对配置改变和较小的升级都会重新回滚
•不会出现单点故障
•堪比MySQL的随机访问性能 最佳应用场景:适用于偏好BigTable:)并且需要对大数据进行随机、实时访问的场合。 例如: Facebook消息数据库(更多通用的用例即将出现)
SGA中的第三个组成部分是共享池。共享池是对sql ,pl/sql 程序进行语法分析、编译、执行的内存区域。共享池包括库缓冲区(library cache)、数据字典缓冲区(Data Directory Cache)用户全局区(User Global Area)。其中库缓冲区含有Sql 语句的分析码、执行计划;数据字典缓冲区含有从数据字典中得到的表、列定义、权限。用户全局区包含用户的MTS 会话信息。
共享池主要用于对SQL 、pl/sql 程序语句进行语法分析、编译、执行、所以,如果应用中药运行大量存储过程或包,则要增加共享池的尺寸。共享池的大小由参数SHARE_POOL_SIZE确定。要了解共享池大小,可以用以下方法:
方法一:
- ………
- Shared_Pool_size = 52428800
- …..
方法二:
- SQL> select name,value from v$parameter where name like ‘%size’;
方法三:
- SQL> show parameter share_pool_size
共享池应计算存储过程、包等的成功率。
可以查询数据字典 v$rowcache 了解数据字典的成功与失败次数。
- SQL> select sum(gets) “dictionary gets”,
- Sum(getmisses) “dictionary cache getmisses”
- From v$rowcache ;
其中gets 表示读取某一类数据字典的成功次数,getsmisses 表示读取某一类数据字典的失败次数。此外还可以通过查询结果计算共享池中读取数据字典的成功率
- SQL> select parameter, get, getmisses, getmisses/(getmisses+gets)*100 “miss ratio”,
- (1- (sum(getmisses)/(sum(getmisses)+sum(gets)) ) ) *100 “hit ratio”
- From v$rowcache
- Where gets+getmisses<>0
- Group by parameter,gets,getmisses;
查询数据字典 v$librarycache 可以计算共享池中库缓存的失败率,结果应该小于1%。
- SQL>select sum(pins) “ total pins”, sum(reloads) “ total reloads”, sum(reloads)/sum(pins)*100 libarycache from v$librarycache;
其中 total pins 表示驻留内存的次数, total reloads 表示重新加载到内存的次数,librarycache 表示失败率。
上面分析了系统全局区的三个组成部分-----数据缓冲区、日志缓冲区及共享池,如果要得到SGA的总大小,可以在SQL*Plus中使用show sga 命令。
SQL>show sga或查询数据字典
SQL> select * from v$sga;
如果要查询某个参数的大小,可以查询数据字典v_$sagstat,通过计算可以知道sga的使用空间与空闲空间的比。
- SQL>col OBJECT_NAME format a20
- SQL> col 空闲空间百分比(%) format 90.99
- SQL> select name,
- Sgasize/1024/1024 “allocated(M)” ,
- Bytes/1024 “空闲空间(k)” ,
- Round(bytes/sagsize*100,2) “空闲空间百分比(%)”
- From ( select sum(bytes) sgasize from sys.v_$sgastat) s ,sys.v_$sgastat f
- Where f.name=’free memory’ ;
关于Oracle 10g内存结构之共享池的相关知识及使用方法就介绍到这里了,希望本次的介绍能够对您有所收获!
我们知道,内存结构是Oracle体系结构中最重要的部分之一。按照系统对内存使用方法的不同,可以分为系统全局区(SGA)、程序全局区(PGA)、排序区(Sort Area)、大池(Large Pool)、及java池(java Pool),本文我们先介绍一下Oracle 10g内存结构之系统全局区的内容,接下来我们就开始介绍这部分内容。
系统全局区(System Global Area)
它是一组为系统分配的内存共享结构,可以包含一个数据库实例的数据和控制信息。如果多个用户连接到一个实例,在实例的系统全局区中,数据可以被多个用户共享,所以又称共享全局区。系统全局区按其作用不同,可以分为数据缓冲区、日志缓冲区及共享池。
数据缓冲区:
数据缓冲区用于从磁盘读入的数据,供所有用户共享。
修改的数据、插入的数据存储在数据缓冲区中,修改完成或DBWR进程的其他条件引发时,数据被写入数据文件
数据缓冲区工作原理:
LRU (Least recently used):最近最少使用原则的缩写,是一种数据缓冲区的一种管理机制,,只保留最近数据,不保留旧数据。
Dirty:表示脏数据,脏数据是修改后还没有写到数据文件的数据。
Oracle10g 的数据库内存的设置参数不再由DB_BLOCK_BUFFERS确定,而是由oracle的新参数DB_CACHE_SIZE 和DB_nK_CACHE_SIZE确定,不同的数据段可以使用不同的数据块。大表可以存储在大的数据块表空间中,小表可以存储在小的数据块表空间中,以优化i/o性能。对于系统表空间、临时表空间、及其它默认设置的表空间,可以使用标准的数据块DB_BLOCK_SIZE确定。
标准数据块DB_BLOCK_SIZE用于系统表空间及默认表空间,其他表空间可以使用非标准数据块BLOCKSIZE(创建表空间时使用),其值分别为 2k 4k 8k 16k 32k ,非标准数据块的数据缓冲区使用参数DB_Nk_CACHE_SIZE确定。
需要注意的是BLOCKSIZE不得用于标准块。如果设置了DB_BLOCK_SIZE=2048,则不得设置DB_2K_CACHE_SIZE,标准块必须使用参数DB_CACHE_SIZE 来设置。同时可以在线修改数据缓冲区参数:SQL> alter system set db_2k_cache_size = 10M ;如果要查询数据缓冲区大小,可以如下:SQL> show parameter db。
在创建不同数据块表空间时,要使用参数BLOCKSIZE指出数据块的大小,同时在参数文件中要使用DB_Nk_CACHE_SIZE 进行配置,与BLOCKSIZE的个数相对应,否则会出现错误。
设置动态内存时,可以将多个参数全部写入参数文件,格式如下:
- # cache and i/o
- DB_BLOCK_SIZE=4096
- DB_CACHE_SIZE=20971520
- DB_2K_CACHE_SIZE=8M
- DB_8K_CACHE_SIZE=4M
- ……..
其中,参数 DB_CACHE_SIZE 只适用于系统表空间、临时表空间、及默认表空间,DB_2K_CACHE_SIZE 适合 BLOCKSIZE 为2K的表空间。8K 也是一样的道理。
数据缓冲区对数据库德存取速度又直接影响。一般的缓冲区命中率应该在90% 以上。例如,使用数据字典 v$sysstat 计算数据缓冲区命中率:
- SQL> select a.value+b.value “logical_reads” , c.value “phys_reads”,
- Round(100* ( ( a.value+b.value)- c.value) /
- ( a.value+b.value ) ) “buffer hit radio “
- From v$sysstat a, v$sysstat b,v$sysstat c
- Where a.statistic#=38 and b.statistic#=39 and c.statistic#=40;
下面是计算数据缓冲命中率的另一种方法:
- SQL> select name, value
- From v$sysstat
- Where name in ( ‘session logical reads’,’physical reads’,physical reads direct’, ‘physical reads direct (lob)’);
其中:Session logical reads 为读的总量。Physical reads为从数据文件读。Physical reads direct 为从缓冲区读(不含lobs)。Physical reads direct (lobs) 为从缓冲区读(含lobs)。Hit Ratio = 1- ( ( physical reads- physical reads direct – physical reads direct(lob) ) /session logical reads) = 95%。
日志缓冲区
日志缓冲区用来存储数据库的修改信息。日志信息首先在日志缓冲区中产生,当日志缓冲区的日志达到一定数量时,由日志写入进程LGWR将日志数据写入日志文件组,再经过切换,由归档进程ARCH将日志数据写入归档介质。
日志缓冲区大小由参数LOG_BUFFER确定,要查询日志缓冲区大小可以用以下方法:
方法一:参数文件中:
- ……
- Processes = 150
- Parallel_max_servers = 5
- Log_buffer = 32768
- ……..
方法二:
- SQL> select name,value from v$parameter where name like ‘%buffer’;
方法三:
- SQL> show parameter log_buffer
对于日志缓冲区而言可以计算失败率,使用数据字典v$latch 计算日志缓冲区的失败率
- SQL>select name,gets,misses,immediate_gets,immediate_misses,
- Decode(gets,0,0,misses/gets*100) ratiol,
- Decode (immediate_gets+immediate_misses,0,0,
- immediate_misses/(immediate_gets+immediate_misses)*100) ratio2
- from v$latch
- where name in (‘redo allocation’, ‘redo copy’);
其中
Gets 表示成功等待日志缓冲区的次数。
Immediate gets 表示成功立即得到日志缓冲区的次数。
Immediate misses 表示未成功立即得到日志缓冲区的次数。
等待表示日志在进入日志缓冲区时,因为日志缓冲区过小而没有空闲空间,所以日志缓冲区的失败可以表示日志缓冲区是否足够大,不够大时,用户的日志写将产生等待过程。日志缓冲区的失败率应该小于1%。
此外,可以查询用户进程等待日志缓冲区时的次数,通过数据字典v$sysstat 得到:
- SQL> select name,value from v$sysstat
- Where name = ‘ redo buffer allocation retries’ ;
关于Oracle 10g内存结构之系统全局区的相关知识就介绍到这里了,希望本次的介绍能够对您有所收获!
本文是关于Oracle数据库调试与优化方面的文章,主要介绍Oracle数据库中命中率相关的问题,包括不同的算法之间性能的比对。关于Oracle中各个命中率的计算以及相关的调优 1) Library Cache的命中率: 计算公式:Library Cache Hit Ratio = sum(pinhits) / sum(pi
本文是关于Oracle数据库调试与优化方面的文章,主要介绍Oracle数据库中命中率相关的问题,包括不同的算法之间性能的比对。关于Oracle中各个命中率的计算以及相关的调优
1)Library Cache的命中率:计算公式:Library Cache Hit Ratio = sum(pinhits) / sum(pins)
1 |
SELECT SUM (pinhits)/ sum (pins) FROM V$LIBRARYCACHE;
|
通常在98%以上,否则,需要要考虑加大共享池,绑定变量,修改cursor_sharing等参数。
2)计算共享池内存使用率:
1
2 |
SELECT (1 - ROUND(BYTES / (&TSP_IN_M * 1024 * 1024), 2)) * 100 || '%'
FROM V$SGASTAT WHERE NAME = 'free memory' AND POOL = 'shared pool' ;
|
其中: &TSP_IN_M是你的总的共享池的SIZE(M)
共享池内存使用率,应该稳定在75%-90%间,太小浪费内存,太大则内存不足。
查询空闲的共享池内存:
1
2 |
SELECT * FROM V$SGASTAT WHERE
NAME = 'free memory' AND POOL = 'shared pool' ;
|
3)db buffer cache命中率:计算公式:Hit ratio = 1 - [physical reads/(block gets + consistent gets)]
1
2
3 |
SELECT NAME , PHYSICAL_READS, DB_BLOCK_GETS, CONSISTENT_GETS,
1 - (PHYSICAL_READS / (DB_BLOCK_GETS + CONSISTENT_GETS))
"Hit Ratio" FROM V$BUFFER_POOL_STATISTICS WHERE NAME = 'DEFAULT' ;
|
通常应在90%以上,否则,需要调整,加大DB_CACHE_SIZE
外一种计算命中率的方法(摘自ORACLE官方文档<<数据库性能优化>>):
命中率的计算公式为:
Hit Ratio = 1 - ((physical reads - physical reads direct - physical reads direct (lob)) / (db block gets + consistent gets - physical reads direct - physical reads direct (lob))
分别代入上一查询中的结果值,就得出了Buffer cache的命中率
1
2
3
4 |
SELECT NAME , VALUE FROM V$SYSSTAT WHERE NAME IN (
'session logical reads' , 'physical reads' ,
'physical reads direct' , 'physical reads direct (lob)' ,
'db block gets' , 'consistent gets' );
|
4)数据缓冲区命中率:
1
2
3
4
5 |
SQL> select value from v$sysstat where name = 'physical reads' ;
SQL> select value from v$sysstat where name = 'physical reads direct' ;
SQL> select value from v$sysstat where name = 'physical reads direct (lob)' ;
SQL> select value from v$sysstat where name = 'consistent gets' ;
SQL> select value from v$sysstat where name = 'db block gets' ;
|
这里命中率的计算应该是令 x = physical reads direct + physical reads direct (lob),命中率 =100 - ( physical reads - x) / (consistent gets + db block gets - x)*100,通常如果发现命中率低于90%,则应该调整应用可可以考虑是否增大数据缓冲区
5)共享池的命中率:
1
2 |
select sum (pinhits-reloads)/ sum (pins)*100 "hit radio"
from v$librarycache;
|
假如共享池的命中率低于95%,就要考虑调整应用(通常是没使用bind var )或者增加内存
6)计算在内存中排序的比率:
1 |
SELECT * FROM v$sysstat t WHERE NAME = 'sorts (memory)' ;
|
查询内存排序数
1 |
SELECT * FROM v$sysstat t WHERE NAME = 'sorts (disk)' ;
|
查询磁盘排序数caculate sort in memory ratio
1 |
SELECT round(&sort_in_memory/(&sort_in_memory+&sort_in_disk),4)*100|| '%' FROM dual;
|
此比率越大越好,太小整要考虑调整,加大PGA
7)PGA的命中率:
计算公式:BP x 100 / (BP + EBP)
BP: bytes processed
EBP: extra bytes read/written
1 |
SELECT * FROM V$PGASTAT WHERE NAME = 'cache hit percentage' ;
|
或者从OEM的图形界面中查看
我们可以查看一个视图以获取Oracle的建议值:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 |
SELECT round(PGA_TARGET_FOR_ESTIMATE/1024/1024) target_mb,
ESTD_PGA_CACHE_HIT_PERCENTAGE cache_hit_perc, ESTD_OVERALLOC_COUNT
FROM V$PGA_TARGET_ADVICE;
The output of this query might look like the following:
TARGET_MB CACHE_HIT_PERC ESTD_OVERALLOC_COUNT
63 23 367
125 24 30
250 30 3
375 39 0
500 58 0
600 59 0
700 59 0
800 60 0
900 60 0
|
在此例中:PGA至少要分配375M
我个人认为PGA命中率不应该低于50%
以下的SQL统计sql语句执行在三种模式的次数: optimal memory size, one-pass memory size, multi-pass memory size:
1
2
3 |
SELECT name profile, cnt, decode(total, 0, 0, round(cnt*100/total,4))
percentage FROM ( SELECT name , value cnt, ( sum (value) over ())
total FROM V$SYSSTAT WHERE name like 'workarea exec%' );
|
8)共享区字典缓存区命中率
计算公式:SUM(gets - getmisses - usage -fixed) / SUM(gets)
命中率应大于0.85
1 |
select sum (gets-getmisses-usage-fixed)/ sum (gets) from v$rowcache;
|
9)数据高速缓存区命中率
计算公式:1-(physical reads / (db block gets + consistent gets))
命中率应大于0.90最好
1 |
select name ,value from v$sysstat where name in ( 'physical reads' , 'db block gets' , 'consistent gets' );
|
10)共享区库缓存区命中率
计算公式:SUM(pins - reloads) / SUM(pins)
命中率应大于0.99
1 |
select sum (pins-reloads)/ sum (pins) from v$librarycache;
|
11)检测回滚段的争用
SUM(waits)值应小于SUM(gets)值的1%
1 |
select sum (gets), sum (waits), sum (waits)/ sum (gets) from v$rollstat;
|
12)检测回滚段收缩次数
1
2 |
select name ,shrinks from v$rollstat, v$rollname
where v$rollstat.usn = v$rollname.usn;
|
几个常用的检查语句
1. 查找排序最多的SQL:
1
2 |
SELECT HASH_VALUE, SQL_TEXT, SORTS, EXECUTIONS
FROM V$SQLAREA ORDER BY SORTS DESC ;
|
2.查找磁盘读写最多的SQL:
1
2
3
4 |
SELECT * FROM ( SELECT sql_text,disk_reads "total disk" ,
executions "total exec" ,disk_reads/executions "disk/exec"
FROM v$sql WHERE executions>0 and is_obsolete= 'N' ORDER BY
4 desc ) WHERE ROWNUM<11 ;
|
3.查找工作量最大的SQL(实际上也是按磁盘读写来排序的):
1
2
3
4
5
6
7
8 |
select substr(to_char(s.pct, '99.00' ), 2) || '%' load ,
s.executions executes,p.sql_text from ( select address,disk_reads,executions,pct,rank() over
( order by disk_reads desc ) ranking from ( select
address,disk_reads,executions,100 * ratio_to_report
(disk_reads) over () pct from sys.v_$sql where
command_type != 47) where disk_reads > 50 * executions) s,
ys.v_$sqltext p where s.ranking <= 5 and p.address = s.address
order by 1, s.address, p.piece;
|
4. 用下列SQL工具找出低效SQL:
1
2
3
4
5 |
select executions,disk_reads,buffer_gets,round((buffer_gets-
disk_reads)/buffer_gets,2) Hit_radio,round(disk_reads/executions,2)
reads_per_run,sql_text From v$sqlarea Where executions>0 and
buffer_gets >0 and (buffer_gets-disk_reads)/buffer_gets<0.8
Order by 4 desc ;
|
5、根据sid查看对应连接正在运行的sql
1
2
3
4
5
6
7 |
select /*+ push_subq */command_type,sql_text,sharable_mem,persistent_mem,
runtime_mem,sorts,version_count,loaded_versions,open_versions,
users_opening,executions,users_executing,loads,first_load_time,
invalidations,parse_calls,disk_reads,buffer_gets,rows_processed,
sysdate start_time,sysdate finish_time,’>’||address
sql_address,’N’status From v$sqlarea Where address=
( select sql_address from v$session where sid=&sid);
|
***************Oracle 缓冲区命中率低的分析及解决办法******************
首先确定下面的查询结果:
1,缓冲区命中率的查询(是否低于90%):
1
2
3 |
select round((1 - sum (decode( name , 'physical reads' ,value,0)) /
( sum (decode( name , 'db block gets' ,value,0)) + sum (decode( name , '
consistent gets' ,value,0))) ),4) *100 || '%' chitrati from v$sysstat;
|
2,使用率的查询(有无free状态的数据快.):
1 |
select count (*), status from v$bh group by status ;
|
3,相关等待事件的查询(是否有相关等待事件)
1
2 |
select event,total_waits from v$system_event where event
in ( 'free buffer waits' );
|
4,当前大小(是否已经很大)
1
2 |
select value/1024/1024 cache_size from v$parameter
where name = 'db_cache_size'
|
5,top等待事件分析(Db file scatered read的比率是否大)
1
2
3
4
5
6
7 |
select event ,total_waits,suml from ( select
event,total_waits,round(total_waits/sumt*100,2)|| '%' suml
from ( select event,total_waits from v$system_event ),
( select sum (total_waits) sumt from v$system_event)
order by total_waits desc ) where rownum<6 and event
not like 'rdbms%' and event not like 'pmon%' and event
not like 'SQL*Net%' and event not like 'smon%' ;
|
6,db_cache_advice建议值(9i后的新特性,可以根据他更好的调整cache_size)
1
2 |
select block_size,size_for_estimate,size_factor,
estd_physical_reads from v$db_cache_advice;
|
说明分析:
缓冲区命中率(低于90的命中率就算比较低的).
没有free不一定说明需要增加,还要结合当前cache_size的大小(我们是否还可以再增大,是否有需要增加硬件,增加开销),
空闲缓冲区等待说明进程找不到空闲缓冲区,并通过写出灰缓冲区,来加速数据库写入器生成空闲缓冲区,当DBWn将块写入磁盘后,灰数据缓冲区将被释放,以便重新使用.产生这种原因主要是:
1,DBWn可能跟不上写入灰缓冲区:i/0系统较慢,尽量将文件均匀的分布于所有设备,
2,缓冲区过小或过大。
3,可以增加db_writer_processes数量。
4,可能有很大的一个事物,或者连续的大事物
我们需要长期观察这个事件是否长期存在并数值一直在增大,如果一直在增大,则说明需要增大db_cache大小.或优化sql.
数据分散读等待,通常表现存在着与全表扫描相关的等待,逻辑读时,在内存中进行的全表扫描一般是零散地,而并非连续的被分散到缓冲区的各个部分,可能有索引丢失,或被仰制索引的存在。该等待时间在数据库会话等待多块io读取结束的时候产生,并把指定的块数离散的分布在数据缓冲区。这意味这全表扫描过多,或者io不足或争用,
存在这个事件,多数都是问题的,这说明大量的全部扫描而未采用索引.
db_cache_advice对我们调整db_cache_size大小有一定的帮助,但这只是一个参考,不一定很精确。
通过上面6种情况的综合分析,判断是否需要增加大cache_size. 或者把常用的(小)表放到keep区。
但多数的时候做这些不会解决质的问题,
而真正的问题主要是对sql语句的优化(如:是否存在大量的全表扫描等)
索引是在不需要改变程序的情况下,对数据库性能,sql语句提高的最实用的方法.
我在生产中遇到过类似的问题,200M的cache_size,命中率很低21%,但通过对sql语句的优化(添加索引,避免全表扫描),命中率增加到96%,程序运行时间由原来的2小时减少到不到10分钟.
这就提到了怎么定位高消耗的sql问题.全表扫描的问题,在这里不做细致的解说,这里只说明方法,我会在相关的章节专门介绍怎么使用这些工具
1,sql_trace跟踪session.用tkprof 分别输出磁盘读,逻辑读,运行时间长的sql进行优化.这些高消耗的sql一般都伴随着全表扫描.
2,statspack分析.在系统繁忙时期进行时间点的统计分析,产看TOP事件是否有Db file scatered read.并查看TOP sql语句是否存在问题等.
还要说一句:当然在硬件允许的情况下,尽量增大db_cache_size 减少磁盘读,但并不是越大越好,一定要根据自己的库数据量的程度来调节,因为大的db_cache_size同样会增大数据库管理的开销,当然可能开销并不会明显的影响数据库的性能,硬件价格也越来越低,这就需要我们具体问题具体分析了,在我看来物尽其用就最好了,尽量不要浪费,找到问题的本质。调优是一件很艺术的事。
***********************Oracle数据库缓冲区命中率*****************
1、查看Oracle数据库缓冲区命中率
1
2
3
4 |
select a.value + b.value "logical_reads" , c.value "phys_reads" ,
round(100 * ((a.value+b.value)-c.value) / (a.value+b.value))
"BUFFER HIT RATIO" from v$sysstat a, v$sysstat b, v$sysstat c
where a.statistic# = 40 and b.statistic# = 41 and c.statistic# = 42;
|
2、Tags: oracle
数据库缓冲区命中率:
1
2
3
4
5
6
7
8
9
10
11
12
13
14 |
select value from v$sysstat where name = 'physical reads' ;
value 3714179
select value from v$sysstat where name = 'physical reads direct' ;
value 0
select value from v$sysstat where name = 'physical reads direct(lob)' ;
value 0
select value from v$sysstat where name = 'consistent gets' ;
value 856309623
select value from v$sysstat where name = 'db block gets' ;
value 19847790
|
这里命中率的计算应该是
令x=physical reads direct + physical reads direct(lob)
命中率=100-(physical reads -x)/(consistent gets +db block gets -x)*100
通常如果发现命中率低于90%,则应该调整应用可以考虑是否增大数据加
共享池的命中率
1 |
select sum (pinhits)/ sum (pins)*100 "hit radio" from v$librarycache;
|
如果共享池的命中率低于95%就要考虑调整应用(通常是没应用bind var)或者增加内存。
关于排序部分
1 |
select name ,value from v$sysstat where name like '%sort%' ;
|
如果我们发现sorts(disk)/(sorts(memory)+sorts(disk))的比例过高,则通常意味着sort_area_size部分内存教较小,可考虑调整相应的参数。
关于log_buffer
1
2 |
select name ,value from v$sysstat where name
in ( 'redo entries' , 'redo buffer allocation retries' );
|
假如redo buffer allocation retries/redo entries的比例超过1%我们就可以考虑增加log_buffer.
1.统计信息简介 统计信息主要是描述数据库中表,索引的大小,规模,数据分布状况等的一类信息。比如,表的行数,块数,平均每行的大小,索引的leaf blocks,索引字段的行数,不同值的大小等,都属于统计信息。CBO正是根据这些统计信息数据,计算出不同访问路
1.统计信息简介
统计信息主要是描述数据库中表,索引的大小,规模,数据分布状况等的一类信息。比如,表的行数,块数,平均每行的大小,索引的leaf blocks,索引字段的行数,不同值的大小等,都属于统计信息。CBO正是根据这些统计信息数据,计算出不同访问路径下,不同join 方式下,各种计划的成本,最后选择出成本最小的计划。
在CBO(基于代价的优化器模式)条件下,SQL语句的执行计划由统计信息来决定,若没有统计信息则会采取动态采样的方式决定执行计划!可以说统计信息关乎sql的执行计划是否正确,属于sql执行的指导思想,oracle的初始化参数statistics_level控制收集统计信息的级别,有三个参数值:
BASIC :收集基本的统计信息
TYPICAL:收集大部分统计信息(数据库的默认设置)
ALL:收集全部统计信息
Oracle 10g之后,Query Optimizer就已经将CBO作为默认优化器,并且Oracle官方不再支持RBO服务。但是,通过优化器参数optimizer_mode,我们可以控制Oracle优化器生成不同模式下的执行计划。
关于优化器的请参考:《SQL性能优化之optimizer_mode参数原理渗透解析》
2.如何收集统计信息
2.1 统计信息的内容:
1)Table statistics
Number of rows --行数量
Number of blocks --block数量
Average row length --平均行的长度.
2)Column statistics
Number of distinct values (NDV) in column --列中distinct的值
Number of nulls in column --列中null的值
Data distribution (histogram) --数据分布
3)Index statistics
Number of leaf blocks --子节点的块数量
Levels --子节点数量
Clustering factor --集群因子
4)System statistics
I/O performance and utilization --IO性能和利用率
CPU performance and utilization --CPU的性能和利用率
2.2 收集统计信息
Oracle Statistic 的收集,可以使用analyze 命令,也可以使用DBMS_STATS 包来收集,Oracle 建议使用DBMS_STATS包来收集统计信息,因为DBMS_STATS包收集的更广,并且更准确。analyze 在以后的版本中可能会被移除。
DBMS_STATS常用的几个过程如下:
1
2
3
4
5
6
7
8
9
10
11
12 |
dbms_stats.gather_table_stats 收集表、列和索引的统计信息;
dbms_stats.gather_schema_stats 收集SCHEMA下所有对象的统计信息;
dbms_stats.gather_index_stats 收集索引的统计信息;
dbms_stats.gather_system_stats 收集系统统计信息
dbms_stats.GATHER_DICTIONARY_STATS:所有字典对象的统计;
DBMS_STATS.GATHER_DICTIONARY_STATS 其收集所有系统模式的统计
dbms_stats.delete_table_stats 删除表的统计信息
dbms_stats.delete_index_stats 删除索引的统计信息
dbms_stats.export_table_stats 输出表的统计信息
dbms_stats.create_state_table
dbms_stats.set_table_stats 设置表的统计
dbms_stats.auto_sample_size
|
analyze 命令的语法如下:
1
2
3 |
SQL>analyze table tablename compute statistics ;
SQL>analyze table tablename compute statistics for all indexes;
SQL>analyze table tablename delete statistics
|
2.3 统计信息的分类
Oracle 的Statistic 信息的收集分两种:自动收集和手工收集。
Oracle 的Automatic Statistics Gathering 是通过Scheduler 来实现收集和维护的。Job 名称是GATHER_STATS_JOB, 该Job收集数据库所有对象的2种统计信息:
(1)Missing statistics(统计信息缺失)
(2)Stale statistics(统计信息陈旧)
该Job 是在数据库创建的时候自动创建,并由Scheduler来管理。Scheduler 在maintenance windows open时运行gather job。 默认情况下,job 会在每天晚上10到早上6点和周末全天开启。该过程首先检测统计信息缺失和陈旧的对象。然后确定优先级,再开始进行统计信息。
Scheduler Job的stop_on_window_close 属性控制GATHER_STATS_JOB 是否继续。该属性默认值为True. 如果该值设置为False,那么GATHER_STATS_JOB 会中断, 而没有收集完的对象将在下次启动时继续收集。
Gather_stats_job 调用dbms_stats.gather_database_stats_job_proc过程来收集statistics 的信息。 该过程收集对象statistics的条件如下:
(1)对象的统计信息之前没有收集过。
(2)当对象有超过10%的rows 被修改,此时对象的统计信息也称为stale statistics。
但是对于高度变化的表在白天的活动期间被TRUNCATE/DROP并重建或者块加载超过本身总大小10%的对象;我们可以将这些表上的统计设置为NULL
可以通过以下SQL来查看:
1
2
3 |
select job_name, program_name, enabled, stop_on_window_close
from dba_scheduler_jobs
where job_name = 'gather_stats_job' ;
|
为了决定是否对对象进行监控,Oracle 提供了一个参数STATISTICS_LEVEL。通过设置初始化参数STATISTIC_LEVEL 为TYPICAL 或ALL,就可以自动收集统计信息(默认值为TYPICAL,因此可以随即启用自动收集统计信息的功能)。STATISTIC_LEVEL 参数的值可以激活GATHER_STATS_JOB。
在10g中表监控默认是激活的,如果STATISTICS_LEVEL设置为basic,不仅不能监控表,而且将禁掉如下一些10g的新功能:
(1)ASH(Active Session History)
(2)ASSM(Automatic Shared Memory Management)
(3)AWR(Automatic Workload Repository)
(4)ADDM(Automatic Database Diagnostic Monitor)
1
2
3
4
5 |
sys@ORCL> show parameter statistics_level;
NAME TYPE VALUE
statistics_level string TYPICAL
|
当启动对象的监控后,从上次统计信息收集之后的的信息,如inserts,updates,deletes 等,这些改变的信息会记录到user_tab_modifications 视图。
当对象的数据发生改变之后, 经过几分钟的延时,这些信息写入到user_tab_modifications视图,然后dbms_stats.flush_database_monitoring_info过程就会发现这些信息,并讲这些信息保存在内存中。
当监控的对象被修改的部分超过10%时,gather_database_stats 或者gather_schema_stats 过程就会去收集这些stale statistics
3.统计信息的存储位置以及常用数据字典
3.1 统计信息常用数据字典
统计信息收集如下数据:
(1)表自身的分析: 包括表中的行数,数据块数,行长等信息。
(2)列的分析:包括列值的重复数,列上的空值,数据在列上的分布情况。
(3)索引的分析: 包括索引叶块的数量,索引的深度,索引的聚合因子等。
这些统计信息存放在以下的数据字典里:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 |
DBA_TABLES
DBA_OBJECT_TABLES
DBA_TAB_STATISTICS
DBA_TAB_COL_STATISTICS
DBA_TAB_HISTOGRAMS
DBA_INDEXES
DBA_IND_STATISTICS
DBA_CLUSTERS
DBA_TAB_PARTITIONS
DBA_TAB_SUBPARTITIONS
DBA_IND_PARTITIONS
DBA_IND_SUBPARTITIONS
DBA_PART_COL_STATISTICS
DBA_PART_HISTOGRAMS
DBA_SUBPART_COL_STATISTICS
DBA_SUBPART_HISTOGRAMS
|
3.2 表的统计信息
包含表行数,使用的块数,空的块数,块的使用率,行迁移和链接的数量,pctfree,pctused的数据,行的平均大小:
1
2
3
4
5
6
7 |
SELECT NUM_ROWS,
BLOCKS,
EMPTY_BLOCKS,
AVG_SPACE,
CHAIN_CNT,
AVG_ROW_LEN
FROM USER_TABLES
|
3.3索引列的统计信息
包含索引的深度(B-Tree的级别),索引叶级的块数量,集群因子(clustering_factor), 唯一值的个数。
1
2
3
4
5
6
7 |
SELECT BLEVEL,
LEAF_BLOCKS,
DISTINCT_KEYS,
AVG_LEAF_BLOCKS_PER_KEY,
AVG_DATA_BLOCKS_PER_KEY,
CLUSTERING_FACTOR
FROM USER_INDEXES
|
3.4 列的统计信息
包含唯一的值个数,列最大小值,密度(选择率),数据分布(直方图信息),NUll值个数
1
2
3
4
5
6
7
8 |
SELECT NUM_DISTINCT,
LOW_VALUE,
HIGH_VALUE,
DENSITY,
NUM_NULLS,
NUM_BUCKETS,
HISTOGRAM
FROM USER_TAB_COLUMNS
|
对于统计信息的搜集,谈谈个人的几点理解:
1.统计信息默认是存放在数据字典表中的,也只有数据字典中的统计信息,才会影响到CBO。
2.DBMS_STATS 提供的CREATE_STAT_TABLE 过程,只是生成一个用户自定义的特定格式的表,用来存放统计信息罢了,这个表中的统计信息是不会影响到统计信息的。
3.GATHER 系列过程中,如果指定stattab,statid,statown 参数(也可以不指定),则是搜集的统计信息除了更新到数据字典外,还在statown 用户下的stattab 表中存放一份,标示为 statid;
4.EXPORT和IMPORT 系列的过程中,stattab,statid,statown 参数不能为空,分别表示把数据字典中的当前统计信息导出到用户自定义的表中,以及把用户表中的统计信息导入到数据字典中,很明显可以看出,这里的导入操作和上面GATHER 操作会改变统计信息,可能会引起执行执行计划的改变,因此要慎重操作。
5.每次统计信息搜集前,将旧的统计信息备份起来是很有必要的;特别是保留一份或多份系统在稳定时期的统计信息也是很有必要的。
6.多长时间搜集一次统计信息,对于统计信息如何备份和保留,搜集统计信息时如何选择合适的采样,并行,直方图设置等都比较重要,需要设计一个较好的统计信息搜集策略。
在OCP 10g考试中会有个跟统计信息相关的考试题:
1. In your Oracle 10g database , you have scheduled a job to update the optimizer statistics at 05:00 pm
every Friday. The job has successfully completed. Which three pieces of information would you check to
confirm that the statistics have been collected? (Choose three.)
A. average row size
B. last analyzed date
C. size of table in bytes
D. size of table in database blocks
E. number of free blocks in the free list
F. number of extents present in the table
Answer: ABD
摘要: 以下测试环境为Oracle 10g 10.2.0.4版本,测试对Oracle的统计信息的收集与管理。首先依据dba_objects创建一张测试表:
SQL> create table eygle as select * from dba_objects; Table created对该表进行统计信息收集,这里未指定method_opt,则Oracle将采用 FOR ALL COL...
阅读全文
摘要: 获取昨天:
select trunc(SYSDATE-1) from dual;
检查一下:
select to_char (trunc(SYSDATE-1),'yyyy-mm-dd HH24:MI:SS') from dual;
获取上个月第一天00:00:00:
select add_months(trunc(sysdate,'MON'),-1) from d...
阅读全文
Oracle数据库启动分为三个步骤:
nomount,找到初始化文件pfile或者spfile,创建SGA并启动后台进程但不允许访问数据库。
mount,根据初始化文件找到控制文件(Control File),为某些DBA活动装载数据库但不允许用户访问数据库。
open,根据控制文件找到数据文件(Data File),重做日志文件(Redo File),使用户可以访问数据库。
关闭数据库的4个不同命令
shutdown normal(等于shutdown)
正常是关闭的缺省方式正常的数据库关闭在下列情况下进行
• 不允许新的连接
• 等待会话结束
• 等待事务结束
• 做一个检查点并关闭数据文件
• 下一次启动时将不要求实例恢复
shutdown transactional
事务处理关闭防止客户丢失工作事务处理数据库关闭在下列情况下进行
• 不允许新的连接
• 不等待会话结束
• 等待事务结束
• 做一个检查点并关闭数据文件
• 下一次启动将不要求实例恢复
shutdown immediate
立即关闭数据库在下列情况下进行
• 不允许新的连接
• 不等待会话结束
• 不等待事务结束
• 未结束的事务自动回滚(rollback)
• 做一个检查点并关闭数据文件
• 下一次启动将不要求例程恢复
shutdown abort
如果正常和立即关闭选项不起作用可以中止当前数据库例程中止例程可以在下列情况下进行
• 不允许新的连接
• 不等待会话结束
• 不等待事务结束
• 不做检查点且没有关闭数据文件
• 下一次启动将要求实例恢复
启动数据库相关命令
startup(默认启动到open状态)
startup nomount
startup mount
alter database mount;
alter database open;
初始化文件
pfile,文本文件,可以手工编辑该文件
spfile,二进制文件,不能手工修改里面的参数,只能使用数据库命令进行修改,数据库启动默认使用spfile
查看初始化文件路径
show parameter spfile;
根据spfile创建pfile文件
create pfile from spfile;
create pfile='/u01/app/pfile.ora' fromspfile;
create spfile from pfile='/u01/app/pfile.ora';
查看控制文件的路径
select name from v$controlfile;
查看控制文件的内容,可以根据ctl.trc重建控制文件
alter database backup controlfile to trace as '/u01/app/ctl.trc';
查看数据文件的位置
select name from v$datafile;
查看重做日志文件的位置
select member from v$logfile;
数据库的密码文件
Windows,$ORACLE_HOME/database/PWDorcl.ora
Linux/Unix,$ORACLE_HOME/dbs/orapworcl
密码文件的作用是允许数据库的sysdba、sysoper用户通过口令来远登陆
查看数据库是否允许用户远程登陆数据库
show parameter remote_login_passwordfile;
如果remote_login_passwordfile为EXCLUSIVE则表示允许远程连接数据库
如果remote_login_passwordfile为NONE则表示不允许远程连接数据库
禁止用户远程登陆数据库(需要重启数据库生效)
alter system set remote_login_passwordfile=none scope=spfile;
表空间
select * from dba_tablespaces;
数据文件
select * from dba_data_files;
重做日志文件
select * from v$logfile;
重做日志文件的状态
STALE表示数据已经提交到数据库中,空白状态表示正在使用该文件
1. 如何查看及解决最耗CPU的SQL语句1.1. 用top监控服务器负载
[root@node1 ~]# top
top - 22:51:02 up 56 min, 1 user, load average: 0.00, 0.00, 0.00
Tasks: 96 total, 1 running, 95 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 1035096k total, 351488k used, 683608k free, 24140k buffers
Swap: 2096472k total, 0k used, 2096472k free, 270360k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1 root 15 0 2084 660 560 S 0.0 0.1 0:00.22 init
2 root RT -5 0 0 0 S 0.0 0.0 0:00.00 migration/0
|
如果发现user中的CPU过高,比如oracle中最高的进程pid为1138782,占CPU27%,则执行下一步。 1.2. 查询数据库会话的sid、serial#
进入数据库,根据oracle进程的pid查出对应数据库会话的sid、serial#:
select s.sid,s.serial#
from v$session s,v$process p
where s.paddr=p.addr and p.spid='1138782';
|
查询出来的结果sid、serial#分别为482、56767 1.3. 查询SQL语句
根据数据库会话的sid查出具体的SQL语句:
名称 是否为空? 类型
----------------------------------------- -------- --------------
ADDRESS RAW(4)
HASH_VALUE NUMBER
COMMAND_TYPE NUMBER
PIECE NUMBER
SQL_TEXT VARCHAR2(64)
select sql_text
from v$sqltext a
where a.hash_value=(select sql_hash_value from v$session b
where b.sid='&sid')
order by piece;
|
输入 sid 的值: 1.4. 处理SQL语句
如果SQL语句影响了数据库的运行,可以kill掉SQL语句的会话:
①在数据库中杀死SQL语句的会话:
alter system kill session '482,56767';
|
如果不能在数据库中杀死SQL语句,可在LINUX系统中强制杀死Oracle进程
②在linux系统中强制杀死oracle进程
1.5. SQL语句优化
最后可以根据步骤(3)查询出来的SQL语句进行优化,以避免再次出现上述消耗CPU的情况。 |
摘要: 一. 分区表理论知识
Oracle提供了分区技术以支持VLDB(Very Large DataBase)。分区表通过对分区列的判断,把分区列不同的记录,放到不同的分区中。分区完全对应用透明。
Oracle的分区表可以包括多个分区,每个分区都是一个独立的段(SEGMENT),可以存放到不同的表空间中。查询时可以通过查询表来访问各个分区中的数据,也可以通过在查询时直接指定分区的方法来进行查询。 ...
阅读全文
1.分区表的维护注意事项
- 若分区表跨不同表空间,做导出、导入时目标数据库必须预建这些表空间。分表区各区所在表空间在做导入时目标数据库一定要预建这些表空间!这些表空间不一定是用户的默认表空间,只要存在即可。如果有一个不存在,就会报错!
- 默认时,对分区表的许多表维护操作会使全局索引不可用,标记成UNUSABLE。 那么就必须重建整个全局索引或其全部分区。如果已被分区,Oracle 允许在用于维护操作的ALTER TABLE 语句中指定UPDATE GLOBAL INDEXES 来重载这个默认特性,指定这个子句也就告诉Oracle 当它执行维护操作的DDL 语句时更新全局索引,这提供了如下好处:
- 在操作基础表的同时更新全局索引这就不需要后来单独地重建全局索引;
- 因为没有被标记成UNUSABLE, 所以全局索引的可用性更高了,甚至正在执行分区的DDL 语句时仍然可用索引来访问表中的其他分区,避免了查询所有失效的全局索引的名字以便重建它们;
另外在指定UPDATE GLOBAL INDEXES 之前还要考虑如下性能因素:
- 因为要更新事先被标记成UNUSABLE 的索引,所以分区的DDL 语句要执行更长时间,当然这要与先不更新索引而执行DDL 然后再重建索引所花的时间做个比较,一个适用的规则是如果分区的大小小于表的大小的5% ,则更新索引更快一点;
- DROP TRUNCATE 和EXCHANGE 操作也不那么快了,同样这必须与先执行DDL 然后再重建所有全局索引所花的时间做个比较;
- 要登记对索引的更新并产生重做记录和撤消记录,重建整个索引时可选择NOLOGGING;
- 重建整个索引产生一个更有效的索引,因为这更利于使用空间,再者重建索引时允许修改存储选项;
- 分区索引结构表不支持UPDATE GLOBAL INDEXES 子句。
2.普通表变为分区表
将已存在数据的普通表转变为分区表,没有办法通过修改属性的方式直接转化为分区表,必须通过重建的方式进行转变,一般可以有三种方法,视不同场景使用:
2.1方法一:利用原表重建分区表。
CREATE TABLE T (ID NUMBER PRIMARY KEY, TIME DATE);
INSERT INTO t
SELECT Rownum, SYSDATE - Rownum FROM Dba_Objects WHERE Rownum <= 5000;
COMMIT;
CREATE TABLE T_NEW (ID, TIME) PARTITION BY RANGE (TIME)
(PARTITION P1 VALUES LESS THAN (TO_DATE('2000-1-1', 'YYYY-MM-DD')),
PARTITION P2 VALUES LESS THAN (TO_DATE('2002-1-1', 'YYYY-MM-DD')),
PARTITION P3 VALUES LESS THAN (TO_DATE('2005-1-1', 'YYYY-MM-DD')),
PARTITION P4 VALUES LESS THAN (MAXVALUE))
AS SELECT ID, TIME FROM T;
RENAME T TO T_OLD;
RENAME T_NEW TO T;
优点:方法简单易用,由于采用DDL语句,不会产生UNDO,且只产生少量REDO,效率相对较高,而且建表完成后数据已经在分布到各个分区中了。
不足:对于数据的一致性方面还需要额外的考虑。由于几乎没有办法通过手工锁定T表的方式保证一致性,在执行CREATE TABLE语句和RENAME T_NEW TO T语句直接的修改可能会丢失,如果要保证一致性,需要在执行完语句后对数据进行检查,而这个代价是比较大的。另外在执行两个RENAME语句之间执行的对T的访问会失败。
适用性:适用于修改不频繁的表,在闲时进行操作,表的数据量不宜太大。
2.2方法二:使用交换分区的方法
Drop table t;
CREATE TABLE T (ID NUMBER PRIMARY KEY, TIME DATE);
INSERT INTO t
SELECT Rownum, SYSDATE - Rownum FROM Dba_Objects WHERE Rownum <= 5000;
COMMIT;
CREATE TABLE T_NEW (ID NUMBER PRIMARY KEY, TIME DATE) PARTITION BY RANGE (TIME)
(PARTITION P1 VALUES LESS THAN (TO_DATE('2005-9-1', 'YYYY-MM-DD')),
PARTITION P2 VALUES LESS THAN (MAXVALUE));
ALTER TABLE T_NEW EXCHANGE PARTITION P1 WITH TABLE T;
RENAME T TO T_OLD;
RENAME T_NEW TO T;
优点:只是对数据字典中分区和表的定义进行了修改,没有数据的修改或复制,效率最高。如果对数据在分区中的分布没有进一步要求的话,实现比较简单。在执行完RENAME操作后,可以检查T_OLD中是否存在数据,如果存在的话,直接将这些数据插入到T中,可以保证对T插入的操作不会丢失。
不足:仍然存在一致性问题,交换分区之后RENAME T_NEW TO T之前,查询、更新和删除会出现错误或访问不到数据。如果要求数据分布到多个分区中,则需要进行分区的SPLIT操作,会增加操作的复杂度,效率也会降低。
适用性:适用于包含大数据量的表转到分区表中的一个分区的操作。应尽量在闲时进行操作。
2.3方法三:Oracle9i以上版本,利用在线重定义功能
Drop table t;
CREATE TABLE T (ID NUMBER PRIMARY KEY, TIME DATE);
INSERT INTO T
SELECT ROWNUM, SYSDATE - ROWNUM FROM DBA_OBJECTS WHERE ROWNUM <= 5000;
COMMIT;
EXEC DBMS_REDEFINITION.CAN_REDEF_TABLE(USER, 'T');
PL/SQL 过程已成功完成。
CREATE TABLE T_NEW (ID NUMBER PRIMARY KEY, TIME DATE) PARTITION BY RANGE (TIME)
(PARTITION P1 VALUES LESS THAN (TO_DATE('2004-7-1', 'YYYY-MM-DD')),
PARTITION P2 VALUES LESS THAN (TO_DATE('2005-1-1', 'YYYY-MM-DD')),
PARTITION P3 VALUES LESS THAN (TO_DATE('2005-7-1', 'YYYY-MM-DD')),
PARTITION P4 VALUES LESS THAN (MAXVALUE));
表已创建。
EXEC DBMS_REDEFINITION.START_REDEF_TABLE(USER, 'T', 'T_NEW');
PL/SQL 过程已成功完成。
EXEC DBMS_REDEFINITION.FINISH_REDEF_TABLE(USER, 'T', 'T_NEW');
PL/SQL 过程已成功完成。
优点:保证数据的一致性,在大部分时间内,表T都可以正常进行DML操作。只在切换的瞬间锁表,具有很高的可用性。这种方法具有很强的灵活性,对各种不同的需要都能满足。而且,可以在切换前进行相应的授权并建立各种约束,可以做到切换完成后不再需要任何额外的管理操作。
不足:实现上比上面两种略显复杂。
适用性:适用于各种情况。
这里只给出了在线重定义表的一个最简单的例子,详细的描述和例子可以参考下面两篇文章。
Oracle的在线重定义表功能:http://blog.itpub.net/post/468/12855
Oracle的在线重定义表功能(二):http://blog.itpub.net/post/468/12962
2.4把一个已存在数据的大表改成分区表:
第一种(表不是太大):
--1.把原表改名:
rename xsb1 to xsb2;
--2.创建分区表:
CREATE TABLE xsb1
PARTITION BY LIST (c_test)
(PARTITION xsb1_p1 VALUES (1),
PARTITION xsb1_p2 VALUES (2),
PARTITION xsb1_p0 VALUES (default))
nologging AS SELECT * FROM xsb2;
--3.将原表上的触发器、主键、索引等应用到分区表上;
--4.删除原表:
drop table xsb2;
第二种(表很大):
--1. 创建分区表:
CREATE TABLE x PARTITION BY LIST (c_test) [range ()]
(PARTITION p0 VALUES [less than ](1) tablespace tbs1,
PARTITION p2 VALUES (2) tablespace tbs1,
PARTITION xsb1_p0 VALUES ([maxvalue]default))
AS SELECT * FROM xsb2 [where 1=2];
--2. 交换分区
alter table x exchange partition p0 with table bsvcbusrundatald ;
--3. 原表改名
alter table bsvcbusrundatald rename to x0;
--4. 新表改名
alter table x rename to bsvcbusrundatald ;
--5. 删除原表
drop table x0;
--6. 创建新表触发器和索引
create index ind_busrundata_lp on bsvcbusrundatald(。。。) local tablespace tbs_brd_ind ;
或者:
1. 规划原大表中数据分区的界限,原则上将原表中近期少量数据复制至另一表;
2. 暂停原大表中的相关触发器;
3. 删除原大表中近期数据;
4. 改名原大表名称;
5. 创建分区表;
6. 交换分区;
7. 重建相关索引及触发器(先删除之再重建).
参考脚本:
select count(*) from t1 where recdate>sysdate-2;
create table x2 nologging as select * from t1 where recdate>trunc(sysdate-2);
alter triger trg_t1 disable;
delete t1 where recdate>sysdate-2;
commit;
rename t1 to x1;
create table t1 [nologging] partition by range(recdate)
(partition pbefore values less than (trunc(sysdate-2)),
partition pmax values less than (maxvalue))
as select * from x1 where 1=2;
alter table t1 exchange partition pbefore with table x1;
alter table t1 exchange partition pmax with table x2;
drop table x2;
--重建触发器
drop table x1;
3.分区的方法:
- 范围分区Range
- 散列分区Hash
- 列表分区List
- 组合范围-散列分区Range-Hash
- 组合范围-列表分区Range-List
可对索引和表分区。全局索引只能按范围分区,但可以将其定义在任何类型的分区或非分区表上。通常全局索引比局部索引需要更多的维护。
一般组建局部索引,以便反映其基础表的结构。它与基础表是等同分区的,即它与基础表在同样的列上分区,创建同样数量的分区或子分区,设置与基础表相对应的同样的分区边界。对局部索引而言,当维护活动影响分区时,会自动维护索引分区。这保证了索引与基础表之间的等同分区。
关于范围分区Range:
要想将行映射到基于列值范围的分区,就使用范围分区方法。当数据可以被划分成逻辑范围时如年度中的月份,这种类型的分区就有用了。当数据在整个范围中能被均等地划分时性能最好。如果靠范围的分区会由于不均等的划分而导致分区在大小上明显不同时,就需要考虑其他的分区方法。
关于散列分区Hash:
如果数据不那么容易进行范围分区,但为了性能和管理的原因又想分区时,就使用散列分区方法。散列分区提供了一种在指定数量的分区中均等地划分数据的方法。基于分区键的散列值将行映射到分区中。创建和使用散列分区会给你提供了一种很灵活的放置数据的方法,因为你可以通过在I/O 驱动器之间播撒(摘掉)这些均等定量的分区,来影响可用性和性能。
关于列表分区List:
当你需要明确地控制如何将行映射到分区时,就使用列表分区方法。可以在每个分区的描述中为该分区列指定一列离散值,这不同于范围分区,在那里一个范围与一个分区相关,这也不同于散列分区,在那里用户不能控制如何将行映射到分区。列表分区方法是特意为遵从离散值的模块化数据划分而设计的。范围分区或散列分区不那么容易做到这一点。进一步说列表分区可以非常自然地将无序的和不相关的数据集进行分组和组织到一起。
与范围分区和散列分区所不同,列表分区不支持多列分区。如果要将表按列分区,那么分区键就只能由表的一个单独的列组成,然而可以用范围分区或散列分区方法进行分区的所有的列,都可以用列表分区方法进行分区。
关于组合范围-散列分区:
范围和散列技术的组合,首先对表进行范围分区,然后用散列技术对每个范围分区再次分区。给定的范围分区的所有子分区加在一起表示数据的逻辑子集。
关于组合范围-列表分区:
范围和列表技术的组合,首先对表进行范围分区,然后用列表技术对每个范围分区再次分区。与组合范围-散列分区不同的是,每个子分区的所有内容表示数据的逻辑子集,由适当的范围和列表分区设置来描述。
注意:创建或更改分区表时可以指定行移动子句,即ENABLE ROW MOVEMENT 或者DISABLE ROW MOVEMENT ,当其键被更改时,该子句启用或停用将行迁移到一个新的分区。默认值为DISABLE ROW MOVEMENT。
如果表中预期的数据量较大,通常都需要考虑使用分区表,确定使用分区表后,还要确定什么类型的分区(range partition、hash partition、list partition等)、分区区间大小等。分区的创建最好与程序有某种默契,比如创建一个分区表,按自然月份定义分区的,但程序却在查询时默认的开始时间与结束时间是:当前日期-30至当前日期,比如当天是9.18号,那查询条件被产生为8.18-9.18,结果分区后并不没有大幅提高性能。为此将程序的查询日期做了调整,按自然月查询,系统的负载小了很多。
4.补充资料
从Oracle8.0开始支持表分区(MSSQL2005开始支持表分区)。
Oracle9i 分区能够提高许多应用程序的可管理性、性能与可用性。分区可以将表、索引及索引编排表进一步划分,从而可以更精细地对这些数据库对象进行管理和访问。Oracle 提供了种类繁多的分区方案以满足所有的业务需要。另外,由于在 SQL 语句中是完全透明的,所以分区可以用于几乎所有的应用程序。
分区表允许将数据分成被称为分区甚至子分区的更小的更好管理的块。索引也可以这么分区。每个分区可以被单独管理,可以不依赖于其他分区而单独发挥作用,因此提供了一个更有利于可用性和性能的结构。
分区可以提高可管理性、性能与可用性,从而给各种各样的应用程序带来极大的好处。通常,分区可以使某些查询以及维护操作的性能大大提高。此外,分区还能够在很大程度上简化日常管理任务。分区还使数据库设计人员和管理员能够解决尖端应用程序带来的最难的问题。分区是建立上亿万字节数据系统或需要极高可用性系统的关键工具。
在多CPU配置环境下,如果打算使用并行执行,则分区提供了另一种并行的方法。通过给表或索引的不同分区分配不同的并行执行服务器,就可以并行执行对分区表和分区索引的操作。
表或索引的分区和子分区都共享相同的逻辑属性。例如表的所有分区或子分区共享相同的列和约束定义,一个索引的分区或子分区共享相同的索引选项。然而它们可以具有不同的物理属性如表空间。
尽管不需要将表或索引的每个分区或子分区放在不同的表空间,但这样做更好。将分区存储到不同的表空间能够:
- 减少数据在多个分区中冲突的可能性
- 可以单独备份和恢复每个分区
- 控制分区与磁盘驱动器之间的映射对平衡I/O 负载是重要的
- 改善可管理性可用性和性能
分区操作对现存的应用和运行在分区表上的标准DML 语句来说是透明的。但是可以通过在DML 中使用分区扩展表或索引的名字来对应用编程,使其利用分区的优点。
可以使用SQL*Loader、Import 和Export 工具来装载或卸载分区表中的数据。这些工具都是支持分区和子分区的。
4.1分区技术能够提高数据库的可管理性:
使用分区技术,维护操作可集中于表的特定部分。例如,数据库管理员可以只对表的一部分做备份,而不必对整个表做备份。对整个数据库对象的维护操作,可以在每个分区的基础上进行,从而将维护工作分解成更容易管理的小块。
分区技术提高可管理性的一个典型用法是支持数据仓库中的‘滚动视窗’加载进程。假设数据库管理员每周向表中加载新数据。该表可以是范围分区,以便每个分区包含一周的数据。加载进程只是简单地添加新的分区。添加一个新分区的操作比修改整个表效率高很多,因为数据库管理员不需要修改任何其他分区。从分区后的表中去除数据也是一样。你只要用一个很简便快捷的数据字典操作删掉一个分区,而不必发出使用大量资源和调动所有要删除的数据的 ‘DELETE’ 命令。
4.2分区技术能够提高数据库的性能:
由于减少了所检查或操作的数据数量,同时允许并行执行,Oracle9i 的分区功能提供了性能上的优势。这些性能包括:
- 分区修整:分区修整是用分区技术提高性能的最简单最有价值的手段。分区修整常常能够将查询性能提高几个数量级。例如,假定应用程序中有包含定单历史记录的定单表,该表用周进行了分区。查询一周的定单只需访问该定单表的一个分区。如果该定单表包含两年的历史记录,这个查询只需要访问一个而不是一百零四个分区。该查询的执行速度因为分区修整而有可能快一百倍。分区修整能与所有其他 Oracle 性能特性协作。Oracle 公司将把分区修整技术与索引技术、连结技术和并行访问方法一起联合使用。
- 分区智能联接:分区功能可以通过称为分区智能联接的技术提高多表联接的性能。当两个表要联接在一起,而且每个表都用联接关键字来分区时,就可以使用分区智能联接。分区智能联接将大型联接分解成较小的发生在各个分区间的联接,从而用较少的时间完成全部联接。这就给串行和并行的执行都能带来显著的性能改善。
- 更新和删除的并行执行:分区功能能够无限地并行执行 UPDATE、DELETE 与 MERGE 语句。当访问分区或未分区的数据库对象时Oracle 将并行处理 SELECT 与 INSERT 语句。当不使用位图索引时,也可以对分区或未分区的数据库对象并行处理 UPDATE、DELETE 和 MERGE 语句。为了对有位图索引的对象并行处理那些操作,目标表必须先分区。这些 SQL 语句的并行执行可以大大提高性能,特别是提高 UPDATE 与 DELETE 或 MERGE 操作涉及大量数据时的性能。
4.3分区技术提高可用性:
分区的数据库对象具有分区独立性。该分区独立性特点可能是高可用性战略的一个重要部分,例如,如果分区表的分区不能用,但该表的所有其他分区仍然保持在线并可用。那么这个应用程序可以继续针对该分区表执行查询和事务处理,只要不是访问那个不可用的分区,数据库操作仍然能够成功运行。 数据库管理员可以指定各分区存放在不同的表空间里,从而让管理员独立于其它表分区针对每个分区进行备份与恢复操作。 还有,分区功能可以减少计划停机时间。性能由于分区功能得到了改善,使数据库管理员在相对较小的批处理窗口完成大型数据库对象的维护工作。
将普通表转换成分区表有4种方法:
1. Export/import method
2. Insert with a subquery method
3. Partition exchange method
4. DBMS_REDEFINITION
select * from t_user_info_test;
drop table t_phone_test purge;
create table t_phone_test(phone,part) nologging partition by list(part)
(
partition p0 values('0'),
partition p1 values('1'),
partition p2 values('2'),
partition p3 values('3'),
partition p4 values('4'),
partition p5 values('5'),
partition p6 values('6'),
partition p7 values('7'),
partition p8 values('8'),
partition p9 values('9')
)
as
select user_mobile phone,substr(user_mobile,-1,1) part
from t_user_info_test;
select * from t_phone_test partition(p0);
select * from t_phone_test where part='0';
这种方法只是对数据字典中分区和表的定义进行了修改,没有数据的修改或复制,效率最高。适用于包含大数据量的表转到分区表中的一个分区的操作。尽量在闲时进行操作。
交换分区的操作步骤如下:
1. 创建分区表,假设有2个分区,P1,P2.
2. 创建表A存放P1规则的数据。
3. 创建表B 存放P2规则的数据。
4. 用表A 和P1 分区交换。 把表A的数据放到到P1分区
5. 用表B 和p2 分区交换。 把表B的数据存放到P2分区。
create table t_phone_test_0 nologging
as
select user_mobile phone,substr(user_mobile,-1,1) part
from t_user_info_test where substr(user_mobile,-1,1)='0';
select count(*) from t_phone_test where part='0';
select count(*) from t_user_info_test where substr(user_mobile,-1,1)='0';
alter table t_phone_test exchange partition p0 with table t_phone_test_0;
delete from t_phone_test_0;
select count(*) from t_phone_test where part='0';
select count(*) from t_phone_test_0;
insert into t_phone_test(phone,part) values('15267046070','0');
insert into t_phone_test_0(phone,part) values('15267046070','1');
alter table t_phone_test exchange partition p0 with table t_phone_test_0;
delete from t_phone_test_0 where part='1';
alter table t_phone_test merge partitions p0,p1 into partition p0;
select count(*) from t_phone_test where part='0';
select count(*) from t_phone_test where part='1';
select count(*) from t_phone_test partition(p0);
select count(*) from t_phone_test partition(p1);
alter table t_phone_test add partition p10 values(default);
insert into t_phone_test(phone,part) values('15267046010','10');
insert into t_phone_test(phone,part) values('15267046020','20');
select * from
alter table t_phone_test drop partition p10;
alter table t_phone_test add partition p10 values( '10');
alter table t_phone_test exchange partition p10 with table t_phone_test_10;
alter table T_PHONE_TEST_10 modify PART VARCHAR2(2);
alter table t_phone_test merge partitions p0,p10 into partition p0;
partition P0 values ('10', '0')
tablespace APP_DATAN
pctfree 10
initrans 1
maxtrans 255
storage
(
initial 1M
next 1M
minextents 1
maxextents unlimited
pctincrease 0
),
alter table t_phone_test exchange partition p0 with table t_phone_test_10;
alter table t_phone_test drop partition p0;
alter table t_phone_test add partition p0 values( '0');
alter table t_phone_test exchange partition p0 with table t_phone_test_10;
drop table t_phone_test_10 purge;
create table t_phone_test_10 nologging
as
select user_mobile phone,substr(user_mobile,-2,2) part
from t_user_info_test where substr(user_mobile,-2,2)='10';
drop table t_phone_test_0 purge;
create table t_phone_test_0 nologging
as
select phone,substr(phone,-1,1) part
from t_phone_test_10;
alter table t_phone_test exchange partition p0 with table t_phone_test_0;
select * from t_phone_test_10;
select count(*) from t_phone_test partition(p0);
select count(*) from t_phone_test partition(p10);
select count(*) from t_phone_test_10;
select count(*) from t_phone_test_0;
select substr('123456',-1,1),substr('123456',-2,2),substr('123456',-3,2) from dual;
1.创建分区表
drop table t_phone_test purge;
create table t_phone_test(phone,part) nologging partition by list(part)
(
partition p0 values('0'),
partition p1 values('1'),
partition p2 values('2'),
partition p3 values('3'),
partition p4 values('4'),
partition p5 values('5'),
partition p6 values('6'),
partition p7 values('7'),
partition p8 values('8'),
partition p9 values('9')
)
as
select user_mobile phone,substr(user_mobile,-1,1) part
from t_user_info_test;
select count(*) from t_phone_test partition(p0);
select count(*) from t_phone_test partition(p10);
select count(*) from t_phone_test_10;
select count(*) from t_phone_test_0;
2.创建基表
drop table t_phone_test_10 purge;
create table t_phone_test_10 nologging
as
select phone,substr(phone,-2,2) part
from t_phone_test where substr(phone,-2,2)='10';
select count(*) from t_phone_test_10;
alter table T_PHONE_TEST_10 modify PART VARCHAR2(2);
3.添加分区
alter table t_phone_test add partition p10 values( '10');
select count(*) from t_phone_test partition(p10);
4.交换分区
alter table t_phone_test exchange partition p10 with table t_phone_test_10;
select count(*) from t_phone_test partition(p10);
5.合并分区
alter table t_phone_test merge partitions p0,p10 into partition p0;
select count(*) from t_phone_test partition(p0);
partition P0 values ('10', '0')
tablespace APP_DATAN
pctfree 10
initrans 1
maxtrans 255
storage
(
initial 1M
next 1M
minextents 1
maxextents unlimited
pctincrease 0
),
6.交换分区
alter table t_phone_test exchange partition p0 with table t_phone_test_10;
select count(*) from t_phone_test partition(p0);
select count(*) from t_phone_test_10;
6.删除分区 和添加分区
alter table t_phone_test drop partition p0;
alter table t_phone_test add partition p0 values('0');
7.筛选数据
drop table t_phone_test_0 purge;
create table t_phone_test_0 nologging
as
select phone,substr(phone,-1,1) part
from t_phone_test_10 where substr(phone,-1,1)='0';
select count(*) from t_phone_test_0;
8.交换分区
alter table t_phone_test exchange partition p0 with table t_phone_test_0;
select count(*) from t_phone_test partition(p0);
select count(*) from t_phone_test_0;
Oracle数据库中,有两种类型的分区索引,全局索引和本地索引,其中本地索引又可以分为本地前缀索引和本地非前缀索引。下面就分别看看每种类型的索引各自的特点。
全局索引以整个表的数据为对象建立索引,索引分区中的索引条目既可能是基于相同的键值但是来自不同的分区,也可能是多个不同键值的组合。
全局索引既允许索引分区的键值和表分区键值相同,也可以不相同。全局索引和表之间没有直接的联系,这一点和本地索引不同。
SQL> create table orders (
order_no number,
part_no varchar2(40),
ord_date date
)
partition by range (ord_date)
(partition Q1 values less than (TO_DATE('01-APR-1999','DD-MON-YYYY')),
partition Q2 values less than (TO_DATE('01-JUL-1999','DD-MON-YYYY')),
partition Q3 values less than (TO_DATE('01-OCT-1999','DD-MON-YYYY')),
partition Q4 values less than (TO_DATE('01-JAN-2000','DD-MON-YYYY'))
)
;
Table created.
SQL> create index orders_global_1_idx
on orders(ord_date)
global partition by range (ord_date)
(partition GLOBAL1 values less than (TO_DATE('01-APR-1999','DD-MON-YYYY')),
partition GLOBAL2 values less than (TO_DATE('01-JUL-1999','DD-MON-YYYY')),
partition GLOBAL3 values less than (TO_DATE('01-OCT-1999','DD-MON-YYYY')),
partition GLOBAL4 values less than (MAXVALUE)
)
;
Index created.
SQL> create index orders_global_2_idx
on orders(part_no)
global partition by range (part_no)
(partition IND1 values less than (555555),
partition IND2 values less than (MAXVALUE)
)
;
Index created.
从上面的语句可以看出,全局索引和表没有直接的关联,必须显式的指定maxvalue值。假如表中新加了分区,不会在全局索引中自动增加新的分区,必须手工添加相应的分区。
SQL> alter table orders add partition Q5 values less than (TO_DATE('01-APR-2000','DD-MON-YYYY'));
Table altered.
SQL> select TABLE_NAME, PARTITION_NAME from dba_tab_partitions where table_name='ORDERS';
TABLE_NAME PARTITION_NAME
------------------------------ ------------------------------
ORDERS Q1
ORDERS Q2
ORDERS Q3
ORDERS Q4
ORDERS Q5
SQL> select INDEX_NAME, PARTITION_NAME from dba_ind_partitions where index_name=upper('orders_global_1_idx');
INDEX_NAME PARTITION_NAME
------------------------------ ------------------------------
ORDERS_GLOBAL_1_IDX GLOBAL1
ORDERS_GLOBAL_1_IDX GLOBAL2
ORDERS_GLOBAL_1_IDX GLOBAL3
ORDERS_GLOBAL_1_IDX GLOBAL4
使用全局索引,索引键值必须和分区键值相同,这就是所谓的前缀索引。Oracle不支持非前缀的全局分区索引,如果需要建立非前缀分区索引,索引必须建成本地索引。
SQL> create index orders_global_2_idx
2 on orders(part_no)
3 global partition by range (order_no)
4 (partition IND1 values less than (555555),
5 partition IND2 values less than (MAXVALUE)
6 )
7 ;
global partition by range (order_no)
*
ERROR at line 3:
ORA-14038: GLOBAL partitioned index must be prefixed
接下来再来看看本地分区。
本地索引的分区和其对应的表分区数量相等,因此每个表分区都对应着相应的索引分区。使用本地索引,不需要指定分区范围因为索引对于表而言是本地的,当本地索引创建时,Oracle会自动为表中的每个分区创建独立的索引分区。
创建本地索引不必显式的指定maxvalue值,因为为表新添加表分区时,会自动添加相应的索引分区。
create index orders_local_1_idx
on orders(ord_date)
local
(partition LOCAL1,
partition LOCAL2,
partition LOCAL3,
partition LOCAL4
)
;
Index created.
SQL> select INDEX_NAME, PARTITION_NAME from dba_ind_partitions where index_name=upper('orders_local_1_idx');
INDEX_NAME PARTITION_NAME
------------------------------ ------------------------------
ORDERS_LOCAL_1_IDX LOCAL1
ORDERS_LOCAL_1_IDX LOCAL2
ORDERS_LOCAL_1_IDX LOCAL3
ORDERS_LOCAL_1_IDX LOCAL4
SQL> alter table orders add partition Q5 values less than (TO_DATE('01-APR-2000','DD-MON-YYYY'));
Table altered.
SQL> select INDEX_NAME, PARTITION_NAME from dba_ind_partitions where index_name=upper('orders_local_1_idx');
INDEX_NAME PARTITION_NAME
------------------------------ ------------------------------
ORDERS_LOCAL_1_IDX LOCAL1
ORDERS_LOCAL_1_IDX LOCAL2
ORDERS_LOCAL_1_IDX LOCAL3
ORDERS_LOCAL_1_IDX LOCAL4
ORDERS_LOCAL_1_IDX Q5
这里系统已经自动以和表分区相同的名字自动创建了一个索引分区。同理,删除表分区时相对应的索引分区也自动被删除。
本地索引和全局索引还有一个显著的差别,就是上面提到的,本地索引可以创建成本地非前缀型,而全局索引只能是前缀型。
SQL> create index orders_local_2_idx
on orders(part_no)
local
(partition LOCAL1,
partition LOCAL2,
partition LOCAL3,
partition LOCAL4)
;
Index created.
SQL> select INDEX_NAME, PARTITION_NAME, HIGH_VALUE from dba_ind_partitions
where index_name=upper('orders_local_2_idx');
INDEX_NAME PARTITION_NAME HIGH_VALUE
------------------------------ ------------------------------ ---------------------------------------------------------
ORDERS_LOCAL_2_IDX LOCAL1 TO_DATE(' 1999-04-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS',
'NLS_CALENDAR=GREGORIA'
ORDERS_LOCAL_2_IDX LOCAL2 TO_DATE(' 1999-07-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS',
'NLS_CALENDAR=GREGORIA'
ORDERS_LOCAL_2_IDX LOCAL3 TO_DATE(' 1999-10-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS',
'NLS_CALENDAR=GREGORIA'
ORDERS_LOCAL_2_IDX LOCAL4 TO_DATE(' 2000-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS',
'NLS_CALENDAR=GREGORIA'
从上面的输出可以看出,虽然索引的键值是part_no,但索引分区的键值仍然和表的分区键值相同,即ord_date,也即是所谓的非前缀型索引。
最后,再引用一个例子说明前缀索引和非前缀索引的应用。
假设有一个使用DATE列分区的大表。我们经常使用一个VARCHAR2列(VCOL)进行查询,但这个列并不是表的分区键值。
有两种可能的方法来访问VCOL列的数据,一是建立基于VCOL列的本地非前缀索引,
| |
------- -------
| | (10 more | |
Values: A.. Z.. partitions here) A.. Z..
另一种是建立基于VCOL列的全局索引,
| |
------- -------
| | (10 more | |
Values: A.. D.. partitions here) T.. Z..
可以看出,如果能够保证VCOL列值的唯一性,全局索引将会是最好的选择。如果VCOL列值不唯一,就需要在本地非前缀索引的并行查询和全局索引顺序查询以及高昂的维护代价之间做出选择。
造成ORA-12560: TNS: 协议适配器错误的问题的原因可能有如下三个:
1.监听服务没有起起来。windows平台个一如下操作:开始---程序---管理工具---服务,打开服务面板,
启动
oraclehome92TNSlistener服务。
2.database instance没有起起来。windows平台如下操作:开始---程序---管理工具---服务,打开服务
面板,启动oracleserviceXXXX,XXXX就是你的database SID.
3.注册表问题。regedit,然后进入HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\HOME0将该环境变量ORACLE_SI
D设置为XXXX,XXXX就是你的database SID.或者右几我的电脑,属性--高级--环境变量---系统变量--新建
,变量名=oracle_sid,变量值=XXXX,XXXX就是你的database SID.或者进入sqlplus前,在command line下
输set oracle_sid=XXXX,XXXX就是你的database SID.
经过以上步骤,就可以解决问题。
其实Oracle的优化器有两种优化方式,
基于规则的优化方式(Rule-Based Optimization,简称为RBO)
基于代价的优化方式(Cost-Based Optimization,简称为CBO)
所以hint也不例外,除了/*+rule*/其他的都是CBO优化方式
RBO方式:
优化器在分析SQL语句时,所遵循的是Oracle内部预定的一些规则。比如我们常见的,当一个where子句中的一列有索引时去走索引。
CBO方式:
它是看语句的代价(Cost),这里的代价主要指Cpu和内存。优化器在判断是否用这种方式时,主要参照的是表及索引的统计信息。统计信息给出表的大小、有少行、每行的长度等信息。这些统计信息起初在库内是没有的,是做analyze后才出现的,很多的时侯过期统计信息会令优化器做出一个错误的执行计划,因些应及时更新这些信息。
优化模式包括Rule、Choose、First rows、All rows四种方式:
Rule:基于规则的方式。
Choolse:默认的情况下Oracle用的便是这种方式。指的是当一个表或或索引有统计信息,则走CBO的方式,如果表或索引没统计信息,表又不是特别的小,而且相应的列有索引时,那么就走索引,走RBO的方式。
First Rows:它与Choose方式是类似的,所不同的是当一个表有统计信息时,它将是以最快的方式返回查询的最先的几行,从总体上减少了响应时间。
All Rows:也就是我们所说的Cost的方式,当一个表有统计信息时,它将以最快的方式返回表的所有的行,从总体上提高查询的吞吐量。没有统计信息则走RBO的方式
Oracle在那配置默认的优化规则
A、Instance级别我们可以通过在initSID.ora文件中设定OPTIMIZER_MODE=RULE/CHOOSE/FIRST_ROWS/ALL_ROWS如果没设定OPTIMIZER_MODE参数则默认用的是Choose方式。
B、Sessions级别通过ALTER SESSION SET OPTIMIZER_MODE=RULE/CHOOSE/FIRST_ROWS/ALL_ROWS来设定。
C、语句级别用Hint(/*+ ... */)来设定
为什么表的某个字段明明有索引,但执行计划却不走索引?
1、优化模式是all_rows的方式
2、表作过analyze,有统计信息
3、表很小,Oracle的优化器认为不值得走索引。
提示
不区分大小写, 多个提示用空格分开
如:select /*+ hint1(tab1) hint2(TAB1 idx1) */ col1, col2 from tab1 where col1='xxx';
如果表使用了别名, 那么提示里也必须使用别名
如:select /*+ hint1(t1) */ col1, col2 from tab1 t1 where col1='xxx';
如果使用同一个表的多个用,号分开
如: select /*+ index(t1.A,t1.B) */ col1, col2
from tab1 t1
where col1='xxx';
oracle 10g hints知识,
10g数据库可以使用更多新的optimizer hints来控制优化行为。现在让我们快速解析一下这些强大的新hints:
1、spread_min_analysis
使用这一hint,你可以忽略一些关于如详细的关系依赖图分析等电子表格的编译时间优化规则。其他的一些优化,如创建过滤以有选择性的定位电子表格访问结构并限制修订规则等,得到了继续使用。
由于在规则数非常大的情况下,电子表格分析会很长。这一提示可以帮助我们减少由此产生的数以百小时计的编译时间。
例:
SELECT /*+ SPREAD_MIN_ANALYSIS */ ...
2、spread_no_analysis
通过这一hint,可以使无电子表格分析成为可能。同样,使用这一hint可以忽略修订规则和过滤产生。如果存在一电子表格分析,编译时间可以被减少到最低程度。
例:
SELECT /*+ SPREAD_NO_ANALYSIS */ ...
3、use_nl_with_index
这项hint使CBO通过嵌套循环把特定的表格加入到另一原始行。只有在以下情况中,它才使用特定表格作为内部表格:如果没有指定标签,CBO必须可以使用一些标签,且这些标签至少有一个作为索引键值加入判断;反之,CBO必须能够使用至少有一个作为索引键值加入判断的标签。
例:
SELECT /*+ USE_NL_WITH_INDEX (polrecpolrind) */ ...
4、CARDINALITY
此hint定义了对由查询或查询部分返回的基数的评价。注意如果没有定义表格,基数是由整个查询所返回的总行数。
例:
SELECT /*+ CARDINALITY ( [tablespec] card ) */
5、SELECTIVITY
此hint定义了对查询或查询部分选择性的评价。如果只定义了一个表格,选择性是在所定义表格里满足所有单一表格判断的行部分。如果定义了一系列表格,选择性是指在合并以任何顺序满足所有可用判断的全部表格后,所得结果中的行部分。
例:
SELECT /*+ SELECTIVITY ( [tablespec] sel ) */
然而,注意如果hints CARDINALITY 和 SELECTIVITY都定义在同样的一批表格,二者都会被忽略。
6、no_use_nl
Hint no_use_nl使CBO执行循环嵌套,通过把指定表格作为内部表格,把每个指定表格连接到另一原始行。通过这一hint,只有hash join和sort-merge joins会为指定表格所考虑。
例:
SELECT /*+ NO_USE_NL ( employees ) */ ...
7、no_use_merge
此hint使CBO通过把指定表格作为内部表格的方式,拒绝sort-merge把每个指定表格加入到另一原始行。
例:
SELECT /*+ NO_USE_MERGE ( employees dept ) */ ...
8、no_use_hash
此hint使CBO通过把指定表格作为内部表格的方式,拒绝hash joins把每个指定表格加入到另一原始行。
例:
SELECT /*+ NO_USE_HASH ( employees dept ) */ ...
9、no_index_ffs
此hint使CBO拒绝对指定表格的指定标签进行fast full-index scan。
Syntax: /*+ NO_INDEX_FFS ( tablespecindexspec ) */
在SQL优化过程中常见HINT的用法(前10个比较常用, 前3个最常用):
1. /*+ INDEX */ 和 /*+ INDEX(TABLE INDEX1, index2) */ 和 /*+ INDEX(tab1.col1 tab2.col2) */ 和 /*+ NO_INDEX */ 和 /*+ NO_INDEX(TABLE INDEX1, index2) */
表明对表选择索引的扫描方法. 第一种不指定索引名是让oracle对表中可用索引比较并选择某个最佳索引; 第二种是指定索引名且可指定多个索引; 第三种是10g开始有的, 指定列名, 且表名可不用别名; 第四种即全表扫描; 第五种表示禁用某个索引, 特别适合于准备删除某个索引前的评估操作. 如果同时使用了INDEX和NO_INDEX则两个提示都会被忽略掉.
例如:SELECT /*+ INDEX(BSEMPMS SEX_INDEX) USE SEX_INDEX BECAUSE THERE ARE FEWMALE BSEMPMS */ FROM BSEMPMS WHERE SEX='M';
2. /*+ ORDERED */
FROM子句中默认最后一个表是驱动表,ORDERED将from子句中第一个表作为驱动表. 特别适合于多表连接非常慢时尝试.
例如:SELECT /*+ ORDERED */ A.COL1,B.COL2,C.COL3 FROM TABLE1 A,TABLE2 B,TABLE3 C WHERE A.COL1=B.COL1 AND B.COL1=C.COL1;
3. /*+ PARALLEL(table1,DEGREE) */ 和 /*+ NO_PARALLEL(table1) */
该提示会将需要执行全表扫描的查询分成多个部分(并行度)执行, 然后在不同的操作系统进程中处理每个部分. 该提示还可用于DML语句. 如果SQL里还有排序操作, 进程数会翻倍,此外还有一个一个负责组合这些部分的进程,如下面的例子会产生9个进程. 如果在提示中没有指定DEGREE, 那么就会使用创建表时的默认值. 该提示在默认情况下会使用APPEND提示. NO_PARALLEL是禁止并行操作,否则语句会使用由于定义了并行对象而产生的并行处理.
例如:select /*+ PARALLEL(tab_test,4) */ col1, col2 from tab_test order by col2;
4. /*+ FIRST_ROWS */ 和 /*+ FIRST_ROWS(n) */
表示用最快速度获得第1/n行, 获得最佳响应时间, 使资源消耗最小化.
在update和delete语句里会被忽略, 使用分组语句如group by/distinct/intersect/minus/union时也会被忽略.
例如:SELECT /*+ FIRST_ROWS */ EMP_NO,EMP_NAM,DAT_IN FROM BSEMPMS WHERE EMP_NO='SCOTT';
5. /*+ RULE */
表明对语句块选择基于规则的优化方法.
例如:SELECT /*+ RULE */ EMP_NO,EMP_NAM,DAT_IN FROM BSEMPMS WHERE EMP_NO='SCOTT';
6. /*+ FULL(TABLE) */
表明对表选择全局扫描的方法.
例如:SELECT /*+ FULL(A) */ EMP_NO,EMP_NAM FROM BSEMPMS A WHERE EMP_NO='SCOTT';
7. /*+ LEADING(TABLE) */
类似于ORDERED提示, 将指定的表作为连接次序中的驱动表.
8. /*+ USE_NL(TABLE1,TABLE2) */
将指定表与嵌套的连接的行源进行连接,以最快速度返回第一行再连接,与USE_MERGE刚好相反.
例如:SELECT /*+ ORDERED USE_NL(BSEMPMS) */ BSDPTMS.DPT_NO,BSEMPMS.EMP_NO,BSEMPMS.EMP_NAM FROM BSEMPMS,BSDPTMS WHERE BSEMPMS.DPT_NO=BSDPTMS.DPT_NO;
9. /*+ APPEND */ 和 /*+ NOAPPEND */
直接插入到表的最后,该提示不会检查当前是否有插入操作所需的块空间而是直接添加到新块中, 所以可以提高速度. 当然也会浪费些空间, 因为它不会使用那些做了delete操作的块空间. NOAPPEND提示则相反,所以会取消PARALLEL提示的默认APPEND提示.
例如:insert /*+ append */ into test1 select * from test4;
insert /*+ parallel(test1) noappend */ into test1 select * from test4;
10. /*+ USE_HASH(TABLE1,table2) */
将指定的表与其它行源通过哈希连接方式连接起来.为较大的结果集提供最佳响应时间. 类似于在连接表的结果中遍历每个表上每个结果的嵌套循环, 指定的hash表将被放入内存, 所以需要有足够的内存(hash_area_size或pga_aggregate_target)才能保证语句正确执行, 否则将在磁盘里进行.
例如:SELECT /*+ USE_HASH(BSEMPMS,BSDPTMS) */ * FROM BSEMPMS,BSDPTMS WHERE BSEMPMS.DPT_NO=BSDPTMS.DPT_NO;
---------------------------------------------------------------------
11. /*+ USE_MERGE(TABLE) */
将指定的表与其它行源通过合并排序连接方式连接起来.特别适合于那种在多个表大量行上进行集合操作的查询, 它会将指定表检索到的的所有行排序后再被合并, 与USE_NL刚好相反.
例如:SELECT /*+ USE_MERGE(BSEMPMS,BSDPTMS) */ * FROM BSEMPMS,BSDPTMS WHERE BSEMPMS.DPT_NO=BSDPTMS.DPT_NO;
12. /*+ ALL_ROWS */
表明对语句块选择基于开销的优化方法,并获得最佳吞吐量,使资源消耗最小化. 可能会限制某些索引的使用.
例如:SELECT /*+ ALL+_ROWS */ EMP_NO,EMP_NAM,DAT_IN FROM BSEMPMS WHERE EMP_NO='SCOTT';
13. /*+ CLUSTER(TABLE) */
提示明确表明对指定表选择簇扫描的访问方法. 如果经常访问连接表但很少修改它, 那就使用集群提示.
例如:SELECT /*+ CLUSTER */ BSEMPMS.EMP_NO,DPT_NO FROM BSEMPMS,BSDPTMS WHERE DPT_NO='TEC304' AND BSEMPMS.DPT_NO=BSDPTMS.DPT_NO;
14. /*+ INDEX_ASC(TABLE INDEX1, INDEX2) */
表明对表选择索引升序的扫描方法. 从8i开始, 这个提示和INDEX提示功能一样, 因为默认oracle就是按照升序扫描索引的, 除非未来oracle还推出降序扫描索引.
例如:SELECT /*+ INDEX_ASC(BSEMPMS PK_BSEMPMS) */ FROM BSEMPMS WHERE DPT_NO='SCOTT';
15. /*+ INDEX_COMBINE(TABLE INDEX1, INDEX2) */
指定多个位图索引, 对于B树索引则使用INDEX这个提示,如果INDEX_COMBINE中没有提供作为参数的索引,将选择出位图索引的布尔组合方式.
例如:SELECT /*+ INDEX_COMBINE(BSEMPMS SAL_BMI HIREDATE_BMI) */ * FROM BSEMPMS WHERE SAL<5000000 AND HIREDATE<SYSDATE;
16. /*+ INDEX_JOIN(TABLE INDEX1, INDEX2) */
合并索引, 所有数据都已经包含在这两个索引里, 不会再去访问表, 比使用索引并通过rowid去扫描表要快5倍.
例如:SELECT /*+ INDEX_JOIN(BSEMPMS SAL_HMI HIREDATE_BMI) */ SAL,HIREDATE FROM BSEMPMS WHERE SAL<60000;
17. /*+ INDEX_DESC(TABLE INDEX1, INDEX2) */
表明对表选择索引降序的扫描方法.
例如:SELECT /*+ INDEX_DESC(BSEMPMS PK_BSEMPMS) */ FROM BSEMPMS WHERE DPT_NO='SCOTT';
18. /*+ INDEX_FFS(TABLE INDEX_NAME) */
对指定的表执行快速全索引扫描,而不是全表扫描的办法.要求要检索的列都在索引里, 如果表有很多列时特别适用该提示.
例如:SELECT /*+ INDEX_FFS(BSEMPMS IN_EMPNAM) */ * FROM BSEMPMS WHERE DPT_NO='TEC305';
19. /*+ NO_EXPAND */
对于WHERE后面的OR 或者IN-LIST的查询语句,NO_EXPAND将阻止其基于优化器对其进行扩展, 缩短解析时间.
例如:SELECT /*+ NO_EXPAND */ * FROM BSEMPMS WHERE DPT_NO='TDC506' AND SEX='M';
20. /*+ DRIVING_SITE(TABLE) */
强制与ORACLE所选择的位置不同的表进行查询执行.特别适用于通过dblink连接的远程表.
例如:SELECT /*+ DRIVING_SITE(DEPT) */ * FROM BSEMPMS,DEPT@BSDPTMS DEPT WHERE BSEMPMS.DPT_NO=DEPT.DPT_NO;
21. /*+ CACHE(TABLE) */ 和 /*+ NOCACHE(TABLE) */
当进行全表扫描时,CACHE提示能够将表全部缓存到内存中,这样访问同一个表的用户可直接在内存中查找数据. 比较适合数据量小但常被访问的表, 也可以建表时指定cache选项这样在第一次访问时就可以对其缓存. NOCACHE则表示对已经指定了CACHE选项的表不进行缓存.
例如:SELECT /*+ FULL(BSEMPMS) CAHE(BSEMPMS) */ EMP_NAM FROM BSEMPMS;
22. /*+ PUSH_SUBQ */
当SQL里用到了子查询且返回相对少的行时, 该提示可以尽可能早对子查询进行评估从而改善性能, 不适用于合并连接或带远程表的连接.
例如:select /*+ PUSH_SUBQ */ emp.empno, emp.ename, itemno from emp, orders where emp.empno = orders.empno and emp.deptno = (select deptno from dept where loc='XXX');
远程连接其他数据库,注意判断数据库是否启动,或者是否有需要的表,否则会出错
23. /*+ INDEX_SS(TABLE INDEX1,INDEX2) */
指示对特定表的索引使用跳跃扫描, 即当组合索引的第一列不在where子句中时, 让其使用该索引
参考资料
Oracle SQL hints
/*+ hint */
/*+ hint(argument) */
/*+ hint(argument-1 argument-2) */
All hints except /*+ rule */ cause the CBO to be used. Therefore, it is good practise to analyze the underlying tables if hints are used (or the query is fully hinted. There should be no schema names in hints. Hints must use aliases if alias names are used for table names. So the following is wrong:
select /*+ index(scott.emp ix_emp) */ from scott.emp emp_alias
better:
select /*+ index(emp_alias ix_emp) */ ... from scott.emp emp_alias
Why using hints
It is a perfect valid question to ask why hints should be used. Oracle comes with an optimizer that promises to optimize a query's execution plan. When this optimizer is really doing a good job, no hints should be required at all. Sometimes, however, the characteristics of the data in the database are changing rapidly, so that the optimizer (or more accuratly, its statistics) are out of date. In this case, a hint could help. It must also be noted, that Oracle allows to lock the statistics when they look ideal which should make the hints meaningless again.
Hint categories
Hints can be categorized as follows:
Hints for Optimization Approaches and Goals,
Hints for Access Paths, Hints for Query Transformations,
Hints for Join Orders,
Hints for Join Operations,
Hints for Parallel Execution,
Additional Hints
Documented Hints
Hints for Optimization Approaches and Goals
ALL_ROWS
One of the hints that 'invokes' the Cost based optimizer
ALL_ROWS is usually used for batch processing or data warehousing systems.
FIRST_ROWS
One of the hints that 'invokes' the Cost based optimizer
FIRST_ROWS is usually used for OLTP systems.
CHOOSE
One of the hints that 'invokes' the Cost based optimizer
This hint lets the server choose (between ALL_ROWS and FIRST_ROWS, based on statistics gathered.
RULE
The RULE hint should be considered deprecated as it is dropped from Oracle9i2.
See also the following initialization parameters: optimizer_mode, optimizer_max_permutations, optimizer_index_cost_adj, optimizer_index_caching and
Hints for Access Paths
CLUSTER
Performs a nested loop by the cluster index of one of the tables.
FULL
Performs full table scan.
HASH
Hashes one table (full scan) and creates a hash index for that table. Then hashes other table and uses hash index to find corresponding records. Therefore not suitable for < or > join conditions.
ROWID
Retrieves the row by rowid
INDEX
Specifying that index index_name should be used on table tab_name: /*+ index (tab_name index_name) */
Specifying that the index should be used the the CBO thinks is most suitable. (Not always a good choice).
Starting with Oracle 10g, the index hint can be described: /*+ index(my_tab my_tab(col_1, col_2)) */. Using the index on my_tab that starts with the columns col_1 and col_2.
INDEX_ASC
INDEX_COMBINE
INDEX_DESC
INDEX_FFS
INDEX_JOIN
NO_INDEX
AND_EQUAL
The AND_EQUAL hint explicitly chooses an execution plan that uses an access path that merges the scans on several single-column indexes
Hints for Query Transformations
FACT
The FACT hint is used in the context of the star transformation to indicate to the transformation that the hinted table should be considered as a fact table.
MERGE
NO_EXPAND
NO_EXPAND_GSET_TO_UNION
NO_FACT
NO_MERGE
NOREWRITE
REWRITE
STAR_TRANSFORMATION
USE_CONCAT
Hints for Join Operations
DRIVING_SITE
HASH_AJ
HASH_SJ
LEADING
MERGE_AJ
MERGE_SJ
NL_AJ
NL_SJ
USE_HASH
USE_MERGE
USE_NL
Hints for Parallel Execution
NOPARALLEL
PARALLEL
NOPARALLEL_INDEX
PARALLEL_INDEX
PQ_DISTRIBUTE
Additional Hints
ANTIJOIN
APPEND
If a table or an index is specified with nologging, this hint applied with an insert statement produces a direct path insert which reduces generation of redo.
BITMAP
BUFFER
CACHE
CARDINALITY
CPU_COSTING
DYNAMIC_SAMPLING
INLINE
MATERIALIZE
NO_ACCESS
NO_BUFFER
NO_MONITORING
NO_PUSH_PRED
NO_PUSH_SUBQ
NO_QKN_BUFF
NO_SEMIJOIN
NOAPPEND
NOCACHE
OR_EXPAND
ORDERED
ORDERED_PREDICATES
PUSH_PRED
PUSH_SUBQ
QB_NAME
RESULT_CACHE (Oracle 11g)
SELECTIVITY
SEMIJOIN
SEMIJOIN_DRIVER
STAR
The STAR hint forces a star query plan to be used, if possible. A star plan has the largest table in the query last in the join order and joins it with a nested loops join on a concatenated index. The STAR hint applies when there are at least three tables, the large table's concatenated index has at least three columns, and there are no conflicting access or join method hints. The optimizer also considers different permutations of the small tables.
SWAP_JOIN_INPUTS
USE_ANTI
USE_SEMI
Undocumented hints:
BYPASS_RECURSIVE_CHECK
Workaraound for bug 1816154
BYPASS_UJVC
CACHE_CB
CACHE_TEMP_TABLE
CIV_GB
COLLECTIONS_GET_REFS
CUBE_GB
CURSOR_SHARING_EXACT
DEREF_NO_REWRITE
DML_UPDATE
DOMAIN_INDEX_NO_SORT
DOMAIN_INDEX_SORT
DYNAMIC_SAMPLING
DYNAMIC_SAMPLING_EST_CDN
EXPAND_GSET_TO_UNION
FORCE_SAMPLE_BLOCK
GBY_CONC_ROLLUP
GLOBAL_TABLE_HINTS
HWM_BROKERED
IGNORE_ON_CLAUSE
IGNORE_WHERE_CLAUSE
INDEX_RRS
INDEX_SS
INDEX_SS_ASC
INDEX_SS_DESC
LIKE_EXPAND
LOCAL_INDEXES
MV_MERGE
NESTED_TABLE_GET_REFS
NESTED_TABLE_SET_REFS
NESTED_TABLE_SET_SETID
NO_FILTERING
NO_ORDER_ROLLUPS
NO_PRUNE_GSETS
NO_STATS_GSETS
NO_UNNEST
NOCPU_COSTING
OVERFLOW_NOMOVE
PIV_GB
PIV_SSF
PQ_MAP
PQ_NOMAP
REMOTE_MAPPED
RESTORE_AS_INTERVALS
SAVE_AS_INTERVALS
SCN_ASCENDING
SKIP_EXT_OPTIMIZER
SQLLDR
SYS_DL_CURSOR
SYS_PARALLEL_TXN
SYS_RID_ORDER
TIV_GB
TIV_SSF
UNNEST
USE_TTT_FOR_GSETS
摘要: 如果要分析某条SQL的性能问题,通常我们要先看SQL的执行计划,看看SQL的每一步执行是否存在问题。 如果一条SQL平时执行的好好的,却有一天突然性能很差,如果排除了系统资源和阻塞的原因,那么基本可以断定是执行计划出了问题。
&nb...
阅读全文
摘要: SQL查询语句的性能从一定程度上影响整个数据库的性能。很多情况下,数据库性能的低下差不多都是不良SQL语句所引起。而SQL语句的执行计划则决定了SQL语句将会采用何种方式从数据库提取数据并返回给客户端,本文描述的将是如何通过EXPLAIN PLAN 获取SQL语句执行计划来获取SQL语句的执行计划。一、获取SQL语句执行计划的方式 1. 使用expl...
阅读全文
对于sql执行的小量高低。我们可以通过执行计划的信息基本上可以进行分析查看该SQL语句执行的时间。连接顺序及浪费的数据库资源等信息,从而判断该SQL语句执行的效率如何,下面就简单的介绍一下执行计划的使用
2. Explain使用
Oracle RDBMS执行每一条SQL语句,都必须经过Oracle优化器的评估。所 以,了解优化器是如何选择(搜索)路径以及索引是如何被使用的,对优化SQL语句有很大的帮助。Explain可以用来迅速方便地查出对于给定SQL语句中的查询数据是如何得到的即搜索路径(我们通常称为Access Path)。从而使我们选择最优的查询方式达到最大的优化效果。
2.1. 安装
要使用执行计划首先需要执行相应的脚本。
使用Explain工具需要创建Explain_plan表,这必须先进入相关应用表、视图和索引的所有者的帐户内。Oracle的介质中包含有执行此项工作的SQL源程序,例如:
ORA_RDBMS: XPLAINPL.SQL (VMS)
$ORACLE_HOME/rdbms/admin/utlxplan.sql (UNIX)
该脚本后会生成一个表这个程序会创建一个名为plan_table的表,表结构如下:
我们简单的介绍一下主要的字段含义:
字段名 字段类型 含义
STATEMENT_ID VARCHAR2(30) explain PLAN 语句中所指定的最优STATEMENT_ID 参数值, 如果在EXPLAN PLAN语句中没有使用SET STATEMENT_ID,那么此值会被设为NULL。
REMARKS VARCHAR2(80) 与被解释规划的各步骤相关联的注释最长可达80 字节
OPERATION VARCHAR2(30) 各步骤所执行内部操作的名称在某条语句所产生的第一行中该列的可能取值如下DELETE STATEMENT INSERT STATEMENT SELECT STATEMENT UPDATE STATEMENT
OPTIONS VARCHAR2(30) 对OPERATION 列中所描述操作的变种
OBJECT_NODE VARCHAR2(128) 用于访问对象的数据库链接database link 的名称对于使用并行执行的本地查询该列能够描述操作中输出的次序
OBJECT_OWNER VARCHAR2(30) 对于包含有表或索引的架构schema 给出其所有者的名称
OBJECT_NAME VARCHAR2(30) 表或索引的名称
OBJECT_INSTANCE INTEGER 根据对象出现在原始original 语句中的次序所给出的相应次序编号就原始的语句文本而论其处理顺序为自左至右自外向内景象扩张view
OBJECT_TYPE VARCHAR2(30) 用于提供对象描述性信息的修饰符例如索引的NON-UNIQUE
OPTIMIZER VARCHAR2(255) 当前优化程序的模式
ID INTEGER 分配给执行规划各步骤的编号
PARENT_ID INTEGER 对ID 步骤的输出进行操作的下一个执行步骤的ID
POSITION INTEGER 对于具有相同PARENT_ID 的步骤其相应的处理次序
COST INTEGER 根据优化程序的基于开销的方法所估计出的操作开销值对于使用基于规则方法的语句该列为空该列值没有特定的测量单位它只是一个用于比较执行规划开销大小的权重值
CARDINALITY INTEGER 根据基于开销的方法对操作所访问行数的估计值
BYTES INTEGER 根据基于开销的方法对操作所访问字节的估计
2.2. 使用
2.2.1. 常规使用
常规使用语法:
explain PLAN [ SET STATEMENT_ID [=] < string literal > ]
[ INTO < table_name > ]
FOR < sql_statement >
其中:
STATEMENT_ID是一个唯一的字符串,把当前执行计划与存储在同一PLAN表中的其它执行计划区别开来。
TABLE_NAME是plan表名,它结构如前所示,你可以任意设定这个名称。
SQL_STATEMENT是真正的SQL语句。
如:
SQL> explain plan set statement_id='test1' for
2 SELECT a.soctermbegin,
3 a.soctermend,
4 a.dealserialno,
5 a.levydataid,
6 a.dealtotal,
7 e.categoryitemcode,
8 row_number() over(PARTITION BY a.levydataid ORDER BY 1) AS theRow
9 FROM tb_soc_packdealdata a,
10 tb_Lvy_TaxDataBillMap c,
11 Tb_lvy_BillData d,
12 tb_soc_levydetaildata e
13 WHERE a.levydataid = c.datafrompointer(+)
14 AND c.billdataid = d.billdataid(+)
15 AND a.levydataid = e.levydataid
16 AND a.packdealstatuscode = '10'
17 AND (a.datastatus <> '9' OR a.datastatus is NULL)
18 AND (d.billstatus IS NULL OR
19 (d.billstatus <> '2' AND d.billstatus <> '8'))
20 AND a.Insurcode = '6010952'
21 ;
Explained
执行下面语句就可以查看该语句执行的执行计划:
SQL> SELECT A.OPERATION,OPTIONS,OBJECT_NAME,OBJECT_TYPE,ID,PARENT_ID
2 FROM PLAN_TABLE a
3 WHERE STATEMENT_ID='test1'
4 ORDER BY Id;
OPERATION OPTIONS OBJECT_NAME OBJECT_TYPEID PARENT_ID
---------------- --------------------------------------------- ------------- ----------
SELECT STATEMENT 0
WINDOW SORT 1 0
FILTER 2 1
NESTED LOOPS OUTER 3 2
NESTED LOOPS OUTER 4 3
NESTED LOOPS 5 4
TABLE ACCESS FULL TB_SOC_PACKDEALDATA 6 5
TABLE ACCESS BY INDEX ROWID TB_SOC_LEVYDETAILDATA 7 5
INDEX RANGE SCAN IND_DATAID_LEVSOC NON-UNIQUE 8 7
TABLE ACCESS BY INDEX ROWID TB_LVY_TAXDATABILLMAP 9 4
INDEX RANGE SCAN TBLVYTAXDATABIL_DATAFROMPOINTE NON-UNIQUE 10 9
TABLE ACCESS BY INDEX ROWID TB_LVY_BILLDATA 11 3
INDEX UNIQUE SCAN TBLVYBILLDATA_BILLDATAID UNIQUE
2.2.2. 自动显示使用
在SQLPLUS中自动跟踪显示执行计划及相关信息
SQL>set timing on --显示执行时间
SQL>set autorace on ?C显示执行计划
SQL>set autorace on ?C显示执行计划
SQL>set autotrace traceonly ?C只显示执行计划即不显示查询出来的数据
设置完毕后执行SQL语句就会显示执行计划信息及相应的统计信息(需要设置显示该选项)
SQL> select nvl(sum(t.taxdue), 0)
2 from tb_lvy_sbzs100 t, tb_lvy_declaredoc a, tb_lvy_declaredoc b
3 where a.dossiercode = 'SB02041108'
4 and a.pages = 123
5 and a.remarkid = b.remarkid
6 AND A.REMARKID IS NOT NULL
7 and b.declaredocid = t.declaredocid;
NVL(SUM(T.TAXDUE),0)
--------------------
0
已用时间: 00: 00: 04.07
Execution Plan
----------------------------------------------------------
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=6 Card=1 Bytes=110)
1 0 SORT (AGGREGATE)
2 1 NESTED LOOPS (Cost=6 Card=1 Bytes=110)
3 2 MERGE JOIN (CARTESIAN) (Cost=4 Card=1 Bytes=74)
4 3 TABLE ACCESS (FULL) OF 'TB_LVY_SBZS100' (Cost=2 Card =1 Bytes=31)
5 3 BUFFER (SORT) (Cost=2 Card=1 Bytes=43)
6 5 TABLE ACCESS (FULL) OF 'TB_LVY_DECLAREDOC' (Cost=2 Card=1 Bytes=43)
7 2 TABLE ACCESS (BY INDEX ROWID) OF 'TB_LVY_DECLAREDOC' (Cost=2 Card=1 Bytes=36)
8 7 INDEX (UNIQUE SCAN) OF 'TBLVYDECLAREDOC_DECLAREDOCID' (UNIQUE)
Statistics
----------------------------------------------------------
0 recursive calls --循环递归次数
0 db block gets―请求的数据块在buffer能满足的个数
6675 consistent gets --逻辑IO用于读表并计算行数, 数据请求总数在回滚段Buffer中
45 physical reads ?C从磁盘读到Buffer Cache数据块数量
0 redo size ?C产生的redo日志大小
217 bytes sent via SQL*Net to client
276 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
1 sorts (memory)
0 sorts (disk)
1 rows processed
SQL>
如果6675 consistent gets --逻辑IO用于读表并计算行数, 数据请求总数在回滚段Buffer中
45 physical reads ?C从磁盘读到Buffer Cache数据块数量的数值比较小则该语句对对数据库的性能比较高。
2.2.3. PL/SQL和TOAD中使用
如果在PL/SQL中使用选择要查询语句显示执行计划,则只需要SQL WINDOWS 窗口里面输入要查询的SQL语句,然后选择按键F5或者在菜单TOOLS?D?D>Explain Plan 菜单按键就可以在执行计划窗口查看该语句的执行计划。
在TOAD语句中在执行当前的SQL窗口中选择下方的Explain PlanTAB页即可以查看要执行语句的执行计划信息。
2.3. 限制
虽然任何SQL语句都可以用explain解释,但对于没有查询的INSERT,UPDATE,DELETE操作来说,这个工具并没有太大的用处。没有子查询的INSERT操作不会创建执行计划,但没有WHERE子句或子查询的UPDATE和DELETE操作会创建执行计划,因为这些操作必须先找出所要的记录。
另外,如果你在SQL语句中使用其它类型如sequence等,explain也能揭示它的用法。
explain真正的唯一的限制是用户不能去解释其它用户的表,视图,索引或其它类型,用户必须是所有被解释事物的所有者,如果不是所有者而只有select权限,explain会返回一个错误。
《Oracle物化视图实战手册》
场合:数据变化小,查询出数据还要2次利用,需要数据双向同步的场合
视图:就是一条sql语句,每次查询时都要重新生成执行计划,重新执行,非常消耗时间,放在内存中一次性的
物化视图:执行sql并保留结果,直接放在数据文件中,不放在内存中方便重用【空间换时间】,不受开关机的影响
1.创建基表并插入数据
create table sino_person_address
(
iid NUMBER(16) not null,
ipersonid NUMBER(16),
spin NUMBER(16),
dgettime DATE,
sorgcode VARCHAR2(20),
smsgfilename VARCHAR2(20),
ilineno NUMBER(8),
saddress VARCHAR2(60),
szip CHAR(6),
scondition CHAR(1),
itrust NUMBER(1),
stoporgcode VARCHAR2(14),
istate NUMBER(1),
constraint PK_SINO_PERSON_ADDRESS primary key (iid)
);
插入数据(插入自动增长序列号字段的方法)
INSERT 语句插入这个字段值为: 序列号的名称.NEXTVAL,seq_sino_person_address.nextval
insert into sino_person_address values(seq_sino_person_address.nextval,123,to_date('2013-04-08 12:12:12','yyyy-mm-dd hh24:mi:ss'),'110','test_report',111,'beijing
xicheng','100100','1',123,1,'1000',0);
insert into sino_person_address values(seq_sino_person_address.nextval,123,to_date('2013-04-09 12:12:12','yyyy-mm-dd hh24:mi:ss'),'120','test_report2',121,'beijing
xicheng','100200','2',123,1,'1002',2);
insert into sino_person_address values(seq_sino_person_address.nextval,123,to_date('2013-04-10 12:12:12','yyyy-mm-dd hh24:mi:ss'),'130','test_report3',131,'beijing
xicheng','100300','3',123,1,'1003',3);
commit
###################################################################################################
2.创建物化视图日志
意义:记录基表DML操作的变化,实时刷新物化视图
注:包含所有字段
删除物化视图日志
drop materialized view log on t
创建物化视图日志
create materialized view log on t with sequence,rowid (x,y,z) including new values;
参数说明:
with sequence:以序号增1的方式进行变化记录
rowid (x,y,z):定位哪些数据发生了变化,日志记录rowid指向的数据块的位置和变化
删除物化视图日志
drop materialized view log on sino_person_address;
基于主键方式的刷新,创建物化视图日志
CREATE MATERIALIZED VIEW LOG ON sino_person_address
WITH PRIMARY KEY
INCLUDING NEW VALUES
【TABLESPACE sinojfs2】; 可选项
3.创建物化视图
创建物化视图
create materialized view mv_t build immediate refresh fast on commit enable query rewrite as select x,y,z,count(*) from t group by x,y,z;
删除物化视图
drop materialized view mv_sino_person_address;
create materialized view mv_sino_person_address
tablespace SINOJFS2
build immediate 创建物化视图时,立即刷新基表
refresh fast with primary key 支持基于主键的快速刷新(增量刷新),基表必须有主键
on commit 支持commit动作自动刷新
enable query rewrite
as select * from sino_person_address;
create materialized view mv_sino_person_address
tablespace SINOJFS2
build immediate
refresh fast with primary key refresh complete全部刷新【全表刷新】可选项
on demand 支持需求时手工刷新
enable query rewrite
as select * from sino_person_address;
########################################################################################
参数说明:
build immediate:创建物化视图时,立即刷新基表
refresh fast with primary key:支持基于主键的快速刷新(增量刷新),基表必须有主键
on commit:基于commit动作的自动刷新 on demand:基于需求时的手工刷新
enable query rewrite:支持查询重新(使用物化视图代替基表,查询必须重写,查询重写是透明的并且不需要对物化视图有任何权限,物化视图可以启用和禁用查询重写)
查询重写:select * from t基表,执行计划走的是mv_t物化视图,禁用后,执行计划走的就是t基表了
tablespace SINOJFS2 创建于SINOJFS2表空间
(1)创建方式:BUILD IMMEDIATE(立即生成数据), BUILD DEFERRED(下一次刷新时生新数据), ON PREBUILD TABLE(不创建新的数据段,用已存在的含有当前物化视图数据的表来代替);
(2)ENABLE | DISABLE QUERY REWRITE指定是否启用当前物化视图用于查询重写,启用该选项时,系统会检查以保证查询的可确定性(不允许有如序列数,USER, DATE等不确定的返回值),DISABLE时物化视图照样可以被刷新;
与物化视图生效相关的设置
(1)初始化参数JOB_QUEUE_PROCESSES设置大于零,物化的自动刷新操作需要JOB QUEUE进程来执行;
(2)初始化参数OPTIMIZER_MODE要设成某种CBO优化模式;
(3)用户会话有QUERY_REWRITE(优化器能将查询重写到本方案物化视图)或GLOBAL_QUERY_REWRITE(优化器能将查询重写到其它方案的物化视图)系统权限;
(4)初始化参数QUERY_REWRITE_ENABLED 指示优化器是否动态重写查询来使用物化视图,这个参数可以在四个级别上进行设置(参数文件,ALTER SYSTEM, ALTER SESSION, HINTS);
(5)初始化参数QUERY_REWRITE_INTEGRITY 指示优化器在不同的数据一致性情况下决定是否使用物化视图来重写查询,ENFORCED(只有在能确保数据一致的前提下才使用物化视图), TRUSTED(数据不一定一致,只要有用维度对象定义的关系存在,就可使用物化视图), STALE_TOLERATED(数据不一致,也没有相关的维度定义时仍可使用物化视图),这个参数可以在三个级别上进行设置(参数文件,ALTER SYSTEM, ALTER SESSION);
4. 物化视图DML操作测试
(1)验证物化视图是否随记录增加而增加
insert into sino_person_address values(seq_sino_person_address.nextval,123,to_date('2013-04-11 13:13:13','yyyy-mm-dd hh24:mi:ss'),'140','test_report4',141,'beijing
xicheng','100400','4',123,1,'1004',4);
select * from sino_person_address order by dgetdate;
select * from mv_sino_person_address order by dgetdate; 随记录增加而木有刷新,必须commit之后才触发物化视图刷新,没有问题
exec dbms_mview.refresh('mv_sino_person_address','c'); 还可以手动全部刷新【全表刷新】(先清除,再重装数据)
exec dbms_mview.refresh('mv_sino_person_address','f'); 也可以快速刷新【增量刷新】借助物化视图日志,只检查自上次刷新后改变了的数据来进行刷新)
(2)验证物化视图是否随记录删除而减少
delete from sino_person_address where iid=21;
select * from sino_person_address order by dgetdate;
select * from mv_sino_person_address order by dgetdate; 随记录删除而木有刷新,必须commit之后才触发物化视图刷新,没有问题
exec dbms_mview.refresh('mv_sino_person_address','c'); 还可以手动全部刷新【全表刷新】(先清除,再重装数据)
exec dbms_mview.refresh('mv_sino_person_address','f'); 也可以快速刷新【增量刷新】借助物化视图日志,只检查自上次刷新后改变了的数据来进行刷新)
(3)验证物化视图是否随记录修改而更新
update sino_person_address set sorgcode='200' where sorgcode='120';
select * from sino_person_address order by dgetdate;
select * from mv_sino_person_address order by dgetdate; 随记录修改而木有刷新,必须commit之后才触发物化视图刷新,没有问题
exec dbms_mview.refresh('mv_sino_person_address','c'); 还可以手动全部刷新【全表刷新】(先清除,再重装数据)
exec dbms_mview.refresh('mv_sino_person_address','f'); 也可以快速刷新【增量刷新】(借助物化视图日志,只检查自上次刷新后改变了的数据来进行刷新)
(4)验证物化视图是否随truncate而清空
truncate table sino_person_address;
select * from sino_person_address order by dgetdate;
select * from mv_sino_person_address order by dgetdate; 随记录truncate而木有清空,必须手动truncate table mv_sino_person_address;才能清空(两者是没有关联的),没有问题
5.物化视图刷新
根据业务需求,每月定时刷新。根据以上条件,选择使用ORACLE自带工具DBMS_MVIEW工具包中REFRESH方法对物化视图进行刷新。该方法有两个参数,第一个参数是需要刷新的物化视图名称,第二个参数是刷新方式。我们可以写存储过程,对每个物化视图调用一次REFRESH方法,也可以使用“,”把物化视图连接以来,一次刷新。
定义存储过程
create or replace procedure pro_mview_refresh
as
begin
dbms_mview.refresh('mv_sino_person_address','f');
end;
/
执行存储过程
execute pro_mview_refresh;
还可以刷新所有物化视图 dbms_mview.refresh_all_mviews;
创建存储过程
drop procedure pro_refresh_all_mviews;
create or replace procedure pro_refresh_all_mviews
as
i number;
begin
dbms_mview.refresh_all_mviews(number_of_failures=>i);
dbms_output.put_line('number_of_failures=>'||i);
end;
/
执行
executepro_refresh_all_mviews;
set serveroutput on;不可放在存储过程中,因为这是sqlplus命令,如果你怕忘记或者嫌麻烦可以把set serveroutput on;
写入/opt/oracle/product/11.2.0/dbhome_1/sqlplus/admin/glogin.sql中,每次使用sqlplus时自动加载这个文件
如果想用PL/SQL Developer工具访问数据库,请在C:\Program Files\PLSQL Developer\Login.sql 文件里添加
-- Autostart Command Window script
set serveroutput on;
这样以后再使用PL/SQL Developer工具访问数据库就可以自动加载这条命令了
###############################################################################################
研发人员专用,手动刷新,想刷就刷
set serveroutput on; 打开屏幕显示功能,就可以看到number_of_failures=>0结果
PL/SQL 匿名块
declare
i number;
begin
dbms_mview.refresh_all_mviews(number_of_failures=>i);
dbms_output.put_line('number_of_failures=>'||i);
end;
/
number_of_failures=>0
Number_of_failures 表示刷新物化视图失败个数
采用默认refresh force 刷新方式:先试图用FAST方式刷新,如果失败再用COMPLETE方式刷新,这是默认的刷新方式
注意:
1、 如果需要同时刷新多个物化视图,必须用逗号把各个物化视图名称连接起来,并对每个视图都要指明刷新方式(f、增量刷新,c、完全刷新,?、强制刷新,从不刷新)。
NEVER REFRESH(不刷新)
REFREST FAST(借助物化视图日志,只检查自上次刷新后改变了的数据来进行刷新)
REFRESH COMPLETE(先清除,再重装数据)
REFRESH FORCE(先试图用FAST方式刷新,如果失败再用COMPLETE方式刷新,这是默认的刷新方式)
确定刷新时机:
ON COMMIT(事务提交时刷新),
ON DEMAND(用DBMS_MVIEW.REFRESH, DBMS_MVIEW.REFRESH_DEPENDENT, DBMS_MVIEW.REFRESH_ALL_MVIEWS来手工刷新),
By Time(用START WITH 和 NEXT 子句创建的job来定时自动刷新);
[dbms_mview.refresh('mv_sino_person_address,mv_person_address_his','ff');]
2、当日志和物化视图创建好后,删除日志,则需要重新创建物化视图,否则无法增量刷新。
drop materialized view log on sino_person_address; 删除日志
SQL> exec dbms_mview.refresh('mv_sino_person_address','c'); 删除物化视图日志,只可以支持物化视图全部刷新
PL/SQL procedure successfully completed
#################################################################################
SQL> exec dbms_mview.refresh('mv_sino_person_address','f'); 无法增量刷新
begin dbms_mview.refresh('mv_sino_person_address','f'); end;
ORA-23413: 表 "SINOJFS"."SINO_PERSON_ADDRESS" 没有实体化视图日志
ORA-06512: 在 "SYS.DBMS_SNAPSHOT", line 2558
ORA-06512: 在 "SYS.DBMS_SNAPSHOT", line 2771
ORA-06512: 在 "SYS.DBMS_SNAPSHOT", line 2740
ORA-06512: 在 line 2
SQL> create materialized view log on sino_person_employment 重新创建物化视图日志
2 with primary key
3 including new values;
Materialized view log created
SQL> exec dbms_mview.refresh('mv_sino_person_employment','f'); 但还是不支持增量刷新,因为日志内容和原表内容不一致了
begin dbms_mview.refresh('mv_sino_person_employment','f'); end;
ORA-12034: "SINOJFS"."SINO_PERSON_EMPLOYMENT" 上的实体化视图日志比上次刷新后的内容新
ORA-06512: 在 "SYS.DBMS_SNAPSHOT", line 2558
ORA-06512: 在 "SYS.DBMS_SNAPSHOT", line 2771
ORA-06512: 在 "SYS.DBMS_SNAPSHOT", line 2740
ORA-06512: 在 line 2
因为:丢失了删除日志那一点->重建日志那一点之间的原表DML变化,因此日志内容和原表内容不一致了
解决方案:重建物化视图日志 重新【增量刷新】和【全表刷新】一遍
SQL> drop materialized view log on sino_loan_compact; 删除日志
Materialized view log dropped
SQL> create materialized view log on sino_loan_compact 重建日志
2 with primary key
3 including new values;
Materialized view log created
SQL> exec dbms_mview.refresh('mv_sino_loan_compact','c'); 必须先全表刷新
PL/SQL procedure successfully completed
SQL> exec dbms_mview.refresh('mv_sino_loan_compact','f'); 再增量刷新,否则ORA-12034: "SINOJFS"."SINO_LOAN_COMPACT" 上的实体化视图日志比上次刷新后的内容新
PL/SQL procedure successfully completed
小结:只要能够增量刷新,说明日志没有问题了
简述所有视图的快速刷新和全表刷新命令(测试使用) 10张视图
select owner,table_name,tablespace_name,status from dba_tables where table_name in ('SINO_LOAN_APPLY');
update SINO_LOAN_APPLY set sorgcode ='1000' where iid =858;
exec dbms_mview.refresh('mv_sino_loan_compact','c');
exec dbms_mview.refresh('mv_sino_loan_compact','f');
exec dbms_mview.refresh('mv_sino_loan_apply','c');
exec dbms_mview.refresh('mv_sino_loan_apply','f');
exec dbms_mview.refresh('mv_sino_loan_spec_trade','c');
exec dbms_mview.refresh('mv_sino_loan_spec_trade','f');
exec dbms_mview.refresh('mv_sino_loan','c');
exec dbms_mview.refresh('mv_sino_loan','f');
exec dbms_mview.refresh('mv_sino_loan_guarantee','c');
exec dbms_mview.refresh('mv_sino_loan_guarantee','f');
exec dbms_mview.refresh('mv_sino_loan_investor','c');
exec dbms_mview.refresh('mv_sino_loan_investor','f');
###############################################################################
exec dbms_mview.refresh('mv_sino_person_employment','c');
exec dbms_mview.refresh('mv_sino_person_employment','f');
exec dbms_mview.refresh('mv_sino_person_address','c');
exec dbms_mview.refresh('mv_sino_person_address','f');
exec dbms_mview.refresh('mv_sino_person_certification','c');
exec dbms_mview.refresh('mv_sino_person_certification','f');
exec dbms_mview.refresh('mv_sino_person','c');
exec dbms_mview.refresh('mv_sino_person','f');
3.基表增加字段后对应物化视图不能自动同步结构
业务表增加 上报状态 字段 ipbcstate number(1) 可以为空
文档 建模 脚本 物化视图
sino_person_certification 完成 完成 完成 完成
sino_person 完成 完成 完成 完成
sino_person_address 完成 完成 完成 完成
sino_person_employment 完成 完成 完成 完成
sino_person_address_his 完成 完成 完成
sino_person_employment_his 完成 完成 完成
sino_person_his 完成 完成 完成
sino_loan 完成 完成 完成 完成
sino_loan_compact 完成 完成 完成 完成
sino_loan_spec_trade 完成 完成 完成 完成
sino_loan_guarantee 完成 完成 完成 完成
sino_loan_investor 完成 完成 完成 完成
sino_loan_apply 完成 完成 完成 完成
对比IPBCSTATE 字段基表有,但物化视图没有,需要重建物化视图解决
select * from mv_sino_loan_compact where rownum<2;
select * from sino_loan_compact where rownum<2;
select * from mv_sino_loan where rownum < 2;
select * from sino_loan where rownum < 2;
select * from mv_sino_loan_apply where rownum < 2;
select * from sino_loan_apply where rownum < 2;
select * from mv_sino_loan_guarantee where rownum < 2;
select * from sino_loan_guarantee where rownum < 2;
select * from mv_sino_loan_guarantee where rownum < 2;
select * from sino_loan_guarantee where rownum < 2;
select * from mv_sino_loan_investor where rownum < 2;
select * from sino_loan_investor where rownum < 2;
select * from mv_sino_loan_spec_trade where rownum < 2;
select * from sino_loan_spec_trade where rownum < 2;
################################################################################
select * from mv_sino_person where rownum < 2;
select * from sino_person where rownum < 2;
select * from mv_sino_person_address where rownum < 2;
select * from sino_person_address where rownum < 2;
select * from mv_sino_person_certification where rownum < 2;
select * from sino_person_certification where rownum < 2;
select * from mv_sino_person_employment where rownum < 2;
select * from sino_person_employment where rownum < 2;
##################################################################################
4.因为上面写的物化视图是基于主键进行刷新的,因此原表必须要有主键
6.定时刷新JOB
确定执行时间间隔
1)、 每分钟执行
Interval => TRUNC(sysdate,'mi') + 1 / (24*60)
2)、 每天定时执行
例如:每天下午2点执行一次pro_mview_refresh存储过程
Interval => TRUNC(sysdate) + 1 +14/ (24)
3)、 每周定时执行
例如:每周一凌晨2点执行
Interval => TRUNC(next_day(sysdate,2))+2/24 --星期一,一周的第二天
4)、 每月定时执行
例如:每月1日凌晨2点执行
Interval =>TRUNC(LAST_DAY(SYSDATE))+1+2/24
5)、 每季度定时执行
例如每季度的第一天凌晨2点执行
Interval => TRUNC(ADD_MONTHS(SYSDATE,3),'Q') + 2/24
6)、 每半年定时执行
例如:每年7月1日和1月1日凌晨2点
Interval => ADD_MONTHS(trunc(sysdate,'yyyy'),6)+2/24
7)、 每年定时执行
例如:每年1月1日凌晨2点执行
Interval =>ADD_MONTHS(trunc(sysdate,'yyyy'),12)+2/24
通过jobs的使用就能实现每天或每月的指定时间执行一个函数、过程与命令
set serveroutput on 启动屏幕输出功能
SQL> execute dbms_output.put_line('This is'); 已经可以正常输出
This is
创建作业
variable job_num number; 定义存储job编号的变量
declare job_num number; pro_refresh_all_mviews
begin
dbms_job.submit
(job=>:job_num,
what=>'pro_refresh_all_mviews;',
next_date=>sysdate,
interval=>'sysdate+1/1440'); 每天1440分钟,每一分钟运行pro_mview_refresh过程一次
dbms_output.put_line('Job Number is'||to_char(job_num));
commit;
end;
/
############################################################################################
绑定变量版,必须先定义变量
variable job_num number;
declare job_num number;
begin
dbms_job.submit
(job=>:job_num,
what=>'pro_refresh_all_mviews;',
next_date=>sysdate,
interval=>'trunc(SYSDATE+5/1440,''MI'')'); 每5分钟运行一次job
dbms_output.put_line('Job Number is'||to_char(job_num));
commit;
end;
/
例如:每天上午10点执行一次pro_refresh_all_mviews存储过程
Interval => TRUNC(sysdate) + 1 +10/ (24)
declare job_num number;
begin
dbms_job.submit
(job=>:job_num,
what=>'pro_refresh_all_mviews;',
next_date=>sysdate,
interval=>'trunc(SYSDATE)+1+10/24'); 每天上午10点运行一次job
dbms_output.put_line('Job Number is'||to_char(job_num));
commit;
end;
/
Job Number is
PL/SQL procedure successfully completed
job_num
---------
1
####################################################################################
PL/SQL 匿名块版,可以直接在块中定义变量,比较方面现在采用这种
declare
job_num number;
begin
dbms_job.submit
(job=>job_num,
what=>'pro_refresh_all_mviews;',
next_date=>sysdate,
interval=>'trunc(SYSDATE)+1+10/24');
dbms_output.put_line('Job Number is '||job_num);
commit;
end;
/
Job Number is 4
PL/SQL procedure successfully completed
####################################################################################
dbms_job.submit( job out binary_integer,
what in varchar2,
next_date in date,
interval in varchar2,
no_parse in boolean)
●job:输出变量,这是作业在作业队列中的编号;
●what:执行作业的存储过程及其输入参数;
●next_date:作业初次执行的时间;
●interval:作业执行的时间间隔。指上一次执行结束到下一次开始执行的时间间隔
其中Interval这个值是决定Job何时,被重新执行的关键;当interval设置为null时,该job执行结束后,就被从队列中删除。假如我们需要该job周期性地执行,则要用‘sysdate+m’表示。如何更好地确定执行时间的间隔需要我们掌握一个函数TRUNC。
SQL> show parameter job_queue_process 作业队列进程数,oracle能够并发job数量,0~1000
NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
job_queue_processes integer 1000
Oracle提供的数据字典user_jobs监控作业状态
SQL> select job,log_user,what,last_date,last_sec,next_date,next_sec,failures,broken from user_jobs;
Job 作业唯一编号
Log_user 提交作业的用户
What 作业执行的存储过程
Last_date 最后一次成功运行作业的日期
Last_sec 最后一次成功运行作业的时间
Next_date 下一次运行作业日期
Next_sec 下一次运行作业时间
Failures 执行失败次数,当执行job出现错误时,Oracle将其记录在日志里,失败次数每次自动加1,加到16之后Oracle就不在执行它了
Broken 是否是异常作业,当执行失败次数达到16时,Oracle就将该job标志为broken。此后,Oracle不再继续执行它,直到用户调用过程dbms_job.broken,重新设置为not broken,或强制调用dbms_job.run来重新执行它。Y标示作业中断,以后不会运行,N表示作业正常,可以运行
运行作业
begin
dbms_job.run(:job_num); job_num是存储job编号的变量
end;
查询作业状态
SQL> select job,log_user,what,last_date,last_sec,next_date,next_sec,failures,broken from user_jobs;
JOB LOG_USER WHAT LAST_DATE LAST_SEC NEXT_DATE NEXT_SEC FAILURES BROKEN
---------- --------- ---------------------------------------------------- ----------- ---------------- -----------
1 SINOJFS pro_refresh_all_mviews; 2013-4-26 1 11:27:38 2013-4-27 1 10:00:00 0 N
Job 作业唯一编号
Log_user 提交作业的用户
What 作业执行的存储过程
Last_date 最后一次成功运行作业的日期
Last_sec 最后一次成功运行作业的时间
Next_date 下一次运行作业日期
Next_sec 下一次运行作业时间
Failures 执行失败次数,当执行job出现错误时,Oracle将其记录在日志里,失败次数每次自动加1,加到16之后Oracle就不在执行它了
Broken 是否是异常作业,当执行失败次数达到16时,Oracle就将该job标志为broken。此后,Oracle不再继续执行它,直到用户调用过程dbms_job.broken,重新设置为not broken;
或强制调用dbms_job.run来重新执行它。Y标示作业中断,以后不会运行,N表示作业正常,可以运行
删除作业
begin
dbms_job.remove(:job_num);
end;
修改作业
dbms_job.remove(jobno); 删除job号
例 execute dbms_job.remove(1);
######################################################################
dbms_job.what(jobno,what); 修改执行的存储过程
dbms_job.next_date(job,next_date)修改下次执行的时间
例 exec dbms_job.next_date(46,sysdate+2/(24*60)); 46作业号
#####################################################################
dbms_job.interval(job,interval) :修改间隔时间
例 exec dbms_job.interval(46,sysdate+3/(24*60));
######################################################################
dbms_job.broken(job,true) 中断job
例 exec dbms_job.broken(46,true); 46作业号 exec dbms_job.broken(2,true) BROKEN=Y
#######################################################################
dbms_job.broken(job,false,next_date) next_date:下次执行时间,如果不填则马上启动job
例 exec dbms_job.broken(46,false); 启动job exec dbms_job.broken(2,false); BROKEN=N
########################################################################
dbms_job.run(jobno); 运行作业
例子 execute dbms_job.run(1);
一. 物化视图概述
Oracle的物化视图是包括一个查询结果的数据库对像,它是远程数据的的本地副本,或者用来生成基于数据表求和的汇总表。物化视图存储基于远程表的数据,也可以称为快照。
物化视图可以用于预先计算并保存表连接或聚集等耗时较多的操作的结果,这样,在执行查询时,就可以避免进行这些耗时的操作,而从快速的得到结果。物化视图有很多方面和索引很相似:使用物化视图的目的是为了提高查询性能;物化视图对应用透明,增加和删除物化视图不会影响应用程序中SQL语句的正确性和有效性;物化视图需要占用存储空间;当基表发生变化时,物化视图也应当刷新。
物化视图可以查询表,视图和其它的物化视图。
通常情况下,物化视图被称为主表(在复制期间)或明细表(在数据仓库中)。
对于复制,物化视图允许你在本地维护远程数据的副本,这些副本是只读的。如果你想修改本地副本,必须用高级复制的功能。当你想从一个表或视图中抽取数据时,你可以用从物化视图中抽取。
对于数据仓库,创建的物化视图通常情况下是聚合视图,单一表聚合视图和连接视图。
在复制环境下,创建的物化视图通常情况下主键,rowid,和子查询视图。
物化视图由于是物理真实存在的,故可以创建索引。
1.1 物化视图可以分为以下三种类型
(1) 包含聚集的物化视图;
(2) 只包含连接的物化视图;
(3) 嵌套物化视图。
三种物化视图的快速刷新的限制条件有很大区别,而对于其他方面则区别不大。创建物化视图时可以指定多种选项,下面对几种主要的选择进行简单说明:
(1)创建方式(BuildMethods):包括BUILD IMMEDIATE和BUILD DEFERRED两种。
BUILD IMMEDIATE是在创建物化视图的时候就生成数据。
BUILD DEFERRED则在创建时不生成数据,以后根据需要在生成数据。默认为BUILD IMMEDIATE。
(2)查询重写(QueryRewrite):包括ENABLE QUERY REWRITE和DISABLE QUERY REWRITE两种。
分别指出创建的物化视图是否支持查询重写。查询重写是指当对物化视图的基表进行查询时,Oracle会自动判断能否通过查询物化视图来得到结果,如果可以,则避免了聚集或连接操作,而直接从已经计算好的物化视图中读取数据。默认为DISABLEQUERY REWRITE。
(3)刷新(Refresh):指当基表发生了DML操作后,物化视图何时采用哪种方式和基表进行同步。刷新的模式有两种:ON DEMAND和ON COMMIT。
ON DEMAND和ON COMMIT物化视图的区别在于其刷新方法的不同,ON DEMAND指物化视图在用户需要的时候进行刷新,可以手工通过DBMS_MVIEW.REFRESH等方法来进行刷新,也可以通过JOB定时进行刷新,即更新物化视图,以保证和基表数据的一致性;而ON COMMIT是说,一旦基表有了COMMIT,即事务提交,则立刻刷新,立刻更新物化视图,使得数据和基表一致。
对基表,平常的COMMIT在0.01秒内可以完成,但在有了ON COMMIT视图后,居然要6秒。速度减低了很多倍。ON COMMIT视图对基表的影响可见一斑。
1.2 物化视图,根据不同的着重点可以有不同的分类:
1) 按刷新方式分:FAST/COMPLETE/FORCE
2) 按刷新时间的不同:ON DEMAND/ON COMMIT
3) 按是否可更新:UPDATABLE/READ ONLY
4) 按是否支持查询重写:ENABLE QUERY REWRITE/DISABLEQUERY REWRITE
默认情况下,如果没指定刷新方法和刷新模式,则Oracle默认为FORCE和DEMAND。
注意:设置REFRESH ON COMMIT的物化视图不能访问远端对象。
在建立物化视图的时候可以指定ORDER BY语句,使生成的数据按照一定的顺序进行保存。不过这个语句不会写入物化视图的定义中,而且对以后的刷新也无效。
1.3 物化视图有三种刷新方式:COMPLETE、FAST和 FORCE。
1) 完全刷新(COMPLETE)会删除表中所有的记录(如果是单表刷新,可能会采用TRUNCATE的方式),然后根据物化视图中查询语句的定义重新生成物化视图。
2) 快速刷新(FAST)采用增量刷新的机制,只将自上次刷新以后对基表进行的所有操作刷新到物化视图中去。FAST必须创建基于主表的视图日志。
对于增量刷新选项,如果在子查询中存在分析函数,则物化视图不起作用。
3) 采用FORCE方式,Oracle会自动判断是否满足快速刷新的条件,如果满足则进行快速刷新,否则进行完全刷新。
Oracle物化视图的快速刷新机制是通过物化视图日志完成的。Oracle通过一个物化视图日志还可以支持多个物化视图的快速刷新。
物化视图日志根据不同物化视图的快速刷新的需要,可以建立为ROWID或PRIMARY KEY类型的。还可以选择是否包括SEQUENCE、INCLUDING NEW VALUES以及指定列的列表。
1.4 物化视图Refresh子句的其他说明与示例
REFRESH 子句可以包含如下部分:
[refresh [fast|complete|force]
[on demand | commit]
[start with date] [next date]
[with {primary key|rowid}]]
1.4.1 主键和ROWD子句:
WITH PRIMARY KEY选项生成主键物化视图,也就是说物化视图是基于主表的主键,而不是ROWID(对应于ROWID子句). PRIMARY KEY是默认选项,为了生成PRIMARY KEY子句,应该在主表上定义主键,否则应该用基于ROWID的物化视图.
基于ROWID物化视图只有一个单一的主表,不能包括下面任何一项:
(1).Distinct 或者聚合函数.
(2) .Group by,子查询,连接和SET操作
--主键(PrimaryKey)物化视图示例:
在远程数据库表emp上创建主键物化视图:
- CREATEMATERIALIZEDVIEW mv_emp_pk
- REFRESHFASTSTARTWITHSYSDATE
- NEXT SYSDATE + 1/48
- WITHPRIMARYKEY
- ASSELECT * FROM emp@remote_db
CREATEMATERIALIZEDVIEW mv_emp_pk
REFRESHFASTSTARTWITHSYSDATE
NEXT SYSDATE + 1/48
WITHPRIMARYKEY
ASSELECT * FROM emp@remote_db
--当用FAST选项创建物化视图,必须创建基于主表的视图日志,如下:
- CREATEMATERIALIZEDVIEWLOGON emp;
CREATEMATERIALIZEDVIEWLOGON emp;
--Rowid物化视图示例:
下面的语法在远程数据库表emp上创建Rowid物化视图
- CREATEMATERIALIZEDVIEW mv_emp_rowid
- REFRESHWITHROWID
- ASSELECT * FROM emp@remote_db;
- Materializedviewlog created.
CREATEMATERIALIZEDVIEW mv_emp_rowid
REFRESHWITHROWID
ASSELECT * FROM emp@remote_db;
Materializedviewlog created.
--子查询物化视图示例:
在远程数据库表emp上创建基于emp和dept表的子查询物化视图
- CREATEMATERIALIZEDVIEW mv_empdept
- ASSELECT * FROM emp@remote_db e
- WHEREEXISTS
- (SELECT * FROM dept@remote_db d
- WHEREe.dept_no = d.dept_no)
CREATEMATERIALIZEDVIEW mv_empdept
ASSELECT * FROM emp@remote_db e
WHEREEXISTS
(SELECT * FROM dept@remote_db d
WHEREe.dept_no = d.dept_no)
1.4.2 刷新时间
START WITH子句通知数据库完成从主表到本地表第一次复制的时间,应该及时估计下一次运行的时间点, NEXT 子句说明了刷新的间隔时间.
- CREATEMATERIALIZEDVIEW mv_emp_pk
- REFRESHFAST
- STARTWITHSYSDATE
- NEXT SYSDATE + 2
- WITHPRIMARYKEY
- ASSELECT * FROM emp@remote_db;
CREATEMATERIALIZEDVIEW mv_emp_pk
REFRESHFAST
STARTWITHSYSDATE
NEXT SYSDATE + 2
WITHPRIMARYKEY
ASSELECT * FROM emp@remote_db;
在上面的例子中,物化视图数据的第一个副本在创建时生成,以后每两天刷新一次.
- creatematerializedviewMV_LVY_LEVYDETAILDATA
- TABLESPACE ZGMV_DATA
- BUILDDEFERRED
- refreshforce
- ondemand
- startwith to_date('24-11-200518:00:10', 'dd-mm-yyyyhh24:mi:ss')
- nextTRUNC(SYSDATE+1)+18/24
- as
- SELECT * FROM emp@remote_db;
creatematerializedviewMV_LVY_LEVYDETAILDATA
TABLESPACE ZGMV_DATA --保存表空间
BUILDDEFERRED--延迟刷新不立即刷新
refreshforce--如果可以快速刷新则进行快速刷新,否则完全刷新
ondemand--按照指定方式刷新
startwith to_date('24-11-200518:00:10', 'dd-mm-yyyyhh24:mi:ss') --第一次刷新时间
nextTRUNC(SYSDATE+1)+18/24--刷新时间间隔
as
SELECT * FROM emp@remote_db;
1.5 ON PREBUILD TABLE 说明
在创建物化视图时指明ON PREBUILD TABLE语句,可以将物化视图建立在一个已经存在的表上。这种情况下,物化视图和表必须同名。当删除物化视图时,不会删除同名的表。
这种物化视图的查询重写要求参数QUERY_REWRITE_INTEGERITY必须设置为trusted或者stale_tolerated。
1.6 物化视图分区
物化视图可以进行分区。而且基于分区的物化视图可以支持分区变化跟踪(PCT)。具有这种特性的物化视图,当基表进行了分区维护操作后,仍然可以进行快速刷新操作。对于聚集物化视图,可以在GROUP BY列表中使用CUBE或ROLLUP,来建立不同等级的聚集物化视图。
相关内容参考:
Oracle 物化视图日志 与 快速刷新 说明
http://blog.csdn.net/tianlesoftware/article/details/7720580
Oracle 物化视图 详细错误描述 查看方法
http://blog.csdn.net/tianlesoftware/article/details/7719789
Oracle 物化视图 快速刷新 限制 说明
http://blog.csdn.net/tianlesoftware/article/details/7719679
二. 物化视图操作示例
1. 创建物化视图需要的权限:
- GRANT CREATE MATERIALIZED VIEW TO USER_NAME;
GRANT CREATE MATERIALIZED VIEW TO USER_NAME;
2. 在源表建立物化视图日志
- CREATE MATERIALIZED VIEW LOG ON DAVE
- TABLESPACE&BISONCU_SPACE
- WITH PRIMARY KEY;
CREATE MATERIALIZED VIEW LOG ON DAVE
TABLESPACE&BISONCU_SPACE -- 日志空间
WITH PRIMARY KEY; -- 指定为主键类型
3. 授权给中间用户
- GRANT SELECT ON DAVE TO ANQING;
- GRANT SELECT ON MLOG$_DAVE TO ANQING;
GRANT SELECT ON DAVE TO ANQING;
GRANT SELECT ON MLOG$_DAVE TO ANQING;
4. 在目标数据库上创建MATERIALIZED VIEW
- CREATE MATERIALIZED VIEW AICS_DAVE
- TABLESPACE&BISONCS_SPACE
- REFRESH FAST
- ON DEMAND
-
-
- START WITH SYSDATE
-
-
- NEXT SYSDATE+1/24/20
- WITH PRIMARY KEY
-
- DISABLE QUERY REWRITE AS
- SELECT MODEL_ID, STATUS,MODEL_NAME, MANU_ID, DESCRIPTION, CREATE_TIME, UPDATE_TIME, SW_VERSION
- FROM AICS_DAVE@LINK_DAVE;
CREATE MATERIALIZED VIEW AICS_DAVE
TABLESPACE&BISONCS_SPACE
REFRESH FAST
ON DEMAND
--第一次刷新时间
--START WITH to_date('2012-01-01 20:00:00', 'yyyy-mm-dd hh24:mi:ss')
START WITH SYSDATE
--刷新时间间隔。每1天刷新一次,时间为凌晨2点
--NEXT TRUNC(SYSDATE,'dd')+1+2/24
NEXT SYSDATE+1/24/20
WITH PRIMARY KEY
--USING DEFAULT LOCAL ROLLBACKSEGMENT
DISABLE QUERY REWRITE AS
SELECT MODEL_ID, STATUS,MODEL_NAME, MANU_ID, DESCRIPTION, CREATE_TIME, UPDATE_TIME, SW_VERSION
FROM AICS_DAVE@LINK_DAVE;
5. 在目标物化视图上创建索引
- CREATE INDEX IDX_T_DV_CT
- ON AICS_DEV_INFO (CREATE_TIME, UPDATE_TIME)
- TABLESPACE &BISON_IDX;
-
- CREATE INDEX IDX_T_DV_UT
- ON AICS_DEV_INFO (UPDATE_TIME)
- TABLESPACE &BISON_IDX;
-
- CREATE INDEX I_T_DV_MSISDN
- ON AICS_DEV_INFO (MSISDN)
- TABLESPACE &BISON_IDX;
CREATE INDEX IDX_T_DV_CT
ON AICS_DEV_INFO (CREATE_TIME, UPDATE_TIME)
TABLESPACE &BISON_IDX;
CREATE INDEX IDX_T_DV_UT
ON AICS_DEV_INFO (UPDATE_TIME)
TABLESPACE &BISON_IDX;
CREATE INDEX I_T_DV_MSISDN
ON AICS_DEV_INFO (MSISDN)
TABLESPACE &BISON_IDX;
6. 物化视图刷新说明
(1)使用dbms_mview.refresh 手工刷新
如:
- EXEC DBMS_MVIEW.REFRESH('MV_DAVE');
-
-
- EXEC DBMS_MVIEW.REFRESH(LIST => 'MV_DAVE',METHOD => 'c');
- EXEC DBMS_MVIEW.REFRESH('MV_DAVE','C');
-
-
- EXEC DBMS_MVIEW.REFRESH(LIST => 'MV_DAVE',METHOD => 'f');
- EXEC DBMS_MVIEW.REFRESH('MV_DAVE','F');
EXEC DBMS_MVIEW.REFRESH('MV_DAVE');
--完全刷新
EXEC DBMS_MVIEW.REFRESH(LIST => 'MV_DAVE',METHOD => 'c');
EXEC DBMS_MVIEW.REFRESH('MV_DAVE','C');
--快速刷新
EXEC DBMS_MVIEW.REFRESH(LIST => 'MV_DAVE',METHOD => 'f');
EXEC DBMS_MVIEW.REFRESH('MV_DAVE','F');
(2)使用dbms_refresh.refresh 过程来批量刷新MV
如果我们在创建物化视图的过程指定start 和next time的刷新时间,那么Oracle 会自动创建刷新的job,并采用dbms_refresh.refresh 的方式。
使用这种方式刷新之前需要先make refresh group,然后才可以刷新。
Refreshmake 的语法可以参考:
http://docs.oracle.com/cd/B19306_01/server.102/b14227/rarrefreshpac.htm#i94057
示例:
假设存在物化视图MV_T1, MV_T2, MV_T3. 创建refresh group的语法如下:
- SQL> EXEC DBMS_REFRESH.MAKE('REP_TEST', 'MV_T1,MV_T2,MV_T3', SYSDATE, 'SYSDATE+ 1')
-
-
- SQL> EXEC DBMS_REFRESH.REFRESH('REP_TEST')
SQL> EXEC DBMS_REFRESH.MAKE('REP_TEST', 'MV_T1,MV_T2,MV_T3', SYSDATE, 'SYSDATE+ 1')
--刷新整个refresh group 组:
SQL> EXEC DBMS_REFRESH.REFRESH('REP_TEST')
7. 删除物化视图及日志
-
- DROP MATERIALIZED VIEW LOG ON DAVE;
-
- DROP MATERIALIZED VIEW MV_DAVE;
--删除物化视图日志:
DROP MATERIALIZED VIEW LOG ON DAVE;
--删除物化视图
DROP MATERIALIZED VIEW MV_DAVE;
8. 查看物化视图刷新状态信息
- SQL> SELECT MVIEW_NAME, LAST_REFRESH_DATE, STALENESS FROMUSER_MVIEWS;
- SQL> SELECT NAME, LAST_REFRESH FROM USER_MVIEW_REFRESH_TIMES;
SQL> SELECT MVIEW_NAME, LAST_REFRESH_DATE, STALENESS FROMUSER_MVIEWS;
SQL> SELECT NAME, LAST_REFRESH FROM USER_MVIEW_REFRESH_TIMES;
9. 查询物化视图日志:
- SELECT * FROM MLOG$_DAVE;
SELECT * FROM MLOG$_DAVE;
一、忘记除SYS、SYSTEM用户之外的用户的登录密码。
用SYS (或SYSTEM)用户登录: CONN SYS/PASS_WORD AS SYSDBA;
使用如下语句修改用户的密码: ALTER USER user_name IDENTIFIED BY "newpass";
注意:密码不能全是数字。并且不能是数字开头。否则会出现:ORA-00988: 口令缺失或无效
二、忘记SYS用户,或者是SYSTEM用户的密码。
如果是忘记SYSTEM用户的密码,可以用SYS用户登录。然后用ALTER USER 命令修改密码:
CONN SYS/PASS_WORD AS SYSDBA;
ALTER USER SYSTEM IDENTIFIED BY "newpass";
如果是忘记SYS用户的密码,可以用SYSTEM用户登录。然后用ALTER USER 命令修改密码。
CONN SYSTEM/PASS_WORD ;
ALTER USER SYSTEM IDENTIFIED BY "newpass";
三、如果SYS,SYSTEM用户的密码都忘记或是丢失。
可以使用ORAPWD.EXE 工具修改密码。
开始菜单->运行->输入‘CMD’,打开命令提示符窗口,输入如下命令:
orapwd file=D:\oracle10g\database\pwdctcsys.ora password=newpass
这个命令重新生成了数据库的密码文件。密码文件的位置在ORACLE_HOME目录下的\database目录下。
这个密码是修改sys用户的密码。除sys其他用户的密码不会改变。
不过Oracle提供了两种验证方式,一种是OS验证,另一种密码文件验证方式,如果是第一种方式用以下方法修改密码:
sqlplus /nolog;
connect / as sysdba
alter user sys identified by ;
alter user system identified by ;
如果是第二种方法就用上述方式修改,也可以下方法修改密码:
orapwd file=pwdxxx.ora password=你设定的新密码 entries=10
设定完后,重新启动服务,再次登陆就可以了。
oracle 11g
在本机安装完Oracle以后,不记得sys用户的密码了,采用如下方法可以修改密码:
1.打开cmd,输入sqlplus /nolog,回车;输入“conn / as sysdba”;输入“alter user sys identified by 新密码”,注意:新密码最好以字母开头,否则可能出现错误Ora-00988。有了这个方法后,只要自己对oracle服务器有管理员权限,不记得密码的时候就可以随意修改密码了。
2.在命令行执行如下命令:sqlplus “/@服务名 as sysdba”,然后在sqlplus中alter user sys identified by 新密码;
alter user system identified by 新密码;
3.运行到C盘根目录
1)输入:SET ORACLE_SID = 你的SID名称
2)输入:sqlplus/nolog
3)输入:connect/as sysdba
4)输入:alert user sys identified by sys
5)输入:alert user system identified by system
6)更改完成,密码是Oracle数据库初始密码
4.首先,在CMD下输入SQLPLUS/NOLOG然后再在出来的界面中打入CONN/AS SYSDBA,这样就会以本地系统登录的用户为信任用户进入数据库的操作.解决这个问题的方式有两种,一个是:ALTER USER (USERNAME) IDENTIFIED BY “密码”;这个是可以改变USERNAME的密码.当然这个USERNAME必须已经存在的
另一种是:CREATE USER (USERNAME) IDENTIFIED BY “密码”;改变用户权限的命令是:GRANT ROLES TO (USERNAME);以上2种方法都是针对ORACLE 9I的版本 。
5.用orapwd.exe命令,可以修改命令。
orapwd file=’/oracle/pwdsid.ora’ password=123456这个命令是修改sys用户的密码。你把生成的文件覆盖原来的密码文件。除sys其他用户的密码不会改变。
6.su - oracle
sqlplus /nolog
conn / as sysdba
startup (如果数据库不是处于启动状态则启动)
alter user sys identified by 123456
然后就可以使用sys用户密码登陆了
操作系统认证方式
conn / as sysdba
alter user sys identified by xxx
忘记密码处理
登录:sqlplus/as sysdba;
修改:alter user username identified by 密码;
创建新用户
create user 用户名 identified by 密码 default tablespace 表空间名
用户授权
Grant create session to SYSDATA;//授予SYSDATA连接数据的权限
系统权限如下:
Create session:连接数据库
Create sequence:创建序列
Create synonym:创建同名对象
Create table:创建表
Create any table:创建任何模式的表
Drop table:删除表
Create procedure:创建存储过程
Execute any procedure:执行任何模式的存储过程
Create user:创建用户
Create view:创建视图
Drop user:删除用户
Drop any table:删除任何模式的表
向用户授予系统特权
Grant execute any procedure toSYSDATA with admin option
此句意思为为sha用户创建系统特权并且可以用SYSDATA为别的用户授予权限
连接SYSDATA用户connect SYSDATA/admin
可以创建别的用户
查看用户权限
进入SYSDATA用户connect SYSDATA/admin
Select * from user_sys_privs;可以查看到一个列表,
列代表用户名权限是否可以给别的用户附加权限(N、Y)
行代表权限都有那些
撤销用户授予的权限
必须连接connect system/admin
撤销权限revoke是系统撤销权限的关键词
Revoke execute any procedure from SYSDATA;
更改用户密码
进入SYSDATA用户connect SYSDATA/admin
Password输入旧密码输入新密码俩边OK
或者用alter user SYSDATA identified by xinmima
删除用户
Connect system/admin
Drop user SYSDATA;
为用户授予角色
Grant dba to SYSDATA;
Grant connect to SYSDATA;
Linux下的plsql创建用户
create user SYSDATA identified by admin
Default tablespace user
Temporary tablespace temp;
Granr unlimited tablespace to SYSDATA;//权限
Grant dba to SYSDATA;//角色
Grant connect to SYSDATA;
select * from dba_users; //用户表
select * from dba_tablespaces; //表空间
http://database.51cto.com/art/200911/160296.htm
Oracle 权限设置
一、权限分类:
系统权限:系统规定用户使用数据库的权限。(系统权限是对用户而言)。
实体权限:某种权限用户对其它用户的表或视图的存取权限。(是针对表或视图而言的)。
二、系统权限管理:
1、系统权限分类:
DBA: 拥有全部特权,是系统最高权限,只有DBA才可以创建数据库结构。
RESOURCE:拥有Resource权限的用户只可以创建实体,不可以创建数据库结构。
CONNECT:拥有Connect权限的用户只可以登录Oracle,不可以创建实体,不可以创建数据库结构。
对于普通用户:授予connect, resource权限。
对于DBA管理用户:授予connect,resource, dba权限。
2、系统权限授权命令:
[系统权限只能由DBA用户授出:sys, system(最开始只能是这两个用户)]
授权命令:SQL> grant connect, resource, dba to 用户名1 [,用户名2]…;
[普通用户通过授权可以具有与system相同的用户权限,但永远不能达到与sys用户相同的权限,system用户的权限也可以被回收。]
例:
SQL> connect system/manager
SQL> Create user user50 identified by user50;
SQL> grant connect, resource to user50;
查询用户拥有哪里权限:
SQL> select * from dba_role_privs;
SQL> select * from dba_sys_privs;
SQL> select * from role_sys_privs;
删除用户:SQL> drop user 用户名 cascade; //加上cascade则将用户连同其创建的东西全部删除
3、系统权限传递:
增加WITH ADMIN OPTION选项,则得到的权限可以传递。
SQL> grant connect, resorce to user50 with admin option; //可以传递所获权限。
4、系统权限回收:系统权限只能由DBA用户回收
命令:SQL> Revoke connect, resource from user50;
说明:
1)如果使用WITH ADMIN OPTION为某个用户授予系统权限,那么对于被这个用户授予相同权限的所有用户来说,取消该用户的系统权限并不会级联取消这些用户的相同权限。
2)系统权限无级联,即A授予B权限,B授予C权限,如果A收回B的权限,C的权限不受影响;系统权限可以跨用户回收,即A可以直接收回C用户的权限。
三、实体权限管理
1、实体权限分类:select, update, insert, alter, index, delete, all //all包括所有权限
execute //执行存储过程权限
user01:
SQL> grant select, update, insert on product to user02;
SQL> grant all on product to user02;
user02:
SQL> select * from user01.product;
// 此时user02查user_tables,不包括user01.product这个表,但如果查all_tables则可以查到,因为他可以访问。
2. 将表的操作权限授予全体用户:
SQL> grant all on product to public; // public表示是所有的用户,这里的all权限不包括drop。
[实体权限数据字典]:
SQL> select owner, table_name from all_tables; // 用户可以查询的表
SQL> select table_name from user_tables; // 用户创建的表
SQL> select grantor, table_schema, table_name, privilege from all_tab_privs; // 获权可以存取的表(被授权的)
SQL> select grantee, owner, table_name, privilege from user_tab_privs; // 授出权限的表(授出的权限)
3. DBA用户可以操作全体用户的任意基表(无需授权,包括删除):
DBA用户:
SQL> Create table stud02.product(
id number(10),
name varchar2(20));
SQL> drop table stud02.emp;
SQL> create table stud02.employee
as
select * from scott.emp;
4. 实体权限传递(with grant option):
user01:
SQL> grant select, update on product to user02 with grant option; // user02得到权限,并可以传递。
5. 实体权限回收:
user01:
SQL>Revoke select, update on product from user02; //传递的权限将全部丢失。
说明
1)如果取消某个用户的对象权限,那么对于这个用户使用WITH GRANT OPTION授予权限的用户来说,同样还会取消这些用户的相同权限,也就是说取消授权时级联的。
Oracle 用户管理
一、创建用户的Profile文件
SQL> create profile student limit // student为资源文件名
FAILED_LOGIN_ATTEMPTS 3 //指定锁定用户的登录失败次数
PASSWORD_LOCK_TIME 5 //指定用户被锁定天数
PASSWORD_LIFE_TIME 30 //指定口令可用天数
二、创建用户
SQL> Create User username
Identified by password
Default Tablespace tablespace
Temporary Tablespace tablespace
Profile profile
Quota integer/unlimited on tablespace;
例:
SQL> Create user acc01
identified by acc01 // 如果密码是数字,请用双引号括起来
default tablespace account
temporary tablespace temp
profile default
quota 50m on account;
SQL> grant connect, resource to acc01;
[*] 查询用户缺省表空间、临时表空间
SQL> select username, default_tablespace, temporary_tablespace from dba_users;
[*] 查询系统资源文件名:
SQL> select * from dba_profiles;
资源文件类似表,一旦创建就会保存在数据库中。
SQL> select username, profile, default_tablespace, temporary_tablespace from dba_users;
SQL> create profile common limit
failed_login_attempts 5
idle_time 5;
SQL> Alter user acc01 profile common;
三、修改用户:
SQL> Alter User 用户名
Identified 口令
Default Tablespace tablespace
Temporary Tablespace tablespace
Profile profile
Quota integer/unlimited on tablespace;
1、修改口令字:
SQL>Alter user acc01 identified by “12345″;
2、修改用户缺省表空间:
SQL> Alter user acc01 default tablespace users;
3、修改用户临时表空间
SQL> Alter user acc01 temporary tablespace temp_data;
4、强制用户修改口令字:
SQL> Alter user acc01 password expire;
5、将用户加锁
SQL> Alter user acc01 account lock; // 加锁
SQL> Alter user acc01 account unlock; // 解锁
四、删除用户
SQL>drop user 用户名; //用户没有建任何实体
SQL> drop user 用户名 CASCADE; // 将用户及其所建实体全部删除
*1. 当前正连接的用户不得删除。
五、监视用户:
1、查询用户会话信息:
SQL> select username, sid, serial#, machine from v$session;
2、删除用户会话信息:
SQL> Alter system kill session ‘sid, serial#’;
3、查询用户SQL语句:
SQL> select user_name, sql_text from v$open_cursor;
Oracle 角色管理
一、何为角色
角色。角色是一组权限的集合,将角色赋给一个用户,这个用户就拥有了这个角色中的所有权限。
二、系统预定义角色
预定义角色是在数据库安装后,系统自动创建的一些常用的角色。下介简单的介绍一下这些预定角色。角色所包含的权限可以用以下语句查询:
sql>select * from role_sys_privs where role=’角色名’;
1.CONNECT, RESOURCE, DBA
这些预定义角色主要是为了向后兼容。其主要是用于数据库管理。oracle建议用户自己设计数据库管理和安全的权限规划,而不要简单的使用这些预定角色。将来的版本中这些角色可能不会作为预定义角色。
2.DELETE_CATALOG_ROLE, EXECUTE_CATALOG_ROLE, SELECT_CATALOG_ROLE
这些角色主要用于访问数据字典视图和包。
3.EXP_FULL_DATABASE, IMP_FULL_DATABASE
这两个角色用于数据导入导出工具的使用。
4.AQ_USER_ROLE, AQ_ADMINISTRATOR_ROLE
AQ:Advanced Query。这两个角色用于oracle高级查询功能。
5. SNMPAGENT
用于oracle enterprise manager和Intelligent Agent
6.RECOVERY_CATALOG_OWNER
用于创建拥有恢复库的用户。关于恢复库的信息,参考oracle文档《Oracle9i User-Managed Backup and Recovery Guide》
7.HS_ADMIN_ROLE
A DBA using Oracle’s heterogeneous services feature needs this role to access appropriate tables in the data dictionary.
三、管理角色
1.建一个角色
sql>create role role1;
2.授权给角色
sql>grant create any table,create procedure to role1;
3.授予角色给用户
sql>grant role1 to user1;
4.查看角色所包含的权限
sql>select * from role_sys_privs;
5.创建带有口令以角色(在生效带有口令的角色时必须提供口令)
sql>create role role1 identified by password1;
6.修改角色:是否需要口令
sql>alter role role1 not identified;
sql>alter role role1 identified by password1;
7.设置当前用户要生效的角色
(注:角色的生效是一个什么概念呢?假设用户a有b1,b2,b3三个角色,那么如果b1未生效,则b1所包含的权限对于a来讲是不拥有的,只有角色生效了,角色内的权限才作用于用户,最大可生效角色数由参数MAX_ENABLED_ROLES设定;在用户登录后,oracle将所有直接赋给用户的权限和用户默认角色中的权限赋给用户。)
sql>set role role1;//使role1生效
sql>set role role,role2;//使role1,role2生效
sql>set role role1 identified by password1;//使用带有口令的role1生效
sql>set role all;//使用该用户的所有角色生效
sql>set role none;//设置所有角色失效
sql>set role all except role1;//除role1外的该用户的所有其它角色生效。
sql>select * from SESSION_ROLES;//查看当前用户的生效的角色。
8.修改指定用户,设置其默认角色
sql>alter user user1 default role role1;
sql>alter user user1 default role all except role1;
详见oracle参考文档
9.删除角色
sql>drop role role1;
角色删除后,原来拥用该角色的用户就不再拥有该角色了,相应的权限也就没有了。
说明:
1)无法使用WITH GRANT OPTION为角色授予对象权限
2)可以使用WITH ADMIN OPTION 为角色授予系统权限,取消时不是级联
function uniteTab(tableId,col) {
//col-- 需要合并单元格的列 1开始
var tb=document.getElementById(tableId);
tb.style.display='';
var i = 0;
var j = 0;
var rowCount = tb.rows.length; // 行数
var colCount = tb.rows[0].cells.length; // 列数
var obj1 = null;
var obj2 = null;
//为每个单元格命名
for (i = 0; i < rowCount; i++) {
for (j = 0; j < colCount; j++) {
tb.rows[i].cells[j].id = "tb__" + i.toString() + "_" + j.toString();
}
}
//合并行
for (i = 0; i < colCount; i++) {
if (i == colLength) break;
obj1 = document.getElementById("tb__0_" + i.toString())
for (j = 1; j < rowCount; j++) {
obj2 = document.getElementById("tb__" + j.toString() + "_" + i.toString());
if (obj1.innerText == obj2.innerText) {
obj1.rowSpan++;
obj2.parentNode.removeChild(obj2);
} else {
obj1 = document.getElementById("tb__" + j.toString() + "_" + i.toString());
}
}
}
//合并列
for (i = 0; i < rowCount; i++) {
colCount = tb.rows[i].cells.length;
obj1 = document.getElementById(tb.rows[i].cells[0].id);
for (j = 1; j < colCount; j++) {
if (j >= colLength) break;
if (obj1.colSpan >= colLength) break;
obj2 = document.getElementById(tb.rows[i].cells[j].id);
if (obj1.innerText == obj2.innerText) {
obj1.colSpan++;
obj2.parentNode.removeChild(obj2);
j = j - 1;
}
else {
obj1 = obj2;
j = j + obj1.rowSpan;
}
}
}
}
1.3. 分区表索引的使用: 分区表和一般表一样可以建立索引,分区表可以创建局部索引和全局索引。当分区中出现许多事务并且要保证所有分区中的数据记录的唯一性时采用全局索引。
1.3.1. 局部索引分区的建立:
以下为引用的内容: SQL> create index dinya_idx_t on dinya_test(item_id) 2 local 3 ( 4 partition idx_1 tablespace dinya_space01, 5 partition idx_2 tablespace dinya_space02, 6 partition idx_3 tablespace dinya_space03 7 ); Index created. SQL> |
看查询的执行计划,从下面的执行计划可以看出,系统已经使用了索引:
以下为引用的内容: SQL> select * from dinya_test partition(part_01) t where t.item_id=12; Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=2 Card=1 Bytes=187) 1 0 TABLE ACCESS (BY LOCAL INDEX ROWID) OF ’DINYA_TEST’ (Cost= 2 Card=1 Bytes=187) 2 1 INDEX (RANGE SCAN) OF ’DINYA_IDX_T’ (NON-UNIQUE) (Cost=1 Card=1) Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 4 consistent gets 0 physical reads 0 redo size 334 bytes sent via SQL*Net to client 309 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client
1 sorts (memory) 0 sorts (disk) 2 rows processed SQL> |
1.3.2. 全局索引分区的建立
全局索引建立时global 子句允许指定索引的范围值,这个范围值为索引字段的范围值:
以下为引用的内容: SQL> create index dinya_idx_t on dinya_test(item_id) 2 global partition by range(item_id) 3 ( 4 partition idx_1 values less than (1000) tablespace dinya_space01, 5 partition idx_2 values less than (10000) tablespace dinya_space02, 6 partition idx_3 values less than (maxvalue) tablespace dinya_space03 7 ); Index created. SQL> |
本例中对表的item_id字段建立索引分区,当然也可以不指定索引分区名直接对整个表建立索引,如:
以下为引用的内容: SQL> create index dinya_idx_t on dinya_test(item_id); Index created. SQL> |
同样的,对全局索引根据执行计划可以看出索引已经可以使用:
以下为引用的内容: SQL> select * from dinya_test t where t.item_id=12; Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=2 Card=3 Bytes=561) 1 0 TABLE ACCESS (BY GLOBAL INDEX ROWID) OF ’DINYA_TEST’ (Cost =2 Card=3 Bytes=561) 2 1 INDEX (RANGE SCAN) OF ’DINYA_IDX_T’ (NON-UNIQUE) (Cost=1 Card=3) Statistics ---------------------------------------------------------- 5 recursive calls 0 db block gets 10 consistent gets 0 physical reads
0 redo size 420 bytes sent via SQL*Net to client 309 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 3 sorts (memory) 0 sorts (disk) 5 rows processed SQL> |
1.4. 分区表的维护:
了解了分区表的建立、索引的建立、表和索引的使用后,在应用的还要经常对分区进行维护和管理。日常维护和管理的内容包括:增加一个分区,合并一个分区及删除分区等等。下面以范围分区为例说明增加、合并、删除分区的一般操作:
1.4.1. 增加一个分区:
以下为引用的内容: SQL> alter table dinya_test 2 add partition part_04 values less than(to_date(’2012-01-01’,’yyyy-mm-dd’)) tablespace dinya_spa ce03; Table altered. SQL> |
增加一个分区的时候,增加的分区的条件必须大于现有分区的最大值,否则系统将提示ORA-14074 partition bound must collate higher than that of the last partition 错误。
1.4.2. 合并一个分区:
以下为引用的内容: SQL> alter table dinya_test merge partitions part_01,part_02 into partition part_02; Table altered. SQL> |
在本例中将原有的表的part_01分区和part_02分区进行了合并,合并后的分区为part_02,如果在合并的时候把合并后的分区定为part_01的时候,系统将提示ORA-14275 cannot reuse lower-bound partition as resulting partition 错误。
1.4.3. 删除分区:
以下为引用的内容: SQL> alter table dinya_test drop partition part_01; Table altered. SQL> |
删除分区表的一个分区后,查询该表的数据时显示,该分区中的数据已全部丢失,所以执行删除分区动作时要慎重,确保先备份数据后再执行,或将分区合并。
1.5. 总结: 需要说明的是,本文在举例说名分区表事务操作的时候,都指定了分区,因为指定了分区,系统在执行的时候则只操作该分区的记录,提高了数据处理的速度。不要指定分区直接操作数据也是可以的。在分区表上建索引及多索引的使用和非分区表一样。此外,因为在维护分区的时候可能对分区的索引会产生一定的影响,可能需要在维护之后重建索引,相关内容请参考分区表索引部分的文档
1.2. 分区表操作
以上了解了三种分区表的建表方法,下面将使用实际的数据并针对按日期的范围分区来测试分区表的数据记录的操作。
1.2.1. 插入记录:
以下为引用的内容: SQL> insert into dinya_test values(1,12,’BOOKS’,sysdate); 1 row created. SQL> insert into dinya_test values(2,12, ’BOOKS’,sysdate+30); 1 row created.
SQL> insert into dinya_test values(3,12, ’BOOKS’,to_date(’2006-05-30’,’yyyy-mm-dd’)); 1 row created. SQL> insert into dinya_test values(4,12, ’BOOKS’,to_date(’2007-06-23’,’yyyy-mm-dd’)); 1 row created. SQL> insert into dinya_test values(5,12, ’BOOKS’,to_date(’2011-02-26’,’yyyy-mm-dd’)); 1 row created. SQL> insert into dinya_test values(6,12, ’BOOKS’,to_date(’2011-04-30’,’yyyy-mm-dd’)); 1 row created. SQL> commit; Commit complete. SQL> |
按上面的建表结果,2006年前的数据将存储在第一个分区part_01上,而2006年到2010年的交易数据将存储在第二个分区part_02上,2010年以后的记录存储在第三个分区part_03上。
1.2.2. 查询分区表记录:
以下为引用的内容: SQL> select * from dinya_test partition(part_01); TRANSACTION_ID ITEM_ID ITEM_DESCRIPTION TRANSACTION_DATE -------------------------------------------------------------------------------- 1 12 BOOKS 2005-1-14 14:19: 2 12 BOOKS 2005-2-13 14:19: SQL> SQL> select * from dinya_test partition(part_02); TRANSACTION_ID ITEM_ID ITEM_DESCRIPTION TRANSACTION_DATE -------------------------------------------------------------------------------- 3 12 BOOKS 2006-5-30 4 12 BOOKS 2007-6-23 SQL> SQL> select * from dinya_test partition(part_03); TRANSACTION_ID ITEM_ID ITEM_DESCRIPTION TRANSACTION_DATE -------------------------------------------------------------------------------- 5 12 BOOKS 2011-2-26 6 12 BOOKS 2011-4-30 SQL> |
从查询的结果可以看出,插入的数据已经根据交易时间范围存储在不同的分区中。这里是指定了分区的查询,当然也可以不指定分区,直接执行select * from dinya_test查询全部记录。
在也检索的数据量很大的时候,指定分区会大大提高检索速度。
1.2.3. 更新分区表的记录:
以下为引用的内容: SQL> update dinya_test partition(part_01) t set t.item_description=’DESK’ where t.transaction_id=1; 1 row updated. SQL> commit; Commit complete. SQL> |
这里将第一个分区中的交易ID=1的记录中的item_description字段更新为“DESK”,可以看到已经成功更新了一条记录。但是当更新的时候指定了分区,而根据查询的记录不在该分区中时,将不会更新数据,请看下面的例子:
以下为引用的内容: SQL> update dinya_test partition(part_01) t set t.item_description=’DESK’ where t.transaction_id=6; 0 rows updated. SQL> commit; Commit complete. SQL> |
指定了在第一个分区中更新记录,但是条件中限制交易ID为6,而查询全表,交易ID为6的记录在第三个分区中,这样该条语句将不会更新记录。
1.2.4. 删除分区表记录:
以下为引用的内容: SQL> delete from dinya_test partition(part_02) t where t.transaction_id=4; 1 row deleted. SQL> commit; Commit complete. SQL> |
上面例子删除了第二个分区part_02中的交易记录ID为4的一条记录,和更新数据相同,如果指定了分区,而条件中的数据又不在该分区中时,将不会删除任何数据。
摘要:在大量业务数据处理的项目中,可以考虑使用分区表来提高应用系统的性能并方便数据管理,本文详细介绍了分区表的使用。
在大型的企业应用或企业级的数据库应用中,要处理的数据量通常可以达到几十到几百GB,有的甚至可以到TB级。虽然存储介质和数据处理技术的发展也很快,但是仍然不能满足用户的需求,为了使用户的大量的数据在读写操作和查询中速度更快,Oracle提供了对表和索引进行分区的技术,以改善大型应用系统的性能。
使用分区的优点:
·增强可用性:如果表的某个分区出现故障,表在其他分区的数据仍然可用;
·维护方便:如果表的某个分区出现故障,需要修复数据,只修复该分区即可;
·均衡I/O:可以把不同的分区映射到磁盘以平衡I/O,改善整个系统性能;
·改善查询性能:对分区对象的查询可以仅搜索自己关心的分区,提高检索速度。
Oracle数据库提供对表或索引的分区方法有三种:
·范围分区
·Hash分区(散列分区)
·复合分区
下面将以实例的方式分别对这三种分区方法来说明分区表的使用。为了测试方便,我们先建三个表空间。
以下为引用的内容: create tablespace dinya_space01 datafile ’/test/demo/oracle/demodata/dinya01.dnf’ size 50M create tablespace dinya_space01 datafile ’/test/demo/oracle/demodata/dinya02.dnf’ size 50M create tablespace dinya_space01 datafile ’/test/demo/oracle/demodata/dinya03.dnf’ size 50M |
1.1. 分区表的创建 1.1.1. 范围分区
范围分区就是对数据表中的某个值的范围进行分区,根据某个值的范围,决定将该数据存储在哪个分区上。如根据序号分区,根据业务记录的创建日期进行分区等。
需求描述:有一个物料交易表,表名:material_transactions。该表将来可能有千万级的数据记录数。要求在建该表的时候使用分区表。这时候我们可以使用序号分区三个区,每个区中预计存储三千万的数据,也可以使用日期分区,如每五年的数据存储在一个分区上。
根据交易记录的序号分区建表:
以下为引用的内容: SQL> create table dinya_test 2 ( 3 transaction_id number primary key, 4 item_id number(8) not null, 5 item_description varchar2(300), 6 transaction_date date not null 7 ) 8 partition by range (transaction_id) 9 ( 10 partition part_01 values less than(30000000) tablespace dinya_space01, 11 partition part_02 values less than(60000000) tablespace dinya_space02, 12 partition part_03 values less than(maxvalue) tablespace dinya_space03 13 ); Table created. |
建表成功,根据交易的序号,交易ID在三千万以下的记录将存储在第一个表空间dinya_space01中,分区名为:par_01,在三千万到六千万之间的记录存储在第二个表空间:
dinya_space02中,分区名为:par_02,而交易ID在六千万以上的记录存储在第三个表空间dinya_space03中,分区名为par_03.
根据交易日期分区建表:
以下为引用的内容: SQL> create table dinya_test 2 ( 3 transaction_id number primary key, 4 item_id number(8) not null,
5 item_description varchar2(300), 6 transaction_date date not null 7 ) 8 partition by range (transaction_date) 9 ( 10 partition part_01 values less than(to_date(’2006-01-01’,’yyyy-mm-dd’)) tablespace dinya_space01, 11 partition part_02 values less than(to_date(’2010-01-01’,’yyyy-mm-dd’)) tablespace dinya_space02, 12 partition part_03 values less than(maxvalue) tablespace dinya_space03 13 ); Table created. |
这样我们就分别建了以交易序号和交易日期来分区的分区表。每次插入数据的时候,系统将根据指定的字段的值来自动将记录存储到制定的分区(表空间)中。
当然,我们还可以根据需求,使用两个字段的范围分布来分区,如partition by range ( transaction_id ,transaction_date), 分区条件中的值也做相应的改变,请读者自行测试。
1.1.2. Hash分区(散列分区)
散列分区为通过指定分区编号来均匀分布数据的一种分区类型,因为通过在I/O设备上进行散列分区,使得这些分区大小一致。如将物料交易表的数据根据交易ID散列地存放在指定的三个表空间中:
以下为引用的内容: SQL> create table dinya_test 2 ( 3 transaction_id number primary key, 4 item_id number(8) not null, 5 item_description varchar2(300), 6 transaction_date date 7 ) 8 partition by hash(transaction_id) 9 ( 10 partition part_01 tablespace dinya_space01, 11 partition part_02 tablespace dinya_space02, 12 partition part_03 tablespace dinya_space03 13 ); Table created. |
建表成功,此时插入数据,系统将按transaction_id将记录散列地插入三个分区中,这里也就是三个不同的表空间中。
1.1.3. 复合分区
有时候我们需要根据范围分区后,每个分区内的数据再散列地分布在几个表空间中,这样我们就要使用复合分区。复合分区是先使用范围分区,然后在每个分区内再使用散列分区的一种分区方法,如将物料交易的记录按时间分区,然后每个分区中的数据分三个子分区,将数据散列地存储在三个指定的表空间中:
以下为引用的内容: SQL> create table dinya_test 2 ( 3 transaction_id number primary key, 4 item_id number(8) not null, 5 item_description varchar2(300), 6 transaction_date date 7 ) 8 partition by range(transaction_date)subpartition by hash(transaction_id) 9 subpartitions 3 store in (dinya_space01,dinya_space02,dinya_space03) 10 ( 11 partition part_01 values less than(to_date(’2006-01-01’,’yyyy-mm-dd’)), 12 partition part_02 values less than(to_date(’2010-01-01’,’yyyy-mm-dd’)), 13 partition part_03 values less than(maxvalue) 14 ); Table created. |
该例中,先是根据交易日期进行范围分区,然后根据交易的ID将记录散列地存储在三个表空间中。
三种策略
Hibernate支持三种基本的继承映射策略:
-
每个类分层结构一张表(table per class hierarchy)
-
每个子类一张表(table per subclass)
-
每个具体类一张表(table per concrete class)
此外,Hibernate还支持第四种稍有不同的多态映射策略:
对于同一个继承层次内的不同分支,可以采用不同的映射策略,然后用隐式多 态来完成跨越整个层次的多态。但是在同一个<class>
根元素 下,Hibernate不支持混合了元素<subclass>
、 <joined-subclass>
和<union-subclass>
的映射。在同一个<class>
元素下,可以混合使用 “每个类分层结构一张表”(table per hierarchy) 和“每个子类一张表”(table per subclass) 这两种映射策略,这是通过结合元素<subclass>
和 <join>
来实现的(见后)。
在多个映射文件中,可以直接在hibernate-mapping
根下定义subclass
,union-subclass
和joined-subclass
。也就是说,你可以仅加入一个新的映射文件来扩展类层次。你必须在subclass的映射中指明extends
属性,给出一个之前定义的超类的名字。注意,在以前,这一功能对映射文件的顺序有严格的要求,从Hibernate 3开始,使用extends关键字的时侯,对映射文件的顺序不再有要求;但在每个映射文件里,超类必须在子类之前定义。
<hibernate-mapping>
<subclass name="DomesticCat" extends="Cat" discriminator-value="D">
<property name="name" type="string"/>
</subclass>
</hibernate-mapping>
9.1.1. 每个类分层结构一张表(Table per class hierarchy)
假设我们有接口Payment
和它的几个实现类: CreditCardPayment
, CashPayment
, 和ChequePayment
。则“每个类分层结构一张表”(Table per class hierarchy)的映射代码如下所示:
<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>
...
<subclass name="CreditCardPayment" discriminator-value="CREDIT">
<property name="creditCardType" column="CCTYPE"/>
...
</subclass>
<subclass name="CashPayment" discriminator-value="CASH">
...
</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">
...
</subclass>
</class>
采用这种策略只需要一张表即可。它有一个很大的限制:要求那些由子类定义的字段, 如CCTYPE
,不能有非空(NOT NULL)
约束。
9.1.2. 每个子类一张表(Table per subclass)
对于上例中的几个类而言,采用“每个子类一张表”的映射策略,代码如下所示:
<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="AMOUNT"/>
...
<joined-subclass name="CreditCardPayment" table="CREDIT_PAYMENT">
<key column="PAYMENT_ID"/>
...
</joined-subclass>
<joined-subclass name="CashPayment" table="CASH_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="creditCardType" column="CCTYPE"/>
...
</joined-subclass>
<joined-subclass name="ChequePayment" table="CHEQUE_PAYMENT">
<key column="PAYMENT_ID"/>
...
</joined-subclass>
</class>
需要四张表。三个子类表通过主键关联到超类表(因而关系模型实际上是一对一关联)。
9.1.3. 每个子类一张表(Table per subclass),使用辨别标志(Discriminator)
注意,对“每个子类一张表”的映射策略,Hibernate的实现不需要辨别字段,而其他 的对象/关系映射工具使用了一种不同于Hibernate的实现方法,该方法要求在超类 表中有一个类型辨别字段(type discriminator column)。Hibernate采用的方法更 难实现,但从关系(数据库)的角度来看,按理说它更正确。若你愿意使用带有辨别字 段的“每个子类一张表”的策略,你可以结合使用<subclass>
与<join>
,如下所示:
<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>
...
<subclass name="CreditCardPayment" discriminator-value="CREDIT">
<join table="CREDIT_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="creditCardType" column="CCTYPE"/>
...
</join>
</subclass>
<subclass name="CashPayment" discriminator-value="CASH">
<join table="CASH_PAYMENT">
<key column="PAYMENT_ID"/>
...
</join>
</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">
<join table="CHEQUE_PAYMENT" fetch="select">
<key column="PAYMENT_ID"/>
...
</join>
</subclass>
</class>
可选的声明fetch="select"
,是用来告诉Hibernate,在查询超类时, 不要使用外部连接(outer join)来抓取子类ChequePayment
的数据。
9.1.4. 混合使用“每个类分层结构一张表”和“每个子类一张表”
你甚至可以采取如下方法混和使用“每个类分层结构一张表”和“每个子类一张表”这两种策略:
<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>
...
<subclass name="CreditCardPayment" discriminator-value="CREDIT">
<join table="CREDIT_PAYMENT">
<property name="creditCardType" column="CCTYPE"/>
...
</join>
</subclass>
<subclass name="CashPayment" discriminator-value="CASH">
...
</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">
...
</subclass>
</class>
对上述任何一种映射策略而言,指向根类Payment
的 关联是使用<many-to-one>
进行映射的。
<many-to-one name="payment" column="PAYMENT_ID" class="Payment"/>
9.1.5. 每个具体类一张表(Table per concrete class)
对于“每个具体类一张表”的映射策略,可以采用两种方法。第一种方法是使用 <union-subclass>
。
<class name="Payment">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="sequence"/>
</id>
<property name="amount" column="AMOUNT"/>
...
<union-subclass name="CreditCardPayment" table="CREDIT_PAYMENT">
<property name="creditCardType" column="CCTYPE"/>
...
</union-subclass>
<union-subclass name="CashPayment" table="CASH_PAYMENT">
...
</union-subclass>
<union-subclass name="ChequePayment" table="CHEQUE_PAYMENT">
...
</union-subclass>
</class>
这里涉及三张与子类相关的表。每张表为对应类的所有属性(包括从超类继承的属性)定义相应字段。
这种方式的局限在于,如果一个属性在超类中做了映射,其字段名必须与所有子类 表中定义的相同。(我们可能会在Hibernate的后续发布版本中放宽此限制。) 不允许在联合子类(union subclass)的继承层次中使用标识生成器策略(identity generator strategy), 实际上, 主键的种子(primary key seed)不得不为同一继承层次中的全部被联合子类所共用.
假若超类是抽象类,请使用abstract="true"
。当然,假若它不是抽象的,需要一个额外的表(上面的例子中,默认是PAYMENT
),来保存超类的实例。
9.1.6. Table per concrete class, using implicit polymorphism
9.1.6. Table per concrete class, using implicit polymorphism
另一种可供选择的方法是采用隐式多态:
<class name="CreditCardPayment" table="CREDIT_PAYMENT">
<id name="id" type="long" column="CREDIT_PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="CREDIT_AMOUNT"/>
...
</class>
<class name="CashPayment" table="CASH_PAYMENT">
<id name="id" type="long" column="CASH_PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="CASH_AMOUNT"/>
...
</class>
<class name="ChequePayment" table="CHEQUE_PAYMENT">
<id name="id" type="long" column="CHEQUE_PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="CHEQUE_AMOUNT"/>
...
</class>
注意,我们没有在任何地方明确的提及接口Payment
。同时注意 Payment
的属性在每个子类中都进行了映射。如果你想避免重复, 可以考虑使用XML实体(例如:位于DOCTYPE
声明内的 [ <!ENTITY allproperties SYSTEM "allproperties.xml"> ]
和映射中的&allproperties;
)。
这种方法的缺陷在于,在Hibernate执行多态查询时(polymorphic queries)无法生成带 UNION
的SQL语句。
对于这种映射策略而言,通常用<any>
来实现到 Payment
的多态关联映射。
<any name="payment" meta-type="string" id-type="long">
<meta-value value="CREDIT" class="CreditCardPayment"/>
<meta-value value="CASH" class="CashPayment"/>
<meta-value value="CHEQUE" class="ChequePayment"/>
<column name="PAYMENT_CLASS"/>
<column name="PAYMENT_ID"/>
</any>
对这一映射还有一点需要注意。因为每个子类都在各自独立的元素<class>
中映射(并且Payment
只是一个接口),每个子类可以很容易的成为另一 个继承体系中的一部分!(你仍然可以对接口Payment
使用多态查询。)
<class name="CreditCardPayment" table="CREDIT_PAYMENT">
<id name="id" type="long" column="CREDIT_PAYMENT_ID">
<generator class="native"/>
</id>
<discriminator column="CREDIT_CARD" type="string"/>
<property name="amount" column="CREDIT_AMOUNT"/>
...
<subclass name="MasterCardPayment" discriminator-value="MDC"/>
<subclass name="VisaPayment" discriminator-value="VISA"/>
</class>
<class name="NonelectronicTransaction" table="NONELECTRONIC_TXN">
<id name="id" type="long" column="TXN_ID">
<generator class="native"/>
</id>
...
<joined-subclass name="CashPayment" table="CASH_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="amount" column="CASH_AMOUNT"/>
...
</joined-subclass>
<joined-subclass name="ChequePayment" table="CHEQUE_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="amount" column="CHEQUE_AMOUNT"/>
...
</joined-subclass>
</class>
我们还是没有明确的提到Payment
。 如果我们针对接口Payment
执行查询 ——如from Payment
—— Hibernate 自动返回CreditCardPayment
(和它的子类,因为 它们也实现了接口Payment
)、 CashPayment
和Chequepayment
的实例, 但不返回NonelectronicTransaction
的实例。
JVM优化配置《一》
OOM这个缩写就是Java程序开发过程中让人最头痛的问题:Out of Memory。在很多开发人员的开发过程中,或多或少的都会遇到这类问题,这类问题定位比较困难,往往需要根据经验来判断可能出现问题的代码。原因主要是 两个:对象没有被释放(多种情况引起,往往是比较隐蔽的引用导致被Hold而无法被回收)。另一种就是真的Memory不够用了,需要增加JVM的 Heap来满足应用程序的需求。最近有同事发的关于解决OOM的问题,让我了解了原来OOM除了在JVM Heap不够时会发生,在Native Heap不够的时候也会发生,同时JVM Heap和Native Heap存在着相互影响和平衡的关系,因此就仔细的去看了关于OOM和JVM配置优化的内容。
OOM
在 其他语言类似于C,Delphi等等由于内存都是由自己分配和管理,因此内存泄露的问题比较常见,同时也是很头痛的一件事情。而Java的对象生命周期管 理都是JVM来做的,简化了开发人员的非业务逻辑的处理,但是这种自动管理回收机制也是基于一些规则的,而违背了这些规则的时候,就会造成所谓的 “Memory Leak”。
OOM(Java Heap)
错误提示:java.lang.OutOfMemoryError。
这 类OOM是由于JVM分配的给应用的Heap Memory已经被耗尽,可能是因为应用在高负荷的情况下的却需要很大的内存,因此可以通过修改JVM参数来增加Java Heap Memory(不过也不能无限制增加,后面那种OOM有可能就是因为这个原因而产生)。另一种情况是因为应用程序使用对象或者资源没有释放,导致内存消耗 持续增加,最后出现OOM,这类问题引起的原因往往是应用已不需要的对象还被其他有效对象所引用,那么就无法释放,可能是业务代码逻辑造成的(异常处理不 够例如IO等资源),也可能是对于第三方开源项目中资源释放了解不够导致使用以后资源没有释放(例如JDBC的ResultSet等)。
几个容易出现问题的场景:
1.应用的缓存或者Collection:如果应用要缓存Java对象或者是在一个Collection中保存对象,那么就要确定是否会有大量的对象存入,要做保护,以防止在大数据量下大量内存被消耗,同时要保证Cache的大小不会无限制增加。
2.生命周期较长的对象:尽量简短对象的生命周期,现在采用对象的创建释放代价已经很低,同时作了很好的优化,要比创建一个对象长期反复使用要好。如果能够设置超时的情景下,尽量设置超时。
3.类似于JDBC的Connection Pool,在使用Pool中的对象以后需要释放并返回,不然就会造成Pool的不断增大,在其他Pool中使用也是一样。同样ResultSet,IO这类资源的释放都需要注意。
解决的方法就是查找错误或者是增加Java Heap Memory。对于此类问题检测工具相当多,这里就不做介绍了。
OOM(Native Heap)
错误提示:requested XXXX bytes for ChunkPool::allocate. Out of swap space。
Native Heap Memory是JVM 内部使用的Memory,这部分的Memory可以通过JDK提供的JNI的方式去访问,这部分Memory效率很高,但是管理需要自己去做,如果没有把 握最好不要使用,以防出现内存泄露问题。JVM 使用Native Heap Memory用来优化代码载入(JTI代码生成),临时对象空间申请,以及JVM内部的一些操作。这次同事在压力测试中遇到的问题就是这类OOM,也就是 这类Memory耗尽。同样这类OOM产生的问题也是分成正常使用耗尽和无释放资源耗尽两类。无释放资源耗尽很多时候不是程序员自身的原因,可能是引用的 第三方包的缺陷,例如很多人遇到的Oracle 9 JDBC驱动在低版本中有内存泄露的问题。要确定这类问题,就需要去观察Native Heap Memory的增长和使用情况,在服务器应用起来以后,运行一段时间后JVM对于Native Heap Memory的使用会达到一个稳定的阶段,此时可以看看什么操作对于Native Heap Memory操作频繁,而且使得Native Heap Memory增长,对于Native Heap Memory的情况我还没有找到办法去检测,现在能够看到的就是为JVM启动时候增加-verbose:jni参数来观察对于Native Heap Memory的操作。另一种情况就是正常消耗Native Heap Memory,对于Native Heap Memory的使用主要取决于JVM代码生成,线程创建,用于优化的临时代码和对象产生。当正常耗尽Native Heap Memory时,那么就需要增加Native Heap Memory,此时就会和我们前面提到增加java Heap Memory的情况出现矛盾。
应用内存组合
对 于应用来说,可分配的内存受到OS的限制,不同的OS对进程所能访问虚拟内存地址区间直接影响对于应用内存的分配,32位的操作系统通常最大支持4G的内 存寻址,而Linux一般为3G,Windows为2G。然而这些大小的内存并不会全部给JVM的Java Heap使用,它主要会分成三部分:Java Heap,Native Heap,载入资源和类库等所占用的内存。那么由此可见,Native Heap和 Java Heap大小配置是相互制约的,哪一部分分配多了都可能会影响到另外一部分的正常工作,因此如果通过命令行去配置,那么需要确切的了解应用使用情况,否则 采用默认配置自动监测会更好的优化应用使用情况。
同样要注意的就是进程的虚拟内存和机器的实际内存还是有区别的,对于机器来说实际内存以及硬盘提供的虚拟内存都是提供给机器上所有进程使用的,因此在设置JVM参数时,它的虚拟内存绝对不应该超过实际内存的大小。
《二》
这 里首先要说明的是这里提到的JVM是Sun的HotSpot JVM 5和以上的版本。性能优化在应用方面可以有很多手段,包括Cache,多线程,各种算法等等。通常情况下是不建议在没有任何统计和分析的情况下去手动配置 JVM的参数来调整性能,因为在JVM 5以上已经作了根据机器和OS的情况自动配置合适参数的算法,基本能够满足大部分的情况,当然这种自动适配只是一种通用的方式,如果说真的要达到最优,那 么还是需要根据实际的使用情况来手动的配置各种参数设置,提高性能。
JVM能够对性能产生影响的最大部分就是对于内存的管理。从jdk 1.5以后内存管理和分配有了很多的改善和提高。
内存分配以及管理的几个基本概念和参数说明:
Java Hotspot Mode:
server 和 client两种模式,如果不配置,JVM会根据应用服务器硬件配置自动选择模式,server模式启动比较慢,但是运行期速度得到了优化,client启动比较快,但是运行期响应没有server模式的优化,适合于个人PC的服务开发和测试。
Garbage Collector Policy:
在Jdk 1.5的时候已经提供了三种GC,除了原来提供的串行GC(SerialGC)以外,还提供了两种新的GC:ParallelGC和 ConcMarkSweepGC。ParallelGC采用了多线程并行管理和回收垃圾对象,提高了回收效率,提高了服务器的吞吐量,适合于多处理器的服 务器。ConcMarkSweepGC采用的是并发方式来管理和回收垃圾对象,降低垃圾回收产生的响应暂停时间。这里说一下并发和并行的区别,并发指的是 多个进程并行执行垃圾回收,那么可以很好的利用多处理器,而并行指的是应用程序不需要暂停可以和垃圾回收线程并发工作。串行GC适合小型应用和单处理器系 统(无需多线程交互,效率比较高),后两者适合大型系统。
使用方式就是在参数配置中增加-XX:+UseParallelGC等方式来设置。
对于这部分的配置在网上有很多的实例可以参考,不过最终采用哪一种GC还是要根据具体的情况来分析和选择。
Heap:
OOM的 各种经历已经让每一个架构师开发人员看到了了解Heap的重要性。OOM已经是Heap的临界点,不得不引起注意,然而Heap对于性能的潜在影响并未被 引起重视,不过和GC配置一样,在没有对使用情况作仔细分析和研究的情况下,贸然的去修改Heap配置,可能适得其反,这里就来看一下Heap的一些概念 和对于性能的影响。
我们的应用所能够得到的最大的Heap受三部分因素的制约:数据处理 模型(32位或者64位操作系统),系统地虚拟内存总数和系统的物理内存总数。首先Heap的大小不能超过不同操作系统的进程寻址范围,当前大部分系统最 高限度是4G,Windows通常是2G,Linux通常是3G。系统的虚拟内存也是分配的依据,首先是不能超过,然后由于操作系统支持硬盘来做部分的虚 拟内存,如果设置过大,那么对于应用响应来说势必有影响。再则就是要考虑同一台服务器上运行多个Java虚拟机所消耗的资源总合也不能超过可用资源。就和 前面OOM分析中的一样,其实由于OS的数据处理模型的限制,机器本身的硬件内存资源和虚拟内存资源并不一定会匹配,那么在有限的资源下如何调整好资源分 配,对于应用来说尤为重要。
关于Heap的几个参数设置:
说了Heap的有限资源问题以后,就来看看如何通过配置去改变JVM对于Heap的分配。下面所说的主要是对于Java Heap的分配,那么在申请了Java Heap以后,剩下的可用资源就会被使用到Native Heap。
Xms: java heap初始化时的大小。默认情况是机器物理内存的1/64。这个主要是根据应用启动时消耗的资源决定,分配少了申请起来会降低启动速度,分配多了也浪费。
Xmx:java heap的 最大值,默认是机器物理内存的1/4,最大也就到1G。这个值决定了最多可用的Java Heap Memory,分配过少就会在应用需要大量内存作缓存或者零时对象时出现OOM的问题,如果分配过大,那么就会产生上文提到的第二类OOM。所以如何配置 还是根据运行过程中的分析和计算来确定,如果不能确定还是采用默认的配置。
Xmn:java heap新 生代的空间大小。在GC模型中,根据对象的生命周期的长短,产生了内存分代的设计:青年代(内部也分成三部分,类似于整体划分的作用,可以通过配置来设置 比例),老年代,持久代。每一代的管理和回收策略都不相同,最为活跃的就是青年代,同时这部分的内存分配和管理效率也是最高。通常情况下,对于内存的申请 优先在新生代中申请,当内存不够时会整理新生代,当整理以后还是不能满足申请的内存,就会向老年代移动一些生命周期较长的对象。这种整理和移动会消耗资 源,同时降低系统运行响应能力,因此如果青年代设置的过小,就会频繁的整理和移动,对性能造成影响。那是否把年青代设置的越大越好,其实不然,年青代采用 的是复制搜集算法,这种算法必须停止所有应用程序线程,服务器线程切换时间就会成为应用响应的瓶颈(当然永远不用收集那么就不存在这个问题)。老年代采用 的是串行标记收集的方式,并发收集可以减少对于应用的影响。
Xss:线程堆栈最大值。允许更多的虚拟内存空间地址被Java Heap使用。
以下是sun公司的性能优化白皮书中提到的几个例子:
1.对于吞吐量的调优。机器配置:4G的内存,32个线程并发能力。
java
-Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20
-Xmx3800m -Xms3800m
配置了最大Java Heap来充分利用系统内存。
-Xmn2g
创建足够大的青年代(可以并行被回收)充分利用系统内存,防止将短期对象复制到老年代。
-Xss128
减少默认最大的线程栈大小,提供更多的处理虚拟内存地址空间被进程使用。
-XX:+UseParallelGC
采用并行垃圾收集器对年青代的内存进行收集,提高效率。
-XX:ParallelGCThreads=20
减少垃圾收集线程,默认是和服务器可支持的线程最大并发数相同,往往不需要配置到最大值。
2
.尝试采用对老年代并行收集
java
-Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20 -XX:+UseParallelOldGC
-Xmx3550m -Xms3550m
内存分配被减小,因为ParallelOldGC会增加对于Native Heap的需求,因此需要减小Java Heap来满足需求。
-XX:+UseParallelOldGC
采用对于老年代并发收集的策略,可以提高收集效率。
3
.提高吞吐量,减少应用停顿时间
java
-Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:SurvivorRatio=8 -XX:TargetSurvivorRatio=90 -XX:MaxTenuringThreshold=31
-XX:+UseConcMarkSweepGC -XX:+UseParNewGC
选择了并发标记交换收集器,它可以并发执行收集操作,降低应用停止时间,同时它也是并行处理模式,可以有效地利用多处理器的系统的多进程处理。
-XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=31
表示在青年代中Eden和Survivor比例,设置增加了Survivor的大小,越大的survivor空间可以允许短期对象尽量在年青代消亡。
-XX:TargetSurvivorRatio=90
允许90%的空间被占用,超过默认的50%,提高对于survivor的使用率。
类似的例子网上很多,这儿就不在列下来了,最终是否采取自己配置来替换默认配置还是要根据虚拟机的使用情况来分析和配置。
Spring配置文件中关于事务配置总是由三个组成部分,分别是DataSource、TransactionManager和代理机制这三部分,无论哪种配置方式,一般变化的只是代理机制这部分。
DataSource、TransactionManager这两部分只是会根据数据访问方式有所变化,比如使用Hibernate进行数据访问时,DataSource实际为SessionFactory,TransactionManager的实现为HibernateTransactionManager。
具体如下图:
根据代理机制的不同,总结了五种Spring事务的配置方式,配置文件如下:
第一种方式:每个Bean都有一个代理
<?xml version=”1.0″ encoding=”UTF-8″?>
<beans xmlns=”http://www.springframework.org/schema/beans”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:context=”http://www.springframework.org/schema/context”
xmlns:aop=”http://www.springframework.org/schema/aop”
xsi:schemaLocation=”http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-2.5.xsd
http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd”>
<bean id=”sessionFactory”
class=”org.springframework.orm.hibernate3.LocalSessionFactoryBean”>
<property name=”configLocation” value=”classpath:hibernate.cfg.xml” />
<property name=”configurationClass” value=”org.hibernate.cfg.AnnotationConfiguration” />
</bean>
<!– 定义事务管理器(声明式的事务) –>
<bean id=”transactionManager”
class=”org.springframework.orm.hibernate3.HibernateTransactionManager”>
<property name=”sessionFactory” ref=”sessionFactory” />
</bean>
<!– 配置DAO –>
<bean id=”userDaoTarget” class=”com.bluesky.spring.dao.UserDaoImpl”>
<property name=”sessionFactory” ref=”sessionFactory” />
</bean>
<bean id=”userDao”
class=”org.springframework.transaction.interceptor.TransactionProxyFactoryBean”>
<!– 配置事务管理器 –>
<property name=”transactionManager” ref=”transactionManager” />
<property name=”target” ref=”userDaoTarget” />
<property name=”proxyInterfaces” value=”com.bluesky.spring.dao.GeneratorDao” />
<!– 配置事务属性 –>
<property name=”transactionAttributes”>
<props>
<prop key=”*”>PROPAGATION_REQUIRED</prop>
</props>
</property>
</bean>
</beans>
第二种方式:所有Bean共享一个代理基类
<?xml version=”1.0″ encoding=”UTF-8″?>
<beans xmlns=”http://www.springframework.org/schema/beans”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:context=”http://www.springframework.org/schema/context”
xmlns:aop=”http://www.springframework.org/schema/aop”
xsi:schemaLocation=”http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-2.5.xsd
http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd”>
<bean id=”sessionFactory”
class=”org.springframework.orm.hibernate3.LocalSessionFactoryBean”>
<property name=”configLocation” value=”classpath:hibernate.cfg.xml” />
<property name=”configurationClass” value=”org.hibernate.cfg.AnnotationConfiguration” />
</bean>
<!– 定义事务管理器(声明式的事务) –>
<bean id=”transactionManager”
class=”org.springframework.orm.hibernate3.HibernateTransactionManager”>
<property name=”sessionFactory” ref=”sessionFactory” />
</bean>
<bean id=”transactionBase”
class=”org.springframework.transaction.interceptor.TransactionProxyFactoryBean”
lazy-init=”true” abstract=”true”>
<!– 配置事务管理器 –>
<property name=”transactionManager” ref=”transactionManager” />
<!– 配置事务属性 –>
<property name=”transactionAttributes”>
<props>
<prop key=”*”>PROPAGATION_REQUIRED</prop>
</props>
</property>
</bean>
<!– 配置DAO –>
<bean id=”userDaoTarget” class=”com.bluesky.spring.dao.UserDaoImpl”>
<property name=”sessionFactory” ref=”sessionFactory” />
</bean>
<bean id=”userDao” parent=”transactionBase” >
<property name=”target” ref=”userDaoTarget” />
</bean>
</beans>
第三种方式:使用拦截器
<?xml version=”1.0″ encoding=”UTF-8″?>
<beans xmlns=”http://www.springframework.org/schema/beans”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:context=”http://www.springframework.org/schema/context”
xmlns:aop=”http://www.springframework.org/schema/aop”
xsi:schemaLocation=”http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-2.5.xsd
http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd”>
<bean id=”sessionFactory”
class=”org.springframework.orm.hibernate3.LocalSessionFactoryBean”>
<property name=”configLocation” value=”classpath:hibernate.cfg.xml” />
<property name=”configurationClass” value=”org.hibernate.cfg.AnnotationConfiguration” />
</bean>
<!– 定义事务管理器(声明式的事务) –>
<bean id=”transactionManager”
class=”org.springframework.orm.hibernate3.HibernateTransactionManager”>
<property name=”sessionFactory” ref=”sessionFactory” />
</bean>
<bean id=”transactionInterceptor”
class=”org.springframework.transaction.interceptor.TransactionInterceptor”>
<property name=”transactionManager” ref=”transactionManager” />
<!– 配置事务属性 –>
<property name=”transactionAttributes”>
<props>
<prop key=”*”>PROPAGATION_REQUIRED</prop>
</props>
</property>
</bean>
<bean class=”org.springframework.aop.framework.autoproxy.BeanNameAutoProxyCreator”>
<property name=”beanNames”>
<list>
<value>*Dao</value>
</list>
</property>
<property name=”interceptorNames”>
<list>
<value>transactionInterceptor</value>
</list>
</property>
</bean>
<!– 配置DAO –>
<bean id=”userDao” class=”com.bluesky.spring.dao.UserDaoImpl”>
<property name=”sessionFactory” ref=”sessionFactory” />
</bean>
</beans>
第四种方式:使用tx标签配置的拦截器
<?xml version=”1.0″ encoding=”UTF-8″?>
<beans xmlns=”http://www.springframework.org/schema/beans”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:context=”http://www.springframework.org/schema/context”
xmlns:aop=”http://www.springframework.org/schema/aop”
xmlns:tx=”http://www.springframework.org/schema/tx”
xsi:schemaLocation=”http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-2.5.xsd
http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd
http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd”>
<context:annotation-config />
<context:component-scan base-package=”com.bluesky” />
<bean id=”sessionFactory”
class=”org.springframework.orm.hibernate3.LocalSessionFactoryBean”>
<property name=”configLocation” value=”classpath:hibernate.cfg.xml” />
<property name=”configurationClass” value=”org.hibernate.cfg.AnnotationConfiguration” />
</bean>
<!– 定义事务管理器(声明式的事务) –>
<bean id=”transactionManager”
class=”org.springframework.orm.hibernate3.HibernateTransactionManager”>
<property name=”sessionFactory” ref=”sessionFactory” />
</bean>
<tx:advice id=”txAdvice” transaction-manager=”transactionManager”>
<tx:attributes>
<tx:method name=”*” propagation=”REQUIRED” />
</tx:attributes>
</tx:advice>
<aop:config>
<aop:pointcut id=”interceptorPointCuts”
expression=”execution(* com.bluesky.spring.dao.*.*(..))” />
<aop:advisor advice-ref=”txAdvice”
pointcut-ref=”interceptorPointCuts” />
</aop:config>
</beans>
第五种方式:全注解
<?xml version=”1.0″ encoding=”UTF-8″?>
<beans xmlns=”http://www.springframework.org/schema/beans”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:context=”http://www.springframework.org/schema/context”
xmlns:aop=”http://www.springframework.org/schema/aop”
xmlns:tx=”http://www.springframework.org/schema/tx”
xsi:schemaLocation=”http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-2.5.xsd
http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd
http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd”>
<context:annotation-config />
<context:component-scan base-package=”com.bluesky” />
<tx:annotation-driven transaction-manager=”transactionManager”/>
<bean id=”sessionFactory”
class=”org.springframework.orm.hibernate3.LocalSessionFactoryBean”>
<property name=”configLocation” value=”classpath:hibernate.cfg.xml” />
<property name=”configurationClass” value=”org.hibernate.cfg.AnnotationConfiguration” />
</bean>
<!– 定义事务管理器(声明式的事务) –>
<bean id=”transactionManager”
class=”org.springframework.orm.hibernate3.HibernateTransactionManager”>
<property name=”sessionFactory” ref=”sessionFactory” />
</bean>
</beans>
此时在DAO上需加上@Transactional注解,如下:
package com.bluesky.spring.dao;
import java.util.List;
import org.hibernate.SessionFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.orm.hibernate3.support.HibernateDaoSupport;
import org.springframework.stereotype.Component;
import com.bluesky.spring.domain.User;
@Transactional
@Component(“userDao”)
public class UserDaoImpl extends HibernateDaoSupport implements UserDao {
public List<User> listUsers() {
return this.getSession().createQuery(“from User”).list();
}
}
集群概念
1. 两大关键特性
集群是一组协同工作的服务实体,用以提供比单一服务实体更具扩展性与可用性的服务平台。在客户端看来,一个集群就象是一个服务实体,但事实上集群由一组服务实体组成。与单一服务实体相比较,集群提供了以下两个关键特性:
· 可扩展性--集群的性能不限于单一的服务实体,新的服务实体可以动态地加入到集群,从而增强集群的性能。
· 高可用性--集群通过服务实体冗余使客户端免于轻易遇到out of service的警告。在集群中,同样的服务可以由多个服务实体提供。如果一个服务实体失败了,另一个服务实体会接管失败的服务实体。集群提供的从一个出错的服务实体恢复到另一个服务实体的功能增强了应用的可用性。
2. 两大能力
为了具有可扩展性和高可用性特点,集群的必须具备以下两大能力:
· 负载均衡--负载均衡能把任务比较均衡地分布到集群环境下的计算和网络资源。
· 错误恢复--由于某种原因,执行某个任务的资源出现故障,另一服务实体中执行同一任务的资源接着完成任务。这种由于一个实体中的资源不能工作,另一个实体中的资源透明的继续完成任务的过程叫错误恢复。
负载均衡和错误恢复都要求各服务实体中有执行同一任务的资源存在,而且对于同一任务的各个资源来说,执行任务所需的信息视图(信息上下文)必须是一样的。
3. 两大技术
实现集群务必要有以下两大技术:
· 集群地址--集群由多个服务实体组成,集群客户端通过访问集群的集群地址获取集群内部各服务实体的功能。具有单一集群地址(也叫单一影像)是集群的一个基本特征。维护集群地址的设置被称为负载均衡器。负载均衡器内部负责管理各个服务实体的加入和退出,外部负责集群地址向内部服务实体地址的转换。有的负载均衡器实现真正的负载均衡算法,有的只支持任务的转换。只实现任务转换的负载均衡器适用于支持ACTIVE-STANDBY的集群环境,在那里,集群中只有一个服务实体工作,当正在工作的服务实体发生故障时,负载均衡器把后来的任务转向另外一个服务实体。
· 内部通信--为了能协同工作、实现负载均衡和错误恢复,集群各实体间必须时常通信,比如负载均衡器对服务实体心跳测试信息、服务实体间任务执行上下文信息的通信。
具有同一个集群地址使得客户端能访问集群提供的计算服务,一个集群地址下隐藏了各个服务实体的内部地址,使得客户要求的计算服务能在各个服务实体之间分布。内部通信是集群能正常运转的基础,它使得集群具有均衡负载和错误恢复的能力。
集群分类
Linux集群主要分成三大类( 高可用集群, 负载均衡集群,科学计算集群)
高可用集群( High Availability Cluster)
负载均衡集群(Load Balance Cluster)
科学计算集群(High Performance Computing Cluster)
================================================
具体包括:
Linux High Availability 高可用集群
(普通两节点双机热备,多节点HA集群,RAC, shared, share-nothing集群等)
Linux Load Balance 负载均衡集群
(LVS等....)
Linux High Performance Computing 高性能科学计算集群
(Beowulf 类集群....)
分布式存储
其他类linux集群
(如Openmosix, rendering farm 等..)
详细介绍
1. 高可用集群(High Availability Cluster)
常见的就是2个节点做成的HA集群,有很多通俗的不科学的名称,比如"双机热备", "双机互备", "双机".
高可用集群解决的是保障用户的应用程序持续对外提供服务的能力。 (请注意高可用集群既不是用来保护业务数据的,保护的是用户的业务程序对外不间断提供服务,把因软件/硬件/人为造成的故障对业务的影响降低到最小程度)。
2. 负载均衡集群(Load Balance Cluster)
负载均衡系统:集群中所有的节点都处于活动状态,它们分摊系统的工作负载。一般Web服务器集群、数据库集群和应用服务器集群都属于这种类型。
负载均衡集群一般用于相应网络请求的网页服务器,数据库服务器。这种集群可以在接到请求时,检查接受请求较少,不繁忙的服务器,并把请求转到这些服务器上。从检查其他服务器状态这一点上看,负载均衡和容错集群很接近,不同之处是数量上更多。
3. 科学计算集群(High Performance Computing Cluster)
高性能计算(High Perfermance Computing)集群,简称HPC集群。这类集群致力于提供单个计算机所不能提供的强大的计算能力。
高性能计算分类
高吞吐计算(High-throughput Computing)
有一类高性能计算,可以把它分成若干可以并行的子任务,而且各个子任务彼此间没有什么关联。象在家搜寻外星人( SETI@HOME -- Search for Extraterrestrial Intelligence at Home )就是这一类型应用。这一项目是利用Internet上的闲置的计算资源来搜寻外星人。SETI项目的服务器将一组数据和数据模式发给Internet上参加SETI的计算节点,计算节点在给定的数据上用给定的模式进行搜索,然后将搜索的结果发给服务器。服务器负责将从各个计算节点返回的数据汇集成完整的数据。因为这种类型应用的一个共同特征是在海量数据上搜索某些模式,所以把这类计算称为高吞吐计算。所谓的Internet计算都属于这一类。按照Flynn的分类,高吞吐计算属于SIMD(Single Instruction/Multiple Data)的范畴。
分布计算(Distributed Computing)
另一类计算刚好和高吞吐计算相反,它们虽然可以给分成若干并行的子任务,但是子任务间联系很紧密,需要大量的数据交换。按照Flynn的分类,分布式的高性能计算属于MIMD(Multiple Instruction/Multiple Data)的范畴。
4. 分布式(集群)与集群的联系与区别
分布式是指将不同的业务分布在不同的地方。
而集群指的是将几台服务器集中在一起,实现同一业务。
分布式中的每一个节点,都可以做集群。
而集群并不一定就是分布式的。
举例:就比如新浪网,访问的人多了,他可以做一个群集,前面放一个响应服务器,后面几台服务器完成同一业务,如果有业务访问的时候,响应服务器看哪台服务器的负载不是很重,就将给哪一台去完成。
而分布式,从窄意上理解,也跟集群差不多, 但是它的组织比较松散,不像集群,有一个组织性,一台服务器垮了,其它的服务器可以顶上来。
分布式的每一个节点,都完成不同的业务,一个节点垮了,哪这个业务就不可访问了。
设计模式遵循的一般原则:
1.开-闭原则(Open-Closed Principle, OCP):一个软件实体应当对扩展开发,对修改关闭.说的是,再设计一个模块的时候,应当使这个模块可以在不被修改的前提下被扩展.换言之,应当可以在不必修改源代码的情况下改变这个模块的行为,在保持系统一定稳定性的基础上,对系统进行扩展。这是面向对象设计(OOD)的基石,也是最重要的原则。
2.里氏代换原则(Liskov Substitution Principle,常缩写为.LSP)
(1).由Barbar Liskov(芭芭拉.里氏)提出,是继承复用的基石。
(2).严格表达:如果每一个类型为T1的对象o1,都有类型为T2的对象o2,使得以T1定义的所有程序P在所有的对象o1都代换称o2时,程序P的行为没有变化,那么类型T2是类型T1的子类型.
换言之,一个软件实体如果使用的是一个基类的话,那么一定适用于其子类,而且它根本不能察觉出基类对象和子类对象的区别.只有衍生类可以替换基类,软件单位的功能才能不受影响,基类才能真正被复用,而衍生类也能够在基类的基础上增加新功能。
(3).反过来的代换不成立
(4).<墨子.小取>中说:"白马,马也; 乘白马,乘马也.骊马(黑马),马也;乘骊马,乘马也."
(5).该类西方著名的例程为:正方形是否是长方形的子类(答案是"否")。类似的还有椭圆和圆的关系。
(6).应当尽量从抽象类继承,而不从具体类继承,一般而言,如果有两个具体类A,B有继承关系,那么一个最简单的修改方案是建立一个抽象类C,然后让类A和B成为抽象类C的子类.即如果有一个由继承关系形成的登记结构的话,那么在等级结构的树形图上面所有的树叶节点都应当是具体类;而所有的树枝节点都应当是抽象类或者接口.
(7)."基于契约设计(Design By Constract),简称DBC"这项技术对LISKOV代换原则提供了支持.该项技术Bertrand Meyer伯特兰做过详细的介绍:
使用DBC,类的编写者显式地规定针对该类的契约.客户代码的编写者可以通过该契约获悉可以依赖的行为方式.契约是通过每个方法声明的前置条件(preconditions)和后置条件(postconditions)来指定的.要使一个方法得以执行,前置条件必须为真.执行完毕后,该方法要保证后置条件为真.就是说,在重新声明派生类中的例程(routine)时,只能使用相等或者更弱的前置条件来替换原始的前置条件,只能使用相等或者更强的后置条件来替换原始的后置条件.
3.依赖倒置原则(Dependence Inversion Principle),要求客户端依赖于抽象耦合.
(1)表述:抽象不应当依赖于细节,细节应当依赖于抽象.(Program to an interface, not an implementaction)
(2)表述二:针对接口编程的意思是说,应当使用接口和抽象类进行变量的类型声明,参量的类型声明,方法的返还类型声明,以及数据类型的转换等.不要针对实现编程的意思就是说,不应当使用具体类进行变量的类型声明,参量类型声明,方法的返还类型声明,以及数据类型的转换等.
要保证做到这一点,一个具体的类应等只实现接口和抽象类中声明过的方法,而不应当给出多余的方法.
只要一个被引用的对象存在抽象类型,就应当在任何引用此对象的地方使用抽象类型,包括参量的类型声明,方法返还类型的声明,属性变量的类型声明等.
(3)接口与抽象的区别就在于抽象类可以提供某些方法的部分实现,而接口则不可以,这也大概是抽象类唯一的优点.如果向一个抽象类加入一个新的具体方法,那么所有的子类型一下子就都得到得到了这个新的具体方法,而接口做不到这一点.如果向一个接口加入了一个新的方法的话,所有实现这个接口的类就全部不能通过编译了,因为它们都没有实现这个新声明的方法.这显然是接口的一个缺点.
(4)一个抽象类的实现只能由这个抽象类的子类给出,也就是说,这个实现处在抽象类所定义出的继承的登记结构中,而由于一般语言都限制一个类只能从最多一个超类继承,因此将抽象作为类型定义工具的效能大打折扣.
反过来,看接口,就会发现任何一个实现了一个接口所规定的方法的类都可以具有这个接口的类型,而一个类可以实现任意多个接口.
(5)从代码重构的角度上讲,将一个单独的具体类重构成一个接口的实现是很容易的,只需要声明一个接口,并将重要的方法添加到接口声明中,然后在具体类定义语句中加上保留字以继承于该接口就行了.
而作为一个已有的具体类添加一个抽象类作为抽象类型不那么容易,因为这个具体类有可能已经有一个超类.这样一来,这个新定义的抽象类只好继续向上移动,变成这个超类的超类,如此循环,最后这个新的抽象类必定处于整个类型等级结构的最上端,从而使登记结构中的所有成员都会受到影响.
(6)接口是定义混合类型的理想工具,所为混合类型,就是在一个类的主类型之外的次要类型.一个混合类型表明一个类不仅仅具有某个主类型的行为,而且具有其他的次要行为.
(7)联合使用接口和抽象类:
由于抽象类具有提供缺省实现的优点,而接口具有其他所有优点,所以联合使用两者就是一个很好的选择.
首先,声明类型的工作仍然接口承担的,但是同时给出的还有一个抽象类,为这个接口给出一个缺省实现.其他同属于这个抽象类型的具体类可以选择实现这个接口,也可以选择继承自这个抽象类.如果一个具体类直接实现这个接口的话,它就必须自行实现所有的接口;相反,如果它继承自抽象类的话,它可以省去一些不必要的的方法,因为它可以从抽象类中自动得到这些方法的缺省实现;如果需要向接口加入一个新的方法的话,那么只要同时向这个抽象类加入这个方法的一个具体实现就可以了,因为所有继承自这个抽象类的子类都会从这个抽象类得到这个具体方法.这其实就是缺省适配器模式(Defaule Adapter).
(8)什么是高层策略呢?它是应用背后的抽象,是那些不随具体细节的改变而改变的真理. 它是系统内部的系统____隐喻.
4.接口隔离原则(Interface Segregation Principle, ISP)
(1)一个类对另外一个类的依赖是建立在最小的接口上。
(2)使用多个专门的接口比使用单一的总接口要好.根据客户需要的不同,而为不同的客户端提供不同的服务是一种应当得到鼓励的做法.就像"看人下菜碟"一样,要看客人是谁,再提供不同档次的饭菜.
(3)胖接口会导致他们的客户程序之间产生不正常的并且有害的耦合关系.当一个客户程序要求该胖接口进行一个改动时,会影响到所有其他的客户程序.因此客户程序应该仅仅依赖他们实际需要调用的方法.
5.合成/聚合复用原则(Composite/Aggregate Reuse Principle,CARP)
在一个新的对象里面使用一些已有的对象,使之成为新对象的一部分;新的对象通过这些向对象的委派达到复用已有功能的目的.这个设计原则有另一个简短的表述:要尽量使用合成/聚合,尽量不要使用继承.
6.迪米特法则(Law of Demeter LoD)又叫做最少知识原则(Least Knowledge Principle,LKP),就是说,一个对象应当对其他对象有尽可能少的了了解.
迪米特法则最初是用来作为面向对象的系统设计风格的一种法则,与1987年秋天由Ian Holland在美国东北大学为一个叫做迪米特(Demeter)的项目设计提出的,因此叫做迪米特法则[LIEB89][LIEB86].这条法则实际上是很多著名系统,比如火星登陆软件系统,木星的欧罗巴卫星轨道飞船的软件系统的指导设计原则.
没有任何一个其他的OO设计原则象迪米特法则这样有如此之多的表述方式,如下几种:
(1)只与你直接的朋友们通信(Only talk to your immediate friends)
(2)不要跟"陌生人"说话(Don't talk to strangers)
(3)每一个软件单位对其他的单位都只有最少的知识,而且局限于那些本单位密切相关的软件单位.
就是说,如果两个类不必彼此直接通信,那么这两个类就不应当发生直接的相互作用,如果其中的一个类需要调用另一个类的某一个方法的话,可以通过第三者转发这个调用。
7.单一职责原则(Simple responsibility pinciple SRP)
就一个类而言,应该仅有一个引起它变化的原因,如果你能想到多于一个的动机去改变一个类,那么这个类就具有多于一个的职责.应该把多于的指责分离出去,分别再创建一些类来完成每一个职责.
另外:常说的OO五大原则就是指其中的 :1、单一职责原则;2、开放闭合原则;3、里氏替换原则;4、依赖倒置原则;5、接口隔离原则。
Mysql分页采用limt关键字
select * from t_order limit 5,10; #返回第6-15行数据
select * from t_order limit 5; #返回前5行
select * from t_order limit 0,5; #返回前5行
Mssql 2000分页采用top关键字(20005以上版本也支持关键字rownum)
Select top 10 * from t_order where id not in (select id from t_order where id>5 ); //返回第6到15行数据
其中10表示取10记录 5表示从第5条记录开始取
Oracle分页
①采用rownum关键字(三层嵌套)
SELECT * FROM(
SELECT A.*,ROWNUM num FROM
(SELECT * FROM t_order)A
WHERE
ROWNUM<=15)
WHERE num>=5;--返回第5-15行数据
②采用row_number解析函数进行分页(效率更高)
SELECT xx.* FROM(
SELECT t.*,row_number() over(ORDER BY o_id)AS num
FROM t_order t
)xx
WHERE num BETWEEN 5 AND 15;
--返回第5-15行数据
解析函数能用格式
函数() over(pertion by 字段 order by 字段);
Pertion 按照某个字段分区
Order 按照勒个字段排序
Struts1和Struts2的区别和对比:
Action 类:
• Struts1要求Action类继承一个抽象基类。Struts1的一个普遍问题是使用抽象类编程而不是接口。
• Struts 2 Action类可以实现一个Action接口,也可实现其他接口,使可选和定制的服务成为可能。Struts2提供一个ActionSupport基类去 实现 常用的接口。Action接口不是必须的,任何有execute标识的POJO对象都可以用作Struts2的Action对象。
线程模式:
• Struts1 Action是单例模式并且必须是线程安全的,因为仅有Action的一个实例来处理所有的请求。单例策略限制了Struts1 Action能作的事,并且要在开发时特别小心。Action资源必须是线程安全的或同步的。
• Struts2 Action对象为每一个请求产生一个实例,因此没有线程安全问题。(实际上,servlet容器给每个请求产生许多可丢弃的对象,并且不会导致性能和垃圾回收问题)
Servlet 依赖:
• Struts1 Action 依赖于Servlet API ,因为当一个Action被调用时HttpServletRequest 和 HttpServletResponse 被传递给execute方法。
• Struts 2 Action不依赖于容器,允许Action脱离容器单独被测试。如果需要,Struts2 Action仍然可以访问初始的request和response。但是,其他的元素减少或者消除了直接访问HttpServetRequest 和 HttpServletResponse的必要性。
可测性:
• 测试Struts1 Action的一个主要问题是execute方法暴露了servlet API(这使得测试要依赖于容器)。一个第三方扩展--Struts TestCase--提供了一套Struts1的模拟对象(来进行测试)。
• Struts 2 Action可以通过初始化、设置属性、调用方法来测试,“依赖注入”支持也使测试更容易。
捕获输入:
• Struts1 使用ActionForm对象捕获输入。所有的ActionForm必须继承一个基类。因为其他JavaBean不能用作ActionForm,开发者经 常创建多余的类捕获输入。动态Bean(DynaBeans)可以作为创建传统ActionForm的选择,但是,开发者可能是在重新描述(创建)已经存 在的JavaBean(仍然会导致有冗余的javabean)。
• Struts 2直接使用Action属性作为输入属性,消除了对第二个输入对象的需求。输入属性可能是有自己(子)属性的rich对象类型。Action属性能够通过 web页面上的taglibs访问。Struts2也支持ActionForm模式。rich对象类型,包括业务对象,能够用作输入/输出对象。这种 ModelDriven 特性简化了taglib对POJO输入对象的引用。
表达式语言:
• Struts1 整合了JSTL,因此使用JSTL EL。这种EL有基本对象图遍历,但是对集合和索引属性的支持很弱。
• Struts2可以使用JSTL,但是也支持一个更强大和灵活的表达式语言--"Object Graph Notation Language" (OGNL).
绑定值到页面(view):
• Struts 1使用标准JSP机制把对象绑定到页面中来访问。
• Struts 2 使用 "ValueStack"技术,使taglib能够访问值而不需要把你的页面(view)和对象绑定起来。ValueStack策略允许通过一系列名称相同但类型不同的属性重用页面(view)。
类型转换:
• Struts 1 ActionForm 属性通常都是String类型。Struts1使用Commons-Beanutils进行类型转换。每个类一个转换器,对每一个实例来说是不可配置的。
• Struts2 使用OGNL进行类型转换。提供基本和常用对象的转换器。
校验:
• Struts 1支持在ActionForm的validate方法中手动校验,或者通过Commons Validator的扩展来校验。同一个类可以有不同的校验内容,但不能校验子对象。
• Struts2支持通过validate方法和XWork校验框架来进行校验。XWork校验框架使用为属性类类型定义的校验和内容校验,来支持chain校验子属性
Action执行的控制:
• Struts1支持每一个模块有单独的Request Processors(生命周期),但是模块中的所有Action必须共享相同的生命周期。
• Struts2支持通过拦截器堆栈(Interceptor Stacks)为每一个Action创建不同的生命周期。堆栈能够根据需要和不同的Action一起使用。
摘要: 我们看看Spring中的事务处理的代码,使用Spring管理事务有声明式和编程式两种方式,声明式事务处理通过AOP的实现把事物管理代码作为方面封装来横向插入到业务代码中,使得事务管理代码和业务代码解藕。在这种方式我们结合IoC容器和Spirng已有的FactoryBean来对事务管理进行属性配置,比如传播行为,隔离级别等。其中最简单的方式就是通过配置TransactionProxyFactoryB...
阅读全文
前面我们分析了Spring AOP实现中得到Proxy对象的过程,下面我们看看在Spring AOP中拦截器链是怎样被调用的,也就是Proxy模式是怎样起作用的,或者说Spring是怎样为我们提供AOP功能的;
在JdkDynamicAopProxy中生成Proxy对象的时候:
- return Proxy.newProxyInstance(classLoader, proxiedInterfaces, this);
return Proxy.newProxyInstance(classLoader, proxiedInterfaces, this);
这里的this参数对应的是InvocationHandler对象,这里我们的JdkDynamicAopProxy实现了这个接口,也就是说当Proxy对象的函数被调用的时候,这个InvocationHandler的invoke方法会被作为回调函数调用,下面我们看看这个方法的实现:
- public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
- MethodInvocation invocation = null;
- Object oldProxy = null;
- boolean setProxyContext = false;
-
- TargetSource targetSource = this.advised.targetSource;
- Class targetClass = null;
- Object target = null;
-
- try {
-
-
-
- if (!this.equalsDefined && AopUtils.isEqualsMethod(method)) {
-
-
- return equals(args[0]) ? Boolean.TRUE : Boolean.FALSE;
- }
- if (!this.hashCodeDefined && AopUtils.isHashCodeMethod(method)) {
-
- return new Integer(hashCode());
- }
- if (Advised.class == method.getDeclaringClass()) {
-
- return AopUtils.invokeJoinpointUsingReflection(this.advised, method, args);
- }
-
- Object retVal = null;
-
- if (this.advised.exposeProxy) {
-
- oldProxy = AopContext.setCurrentProxy(proxy);
- setProxyContext = true;
- }
-
-
-
-
- target = targetSource.getTarget();
- if (target != null) {
- targetClass = target.getClass();
- }
-
-
-
- List chain = this.advised.advisorChainFactory.getInterceptorsAndDynamicInterceptionAdvice(
- this.advised, proxy, method, targetClass);
-
-
-
-
- if (chain.isEmpty()) {
-
-
-
- retVal = AopUtils.invokeJoinpointUsingReflection(target, method, args);
- }
- else {
-
-
-
-
-
- invocation = new ReflectiveMethodInvocation(
- proxy, target, method, args, targetClass, chain);
-
-
-
- retVal = invocation.proceed();
- }
-
-
- if (retVal != null && retVal == target && method.getReturnType().isInstance(proxy)) {
-
-
-
- retVal = proxy;
- }
- return retVal;
- }
- finally {
- if (target != null && !targetSource.isStatic()) {
-
- targetSource.releaseTarget(target);
- }
-
- if (setProxyContext) {
-
- AopContext.setCurrentProxy(oldProxy);
- }
- }
- }
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
MethodInvocation invocation = null;
Object oldProxy = null;
boolean setProxyContext = false;
TargetSource targetSource = this.advised.targetSource;
Class targetClass = null;
Object target = null;
try {
// Try special rules for equals() method and implementation of the
// Advised AOP configuration interface.
if (!this.equalsDefined && AopUtils.isEqualsMethod(method)) {
// What if equals throws exception!?
// This class implements the equals(Object) method itself.
return equals(args[0]) ? Boolean.TRUE : Boolean.FALSE;
}
if (!this.hashCodeDefined && AopUtils.isHashCodeMethod(method)) {
// This class implements the hashCode() method itself.
return new Integer(hashCode());
}
if (Advised.class == method.getDeclaringClass()) {
// service invocations on ProxyConfig with the proxy config
return AopUtils.invokeJoinpointUsingReflection(this.advised, method, args);
}
Object retVal = null;
if (this.advised.exposeProxy) {
// make invocation available if necessary
oldProxy = AopContext.setCurrentProxy(proxy);
setProxyContext = true;
}
// May be <code>null</code>. Get as late as possible to minimize the time we "own" the target,
// in case it comes from a pool.
// 这里是得到目标对象的地方,当然这个目标对象可能来自于一个实例池或者是一个简单的JAVA对象
target = targetSource.getTarget();
if (target != null) {
targetClass = target.getClass();
}
// get the interception chain for this method
// 这里获得定义好的拦截器链
List chain = this.advised.advisorChainFactory.getInterceptorsAndDynamicInterceptionAdvice(
this.advised, proxy, method, targetClass);
// Check whether we have any advice. If we don't, we can fallback on direct
// reflective invocation of the target, and avoid creating a MethodInvocation.
// 如果没有设定拦截器,那么我们就直接调用目标的对应方法
if (chain.isEmpty()) {
// We can skip creating a MethodInvocation: just invoke the target directly
// Note that the final invoker must be an InvokerInterceptor so we know it does
// nothing but a reflective operation on the target, and no hot swapping or fancy proxying
retVal = AopUtils.invokeJoinpointUsingReflection(target, method, args);
}
else {
// We need to create a method invocation...
// invocation = advised.getMethodInvocationFactory().getMethodInvocation(
// proxy, method, targetClass, target, args, chain, advised);
// 如果有拦截器的设定,那么需要调用拦截器之后才调用目标对象的相应方法
// 这里通过构造一个ReflectiveMethodInvocation来实现,下面我们会看这个ReflectiveMethodInvocation类
invocation = new ReflectiveMethodInvocation(
proxy, target, method, args, targetClass, chain);
// proceed to the joinpoint through the interceptor chain
// 这里通过ReflectiveMethodInvocation来调用拦截器链和相应的目标方法
retVal = invocation.proceed();
}
// massage return value if necessary
if (retVal != null && retVal == target && method.getReturnType().isInstance(proxy)) {
// Special case: it returned "this" and the return type of the method is type-compatible
// Note that we can't help if the target sets
// a reference to itself in another returned object.
retVal = proxy;
}
return retVal;
}
finally {
if (target != null && !targetSource.isStatic()) {
// must have come from TargetSource
targetSource.releaseTarget(target);
}
if (setProxyContext) {
// restore old proxy
AopContext.setCurrentProxy(oldProxy);
}
}
}
我们先看看目标对象方法的调用,这里是通过AopUtils的方法调用 - 使用反射机制来对目标对象的方法进行调用:
- public static Object invokeJoinpointUsingReflection(Object target, Method method, Object[] args)
- throws Throwable {
-
-
-
- try {
- if (!Modifier.isPublic(method.getModifiers()) ||
- !Modifier.isPublic(method.getDeclaringClass().getModifiers())) {
- method.setAccessible(true);
- }
- return method.invoke(target, args);
- }
- catch (InvocationTargetException ex) {
-
-
- throw ex.getTargetException();
- }
- catch (IllegalArgumentException ex) {
- throw new AopInvocationException("AOP configuration seems to be invalid: tried calling method [" +
- method + "] on target [" + target + "]", ex);
- }
- catch (IllegalAccessException ex) {
- throw new AopInvocationException("Couldn't access method: " + method, ex);
- }
- }
public static Object invokeJoinpointUsingReflection(Object target, Method method, Object[] args)
throws Throwable {
// Use reflection to invoke the method.
// 利用放射机制得到相应的方法,并且调用invoke
try {
if (!Modifier.isPublic(method.getModifiers()) ||
!Modifier.isPublic(method.getDeclaringClass().getModifiers())) {
method.setAccessible(true);
}
return method.invoke(target, args);
}
catch (InvocationTargetException ex) {
// Invoked method threw a checked exception.
// We must rethrow it. The client won't see the interceptor.
throw ex.getTargetException();
}
catch (IllegalArgumentException ex) {
throw new AopInvocationException("AOP configuration seems to be invalid: tried calling method [" +
method + "] on target [" + target + "]", ex);
}
catch (IllegalAccessException ex) {
throw new AopInvocationException("Couldn't access method: " + method, ex);
}
}
对拦截器链的调用处理是在ReflectiveMethodInvocation里实现的:
- public Object proceed() throws Throwable {
-
-
- if (this.currentInterceptorIndex == this.interceptorsAndDynamicMethodMatchers.size()) {
- return invokeJoinpoint();
- }
-
- Object interceptorOrInterceptionAdvice =
- this.interceptorsAndDynamicMethodMatchers.get(this.currentInterceptorIndex);
- if (interceptorOrInterceptionAdvice instanceof InterceptorAndDynamicMethodMatcher) {
-
-
-
- InterceptorAndDynamicMethodMatcher dm =
- (InterceptorAndDynamicMethodMatcher) interceptorOrInterceptionAdvice;
- if (dm.methodMatcher.matches(this.method, this.targetClass, this.arguments)) {
- return dm.interceptor.invoke(nextInvocation());
- }
- else {
-
-
-
- this.currentInterceptorIndex++;
- return proceed();
- }
- }
- else {
-
-
- return ((MethodInterceptor) interceptorOrInterceptionAdvice).invoke(nextInvocation());
- }
- }
public Object proceed() throws Throwable {
// We start with an index of -1 and increment early.
// 这里直接调用目标对象的方法,没有拦截器的调用或者拦截器已经调用完了,这个currentInterceptorIndex的初始值是0
if (this.currentInterceptorIndex == this.interceptorsAndDynamicMethodMatchers.size()) {
return invokeJoinpoint();
}
Object interceptorOrInterceptionAdvice =
this.interceptorsAndDynamicMethodMatchers.get(this.currentInterceptorIndex);
if (interceptorOrInterceptionAdvice instanceof InterceptorAndDynamicMethodMatcher) {
// Evaluate dynamic method matcher here: static part will already have
// been evaluated and found to match.
// 这里获得相应的拦截器,如果拦截器可以匹配的上的话,那就调用拦截器的invoke方法
InterceptorAndDynamicMethodMatcher dm =
(InterceptorAndDynamicMethodMatcher) interceptorOrInterceptionAdvice;
if (dm.methodMatcher.matches(this.method, this.targetClass, this.arguments)) {
return dm.interceptor.invoke(nextInvocation());
}
else {
// Dynamic matching failed.
// Skip this interceptor and invoke the next in the chain.
// 如果拦截器匹配不上,那就调用下一个拦截器,这个时候拦截器链的位置指示后移并迭代调用当前的proceed方法
this.currentInterceptorIndex++;
return proceed();
}
}
else {
// It's an interceptor, so we just invoke it: The pointcut will have
// been evaluated statically before this object was constructed.
return ((MethodInterceptor) interceptorOrInterceptionAdvice).invoke(nextInvocation());
}
}
这里把当前的拦截器链以及在拦截器链的位置标志都clone到一个MethodInvocation对象了,作用是当前的拦截器执行完之后,会继续沿着得到这个拦截器链执行下面的拦截行为,也就是会迭代的调用上面这个proceed:
- private ReflectiveMethodInvocation nextInvocation() throws CloneNotSupportedException {
- ReflectiveMethodInvocation invocation = (ReflectiveMethodInvocation) clone();
- invocation.currentInterceptorIndex = this.currentInterceptorIndex + 1;
- invocation.parent = this;
- return invocation;
- }
private ReflectiveMethodInvocation nextInvocation() throws CloneNotSupportedException {
ReflectiveMethodInvocation invocation = (ReflectiveMethodInvocation) clone();
invocation.currentInterceptorIndex = this.currentInterceptorIndex + 1;
invocation.parent = this;
return invocation;
}
这里的nextInvocation就已经包含了当前的拦截链的基本信息,我们看到在Interceptor中的实现比如TransactionInterceptor的实现中:
- public Object invoke(final MethodInvocation invocation) throws Throwable {
- ......
- try {
-
- retVal = invocation.proceed();
- }
- ......
- else {
- try {
- Object result = ((CallbackPreferringPlatformTransactionManager) getTransactionManager()).execute(txAttr,
- new TransactionCallback() {
- public Object doInTransaction(TransactionStatus status) {
-
- TransactionInfo txInfo = prepareTransactionInfo(txAttr, joinpointIdentification, status);
-
- try {
- return invocation.proceed();
- }
- ......
- }
public Object invoke(final MethodInvocation invocation) throws Throwable {
......//这里是TransactionInterceptor插入的事务处理代码,我们会在后面分析事务处理实现的时候进行分析
try {
//这里是对配置的拦截器链进行迭代处理的调用
retVal = invocation.proceed();
}
......//省略了和事务处理的异常处理代码 ,也是TransactionInterceptor插入的处理
else {
try {
Object result = ((CallbackPreferringPlatformTransactionManager) getTransactionManager()).execute(txAttr,
new TransactionCallback() {
public Object doInTransaction(TransactionStatus status) {
//这里是TransactionInterceptor插入对事务处理的代码
TransactionInfo txInfo = prepareTransactionInfo(txAttr, joinpointIdentification, status);
//这里是对配置的拦截器链进行迭代处理的调用,接着顺着拦截器进行处理
try {
return invocation.proceed();
}
......//省略了和事务处理的异常处理代码 ,也是TransactionInterceptor插入的处理
}
从上面的分析我们看到了Spring AOP的基本实现,比如Spring怎样得到Proxy,怎样利用JAVA Proxy以及反射机制对用户定义的拦截器链进行处理。
下面我们来看看Spring的AOP的一些相关代码是怎么得到Proxy的,让我们我们先看看AOP和Spring AOP的一些基本概念:
Advice:
通知,制定在连接点做什么,在Sping中,他主要描述Spring围绕方法调用注入的额外的行为,Spring提供的通知类型有:
before advice,AfterReturningAdvice,ThrowAdvice,MethodBeforeAdvice,这些都是Spring AOP定义的接口类,具体的动作实现需要用户程序来完成。
Pointcut:
切点,其决定一个advice应该应用于哪个连接点,也就是需要插入额外处理的地方的集合,例如,被某个advice作为目标的一组方法。Spring pointcut通常意味着标示方法,可以选择一组方法调用作为pointcut,Spring提供了具体的切点来给用户使用,比如正则表达式切点 JdkRegexpMethodPointcut通过正则表达式对方法名进行匹配,其通过使用 AbstractJdkRegexpMethodPointcut中的对MethodMatcher接口的实现来完成pointcut功能:
- public final boolean matches(Method method, Class targetClass) {
-
- String patt = method.getDeclaringClass().getName() + "." + method.getName();
- for (int i = 0; i < this.patterns.length; i++) {
-
- boolean matched = matches(patt, i);
- if (matched) {
- for (int j = 0; j < this.excludedPatterns.length; j++) {
- boolean excluded = matchesExclusion(patt, j);
- if(excluded) {
- return false;
- }
- }
- return true;
- }
- }
- return false;
- }
public final boolean matches(Method method, Class targetClass) {
//这里通过放射得到方法的全名
String patt = method.getDeclaringClass().getName() + "." + method.getName();
for (int i = 0; i < this.patterns.length; i++) {
// 这里是判断是否和方法名是否匹配的代码
boolean matched = matches(patt, i);
if (matched) {
for (int j = 0; j < this.excludedPatterns.length; j++) {
boolean excluded = matchesExclusion(patt, j);
if(excluded) {
return false;
}
}
return true;
}
}
return false;
}
在JDKRegexpMethodPointcut中通过JDK中的正则表达式匹配来完成pointcut的最终确定:
- protected boolean matches(String pattern, int patternIndex) {
- Matcher matcher = this.compiledPatterns[patternIndex].matcher(pattern);
- return matcher.matches();
- }
protected boolean matches(String pattern, int patternIndex) {
Matcher matcher = this.compiledPatterns[patternIndex].matcher(pattern);
return matcher.matches();
}
Advisor:
当我们完成额外的动作设计(advice)和额外动作插入点的设计(pointcut)以后,我们需要一个对象把他们结合起来,这就是通知器 - advisor,定义应该在哪里应用哪个通知。Advisor的实现有:DefaultPointcutAdvisor他有两个属性advice和 pointcut来让我们配置advice和pointcut。
接着我们就可以通过ProxyFactoryBean来配置我们的代理对象和方面行为,在ProxyFactoryBean中有interceptorNames来配置已经定义好的通知器-advisor,虽然这里的名字叫做interceptNames,但实际上是供我们配置advisor的地方,具体的代理实现通过JDK 的Proxy或者CGLIB来完成。因为ProxyFactoryBean是一个FactoryBean,在ProxyFactoryBean中我们通过getObject()可以直接得到代理对象:
- public Object getObject() throws BeansException {
-
- initializeAdvisorChain();
- if (isSingleton()) {
-
- return getSingletonInstance();
- }
- else {
- .......
-
- return newPrototypeInstance();
- }
- }
public Object getObject() throws BeansException {
//这里初始化通知器链
initializeAdvisorChain();
if (isSingleton()) {
//根据定义需要生成单件的Proxy
return getSingletonInstance();
}
else {
.......
//这里根据定义需要生成Prototype类型的Proxy
return newPrototypeInstance();
}
}
我们看看怎样生成单件的代理对象:
- private synchronized Object getSingletonInstance() {
- if (this.singletonInstance == null) {
- this.targetSource = freshTargetSource();
- if (this.autodetectInterfaces && getProxiedInterfaces().length == 0 && !isProxyTargetClass()) {
-
- setInterfaces(ClassUtils.getAllInterfacesForClass(this.targetSource.getTargetClass()));
- }
-
- super.setFrozen(this.freezeProxy);
-
- this.singletonInstance = getProxy(createAopProxy());
-
-
- addListener(this);
- }
- return this.singletonInstance;
- }
-
-
- protected Object getProxy(AopProxy aopProxy) {
- return aopProxy.getProxy(this.beanClassLoader);
- }
private synchronized Object getSingletonInstance() {
if (this.singletonInstance == null) {
this.targetSource = freshTargetSource();
if (this.autodetectInterfaces && getProxiedInterfaces().length == 0 && !isProxyTargetClass()) {
// 这里设置代理对象的接口
setInterfaces(ClassUtils.getAllInterfacesForClass(this.targetSource.getTargetClass()));
}
// Eagerly initialize the shared singleton instance.
super.setFrozen(this.freezeProxy);
// 注意这里的方法会使用ProxyFactory来生成我们需要的Proxy
this.singletonInstance = getProxy(createAopProxy());
// We must listen to superclass advice change events to recache the singleton
// instance if necessary.
addListener(this);
}
return this.singletonInstance;
}
//使用createAopProxy放回的AopProxy来得到代理对象。
protected Object getProxy(AopProxy aopProxy) {
return aopProxy.getProxy(this.beanClassLoader);
}
ProxyFactoryBean的父类是AdvisedSupport,Spring使用AopProxy接口把AOP代理的实现与框架的其他部分分离开来;在AdvisedSupport中通过这样的方式来得到AopProxy,当然这里需要得到AopProxyFactory的帮助 - 下面我们看到Spring为我们提供的实现,来帮助我们方便的从JDK或者cglib中得到我们想要的代理对象:
- protected synchronized AopProxy createAopProxy() {
- if (!this.isActive) {
- activate();
- }
- return getAopProxyFactory().createAopProxy(this);
- }
protected synchronized AopProxy createAopProxy() {
if (!this.isActive) {
activate();
}
return getAopProxyFactory().createAopProxy(this);
}
而在ProxyConfig中对使用的AopProxyFactory做了定义:
-
-
- private transient AopProxyFactory aopProxyFactory = new DefaultAopProxyFactory();
//这个DefaultAopProxyFactory是Spring用来生成AopProxy的地方,
//当然了它包含JDK和Cglib两种实现方式。
private transient AopProxyFactory aopProxyFactory = new DefaultAopProxyFactory();
其中在DefaultAopProxyFactory中是这样生成AopProxy的:
- public AopProxy createAopProxy(AdvisedSupport advisedSupport) throws AopConfigException {
-
- if (advisedSupport.isOptimize() || advisedSupport.isProxyTargetClass() ||
- advisedSupport.getProxiedInterfaces().length == 0) {
-
- if (!cglibAvailable) {
- throw new AopConfigException(
- "Cannot proxy target class because CGLIB2 is not available. " +
- "Add CGLIB to the class path or specify proxy interfaces.");
- }
-
- return CglibProxyFactory.createCglibProxy(advisedSupport);
- }
- else {
-
- return new JdkDynamicAopProxy(advisedSupport);
- }
- }
public AopProxy createAopProxy(AdvisedSupport advisedSupport) throws AopConfigException {
//首先考虑使用cglib来实现代理对象,当然如果同时目标对象不是接口的实现类的话
if (advisedSupport.isOptimize() || advisedSupport.isProxyTargetClass() ||
advisedSupport.getProxiedInterfaces().length == 0) {
//这里判断如果不存在cglib库,直接抛出异常。
if (!cglibAvailable) {
throw new AopConfigException(
"Cannot proxy target class because CGLIB2 is not available. " +
"Add CGLIB to the class path or specify proxy interfaces.");
}
// 这里使用Cglib来生成Proxy,如果target不是接口的实现的话,返回cglib类型的AopProxy
return CglibProxyFactory.createCglibProxy(advisedSupport);
}
else {
// 这里使用JDK来生成Proxy,返回JDK类型的AopProxy
return new JdkDynamicAopProxy(advisedSupport);
}
}
于是我们就可以看到其中的代理对象可以由JDK或者Cglib来生成,我们看到JdkDynamicAopProxy类和Cglib2AopProxy都实现的是AopProxy的接口,在JdkDynamicAopProxy实现中我们可以看到Proxy是怎样生成的:
- public Object getProxy(ClassLoader classLoader) {
- if (logger.isDebugEnabled()) {
- Class targetClass = this.advised.getTargetSource().getTargetClass();
- logger.debug("Creating JDK dynamic proxy" +
- (targetClass != null ? " for [" + targetClass.getName() + "]" : ""));
- }
- Class[] proxiedInterfaces = AopProxyUtils.completeProxiedInterfaces(this.advised);
- findDefinedEqualsAndHashCodeMethods(proxiedInterfaces);
-
- return Proxy.newProxyInstance(classLoader, proxiedInterfaces, this);
- }
public Object getProxy(ClassLoader classLoader) {
if (logger.isDebugEnabled()) {
Class targetClass = this.advised.getTargetSource().getTargetClass();
logger.debug("Creating JDK dynamic proxy" +
(targetClass != null ? " for [" + targetClass.getName() + "]" : ""));
}
Class[] proxiedInterfaces = AopProxyUtils.completeProxiedInterfaces(this.advised);
findDefinedEqualsAndHashCodeMethods(proxiedInterfaces);
//这里我们调用JDK Proxy来生成需要的Proxy实例
return Proxy.newProxyInstance(classLoader, proxiedInterfaces, this);
}
这样用Proxy包装target之后,通过ProxyFactoryBean得到对其方法的调用就被Proxy拦截了, ProxyFactoryBean的getObject()方法得到的实际上是一个Proxy了,我们的target对象已经被封装了。对 ProxyFactoryBean这个工厂bean而言,其生产出来的对象是封装了目标对象的代理对象。
下面我们看看Spring JDBC相关的实现,
在Spring中,JdbcTemplate是经常被使用的类来帮助用户程序操作数据库,在JdbcTemplate为用户程序提供了许多便利的数据库操作方法,比如查询,更新等,而且在Spring中,有许多类似 JdbcTemplate的模板,比如HibernateTemplate等等 - 看来这是Rod.Johnson的惯用手法,一般而言这种Template中都是通过回调函数CallBack类的使用来完成功能的,客户需要在回调接口中实现自己需要的定制行为,比如使用客户想要用的SQL语句等。不过往往Spring通过这种回调函数的实现已经为我们提供了许多现成的方法供客户使用。一般来说回调函数的用法采用匿名类的方式来实现,比如:
- JdbcTemplate = new JdbcTemplate(datasource);
- jdbcTemplate.execute(new CallBack(){
- public CallbackInterfacedoInAction(){
- ......
-
- }
- }
JdbcTemplate = new JdbcTemplate(datasource);
jdbcTemplate.execute(new CallBack(){
public CallbackInterfacedoInAction(){
......
//用户定义的代码或者说Spring替我们实现的代码
}
}
在模板中嵌入的是需要客户化的代码,由Spring来作或者需要客户程序亲自动手完成。下面让我们具体看看在JdbcTemplate中的代码是怎样完成使命的,我们举JdbcTemplate.execute()为例,这个方法是在JdbcTemplate中被其他方法调用的基本方法之一,客户程序往往用这个方法来执行基本的SQL语句:
- public Object execute(ConnectionCallback action) throws DataAccessException {
-
- Connection con = DataSourceUtils.getConnection(getDataSource());
- try {
- Connection conToUse = con;
-
- if (this.nativeJdbcExtractor != null) {
-
- conToUse = this.nativeJdbcExtractor.getNativeConnection(con);
- }
- else {
-
- conToUse = createConnectionProxy(con);
- }
-
- return action.doInConnection(conToUse);
- }
- catch (SQLException ex) {
-
-
- DataSourceUtils.releaseConnection(con, getDataSource());
- con = null;
- throw getExceptionTranslator().translate("ConnectionCallback", getSql(action), ex);
- }
- finally {
-
- DataSourceUtils.releaseConnection(con, getDataSource());
- }
- }
public Object execute(ConnectionCallback action) throws DataAccessException {
//这里得到数据库联接
Connection con = DataSourceUtils.getConnection(getDataSource());
try {
Connection conToUse = con;
//有些特殊的数据库,需要我们使用特别的方法取得datasource
if (this.nativeJdbcExtractor != null) {
// Extract native JDBC Connection, castable to OracleConnection or the like.
conToUse = this.nativeJdbcExtractor.getNativeConnection(con);
}
else {
// Create close-suppressing Connection proxy, also preparing returned Statements.
conToUse = createConnectionProxy(con);
}
//这里调用的是传递进来的匿名类的方法,也就是用户程序需要实现CallBack接口的地方。
return action.doInConnection(conToUse);
}
catch (SQLException ex) {
//如果捕捉到数据库异常,把数据库联接释放,同时抛出一个经过Spring转换过的Spring数据库异常,
//我们知道,Spring做了一个有意义的工作是把这些数据库异常统一到自己的异常体系里了。
DataSourceUtils.releaseConnection(con, getDataSource());
con = null;
throw getExceptionTranslator().translate("ConnectionCallback", getSql(action), ex);
}
finally {
//最后不管怎样都会把数据库连接释放
DataSourceUtils.releaseConnection(con, getDataSource());
}
}
对于JdbcTemplate中给出的其他方法,比如query,update,execute等的实现,我们看看query():
- public Object query(PreparedStatementCreator psc, final PreparedStatementSetter pss, final ResultSetExtractor rse)
- throws DataAccessException {
- ..........
-
- return execute(psc, new PreparedStatementCallback() {
- public Object doInPreparedStatement(PreparedStatement ps) throws SQLException {
-
- ResultSet rs = null;
- try {
-
- if (pss != null) {
- pss.setValues(ps);
- }
-
- rs = ps.executeQuery();
- ResultSet rsToUse = rs;
- if (nativeJdbcExtractor != null) {
- rsToUse = nativeJdbcExtractor.getNativeResultSet(rs);
- }
-
- return rse.extractData(rsToUse);
- }
- finally {
-
- JdbcUtils.closeResultSet(rs);
- if (pss instanceof ParameterDisposer) {
- ((ParameterDisposer) pss).cleanupParameters();
- }
- }
- }
- });
- }
public Object query(PreparedStatementCreator psc, final PreparedStatementSetter pss, final ResultSetExtractor rse)
throws DataAccessException {
..........
//这里调用了我们上面看到的execute()基本方法,然而这里的回调实现是Spring为我们完成的查询过程
return execute(psc, new PreparedStatementCallback() {
public Object doInPreparedStatement(PreparedStatement ps) throws SQLException {
//准备查询结果集
ResultSet rs = null;
try {
//这里配置SQL参数
if (pss != null) {
pss.setValues(ps);
}
//这里执行的SQL查询
rs = ps.executeQuery();
ResultSet rsToUse = rs;
if (nativeJdbcExtractor != null) {
rsToUse = nativeJdbcExtractor.getNativeResultSet(rs);
}
//返回需要的记录集合
return rse.extractData(rsToUse);
}
finally {
//最后关闭查询的纪录集,对数据库连接的释放在execute()中释放,就像我们在上面分析的看到那样。
JdbcUtils.closeResultSet(rs);
if (pss instanceof ParameterDisposer) {
((ParameterDisposer) pss).cleanupParameters();
}
}
}
});
}
辅助类DataSourceUtils来用来对数据库连接进行管理的主要工具,比如打开和关闭数据库连接等基本操作:
- public static Connection doGetConnection(DataSource dataSource) throws SQLException {
-
- ConnectionHolder conHolder = (ConnectionHolder) TransactionSynchronizationManager.getResource(dataSource);
- if (conHolder != null && (conHolder.hasConnection() || conHolder.isSynchronizedWithTransaction())) {
- conHolder.requested();
- if (!conHolder.hasConnection()) {
- logger.debug("Fetching resumed JDBC Connection from DataSource");
- conHolder.setConnection(dataSource.getConnection());
- }
- return conHolder.getConnection();
- }
-
- logger.debug("Fetching JDBC Connection from DataSource");
- Connection con = dataSource.getConnection();
-
- if (TransactionSynchronizationManager.isSynchronizationActive()) {
- logger.debug("Registering transaction synchronization for JDBC Connection");
-
-
- ConnectionHolder holderToUse = conHolder;
- if (holderToUse == null) {
- holderToUse = new ConnectionHolder(con);
- }
- else {
- holderToUse.setConnection(con);
- }
- holderToUse.requested();
- TransactionSynchronizationManager.registerSynchronization(
- new ConnectionSynchronization(holderToUse, dataSource));
- holderToUse.setSynchronizedWithTransaction(true);
- if (holderToUse != conHolder) {
- TransactionSynchronizationManager.bindResource(dataSource, holderToUse);
- }
- }
-
- return con;
- }
public static Connection doGetConnection(DataSource dataSource) throws SQLException {
//把对数据库连接放到事务管理里面进行管理
ConnectionHolder conHolder = (ConnectionHolder) TransactionSynchronizationManager.getResource(dataSource);
if (conHolder != null && (conHolder.hasConnection() || conHolder.isSynchronizedWithTransaction())) {
conHolder.requested();
if (!conHolder.hasConnection()) {
logger.debug("Fetching resumed JDBC Connection from DataSource");
conHolder.setConnection(dataSource.getConnection());
}
return conHolder.getConnection();
}
// 这里得到需要的数据库连接,在配置文件中定义好的。
logger.debug("Fetching JDBC Connection from DataSource");
Connection con = dataSource.getConnection();
if (TransactionSynchronizationManager.isSynchronizationActive()) {
logger.debug("Registering transaction synchronization for JDBC Connection");
// Use same Connection for further JDBC actions within the transaction.
// Thread-bound object will get removed by synchronization at transaction completion.
ConnectionHolder holderToUse = conHolder;
if (holderToUse == null) {
holderToUse = new ConnectionHolder(con);
}
else {
holderToUse.setConnection(con);
}
holderToUse.requested();
TransactionSynchronizationManager.registerSynchronization(
new ConnectionSynchronization(holderToUse, dataSource));
holderToUse.setSynchronizedWithTransaction(true);
if (holderToUse != conHolder) {
TransactionSynchronizationManager.bindResource(dataSource, holderToUse);
}
}
return con;
}
那我们实际的DataSource对象是怎样得到的?很清楚我们需要在上下文中进行配置:它作为JdbcTemplate父类JdbcAccessor的属性存在:
- public abstract class JdbcAccessor implements InitializingBean {
-
-
- private DataSource dataSource;
-
-
- private SQLExceptionTranslator exceptionTranslator;
-
- private boolean lazyInit = true;
-
- ........
- }
public abstract class JdbcAccessor implements InitializingBean {
/** 这里是我们依赖注入数据库数据源的地方。 */
private DataSource dataSource;
/** Helper to translate SQL exceptions to DataAccessExceptions */
private SQLExceptionTranslator exceptionTranslator;
private boolean lazyInit = true;
........
}
而对于DataSource的缓冲池实现,我们通过定义Apache Jakarta Commons DBCP或者C3P0提供的DataSource来完成,然后只要在上下文中配置好就可以使用了。从上面我们看到JdbcTemplate提供了许多简单查询和更新功能,但是如果需要更高层次的抽象,以及更面向对象的方法来访问数据库。Spring为我们提供了org.springframework.jdbc.object包,这里面包含了SqlQuery,SqlMappingQuery, SqlUpdate和StoredProcedure等类,这些类都是Spring JDBC应用程序可以使用的主要类,但我们要注意使用这些类的时候,用户需要为他们配置好一个JdbcTemplate作为其基本的操作的实现。
比如说我们使用MappingSqlQuery来将表数据直接映射到一个对象集合 - 具体可以参考书中的例子
1.我们需要建立DataSource和sql语句并建立持有这些对象的MappingSqlQuery对象
2.然后我们需要定义传递的SqlParameter,具体的实现我们在MappingSqlQuery的父类RdbmsOperation中可以找到:
- public void declareParameter(SqlParameter param) throws InvalidDataAccessApiUsageException {
-
- if (isCompiled()) {
- throw new InvalidDataAccessApiUsageException("Cannot add parameters once query is compiled");
- }
-
- this.declaredParameters.add(param);
public void declareParameter(SqlParameter param) throws InvalidDataAccessApiUsageException {
//如果声明已经被编译过,则该声明无效
if (isCompiled()) {
throw new InvalidDataAccessApiUsageException("Cannot add parameters once query is compiled");
}
//这里对参数值进行声明定义
this.declaredParameters.add(param);
}
而这个declareParameters维护的是一个列表:
-
- private List declaredParameters = new LinkedList();
/** List of SqlParameter objects */
private List declaredParameters = new LinkedList();
这个列表在以后compile的过程中会被使用。
3.然后用户程序需要实现MappingSqlQuery的mapRow接口,将具体的ResultSet数据生成我们需要的对象,这是我们迭代使用的方法。1,2,3步实际上为我们定义好了一个迭代的基本单元作为操作模板。
4.在应用程序,我们直接调用execute()方法得到我们需要的对象列表,列表中的每一个对象的数据来自于执行SQL语句得到记录集的每一条记录,事实上执行的execute在父类SqlQuery中起作用:
- public List executeByNamedParam(Map paramMap, Map context) throws DataAccessException {
- validateNamedParameters(paramMap);
- Object[] parameters = NamedParameterUtils.buildValueArray(getSql(), paramMap);
- RowMapper rowMapper = newRowMapper(parameters, context);
- String sqlToUse = NamedParameterUtils.substituteNamedParameters(getSql(), new MapSqlParameterSource(paramMap));
-
- return getJdbcTemplate().query(newPreparedStatementCreator(sqlToUse, parameters), rowMapper);
- }
public List executeByNamedParam(Map paramMap, Map context) throws DataAccessException {
validateNamedParameters(paramMap);
Object[] parameters = NamedParameterUtils.buildValueArray(getSql(), paramMap);
RowMapper rowMapper = newRowMapper(parameters, context);
String sqlToUse = NamedParameterUtils.substituteNamedParameters(getSql(), new MapSqlParameterSource(paramMap));
//我们又看到了JdbcTemplate,这里使用JdbcTemplate来完成对数据库的查询操作,所以我们说JdbcTemplate是基本的操作类。
return getJdbcTemplate().query(newPreparedStatementCreator(sqlToUse, parameters), rowMapper);
}
在这里我们可以看到template模式的精彩应用和对JdbcTemplate的灵活使用。通过使用它,我们免去了手工迭代ResultSet并将其中的数据转化为对象列表的重复过程。在这里我们只需要定义SQL语句和SqlParameter - 如果需要的话,往往SQL语句就常常能够满足我们的要求了。这是灵活使用JdbcTemplate的一个很好的例子。
Spring还为其他数据库操作提供了许多服务,比如使用SqlUpdate插入和更新数据库,使用UpdatableSqlQuery更新ResultSet,生成主键,调用存储过程等。
书中还给出了对BLOB数据和CLOB数据进行数据库操作的例子:
对BLOB数据的操作通过LobHander来完成,通过调用JdbcTemplate和RDBMS都可以进行操作:
在JdbcTemplate中,具体的调用可以参考书中的例子 - 是通过以下调用起作用的:
- public Object execute(String sql, PreparedStatementCallback action) throws DataAccessException {
- return execute(new SimplePreparedStatementCreator(sql), action);
- }
public Object execute(String sql, PreparedStatementCallback action) throws DataAccessException {
return execute(new SimplePreparedStatementCreator(sql), action);
}
然后通过对实现PreparedStatementCallback接口的AbstractLobCreatingPreparedStatementCallback的回调函数来完成:
- public final Object doInPreparedStatement(PreparedStatement ps) throws SQLException, DataAccessException {
- LobCreator lobCreator = this.lobHandler.getLobCreator();
- try {
-
- setValues(ps, lobCreator);
- return new Integer(ps.executeUpdate());
- }
- finally {
- lobCreator.close();
- }
- }
-
- protected abstract void setValues(PreparedStatement ps, LobCreator lobCreator)
- throws SQLException, DataAccessException;
public final Object doInPreparedStatement(PreparedStatement ps) throws SQLException, DataAccessException {
LobCreator lobCreator = this.lobHandler.getLobCreator();
try {
//这是一个模板方法,具体需要由客户程序实现
setValues(ps, lobCreator);
return new Integer(ps.executeUpdate());
}
finally {
lobCreator.close();
}
}
//定义的需要客户程序实现的虚函数
protected abstract void setValues(PreparedStatement ps, LobCreator lobCreator)
throws SQLException, DataAccessException;
而我们注意到setValues()是一个需要实现的抽象方法,应用程序通过实现setValues来定义自己的操作 - 在setValues中调用lobCreator.setBlobAsBinaryStrem()。让我们看看具体的BLOB操作在LobCreator是怎样完成的,我们一般使用DefaultLobCreator作为BLOB操作的驱动:
- public void setBlobAsBinaryStream(
- PreparedStatement ps, int paramIndex, InputStream binaryStream, int contentLength)
- throws SQLException {
-
- ps.setBinaryStream(paramIndex, binaryStream, contentLength);
- ........
- }
public void setBlobAsBinaryStream(
PreparedStatement ps, int paramIndex, InputStream binaryStream, int contentLength)
throws SQLException {
//通过JDBC来完成对BLOB数据的操作,对Oracle,Spring提供了OracleLobHandler来支持BLOB操作。
ps.setBinaryStream(paramIndex, binaryStream, contentLength);
........
}
上面提到的是零零碎碎的Spring JDBC使用的例子,可以看到使用Spring JDBC可以帮助我们完成许多数据库的操作。Spring对数据库操作最基本的服务是通过JdbcTeamplate和他常用的回调函数来实现的,在此之上,又提供了许多RMDB的操作来帮助我们更便利的对数据库的数据进行操作 - 注意这里没有引入向Hibernate这样的O/R方案。对这些O/R方案的支持,Spring由其他包来完成服务。
书中还提到关于execute和update方法之间的区别,update方法返回的是受影响的记录数目的一个计数,并且如果传入参数的话,使用的是java.sql.PreparedStatement,而execute方法总是使用 java.sql.Statement,不接受参数,而且他不返回受影响记录的计数,更适合于创建和丢弃表的语句,而update方法更适合于插入,更新和删除操作,这也是我们在使用时需要注意的。
摘要: 上面我们分析了IOC容器本身的实现,下面我们看看在典型的web环境中,Spring IOC容器是怎样被载入和起作用的。 简单的说,在web容器中,通过ServletContext为Spring的IOC容器提供宿主环境,对应的建立起一个IOC容器的体系。其中,首先需要建立的是根上下文,这个上下文持有的对象可以有业务对象,数据存取对象,资源,事物管理器等各种中间层对象。在这个上下文的基础上,和web ...
阅读全文
摘要: 在认真学习Rod.Johnson的三部曲之一:<<Professional Java Development with the spring framework>>,顺便也看了看源代码想知道个究竟,抛砖引玉,有兴趣的同志一起讨论研究吧! 以下内容引自博客:http://jiwenke-spring.blogspot.com/,欢迎指导:) 在Spring中,IOC容器的重要...
阅读全文
众所周知,技术不再是困扰CIO职业前途的必备要件之一。但是,这不是说CIO可以不关心技术了。相反,CIO可以不精通某种技术,但是,一定要对这种技术的优缺点以及发展趋势有个清晰的了解。因为在信息化管理软件选型或者信息化战略制定的时候,还是离不开技术,除了对软件本身进行选型之外,还需要考虑其采用的技术的选型。
具体的来说,CIO在技术选型上,要考虑所采用的技术是否稳定、扩展性是否较好、跨平台的性能等等。在软件选型的时候,不仅要考虑软件的功能,也要考虑其所采用的技术,只有如此,CIO才能轻松应对后续的变化。
技术选型标准一:跨平台性 随着微软打击盗版力度的加强,越来越多的企业开始考虑操作系统的使用成本。确实,对于大部分企业来说,已经习惯使用免费的软件,若让他们掏腰包,去买正版的操作系统与OFFICE办公软件,而且这些费用还不低,他们不一定会肯。随着微软盗版力度的加强,企业一定会千方百计的去寻找微软操作系统与办公软件的替代品。恰好,这个就给开源的LINUX操作系统与OPEOFFICE办公软件提供了发展的机会。
其实,根据使用经验,这个开源的操作系统与办公软件,其性能方面并不比微软的操作系统与办公软件差。而只是员工以前在学校中学的都是微软的产品,所以,对于LINUX系统上的软件操作并不时很熟悉,所以,会对他有排斥心理。另一方面,开源的LINUX操作系统与办公软件在界面的友好性上可能还是跟微软的产品有所差别,但是,这并不影响实用。而且,LINUX操作系统,在业界的评论上,其稳定性要比微软的操作系统要好,而且,其受到病毒袭击的机率也比微软的操作系统少得多。
所以,借着微软打击盗版力度的加强,恰好给了一个LINUX系统普及的机会。相信随着企业对于LINUX系统认识的加强,会有越来越多的企业采用这个开源的LINUX系统。
但是,这对企业或许是一件好事情,可是,对于CIO来说,却是一个头疼的事情。为什么呢?因为现在很多的管理软件,如ERP、财务管理软件等等,都是在微软操作系统的平台上开发的。由于平台开发技术的限制,这些为微软操作系统量身定制的信息化管理系统,无法在LINUX平台上运行顺畅,有的甚至是不兼容的。为此,企业若向放弃使用微软的操作系统,虽然可以节省操作系统上的授权费用,但是,也必将面临着这些管理软件的取舍问题。
所以,为了我们CIO后续在操作系统的选型上没有这么多的限制,我们从现在开始,就要看到这个趋势,在信息化管理软件选型的时候,要注意软件的跨平台性能。简单地说,我们选择的信息化管理软件不仅要在微软的操作系统上能够跑的顺畅,而且,在LINUX系统平台上也要能够运行顺利,甚至还能够支持苹果等操作系统。只有如此,下次我们在操作系统转型的时候,才不会受到这些信息化管理软件的限制。
一般来说,现在一些基于JAVA开发的、WEB模式的信息化管理软件,基本上都能够实现多平台的兼容。而且,现在这也是信息化管理软件发展的趋势。以后支持单一平台的信息化管理软件,就像以前只有单一语言的信息化管理软件一样,市场份额将会逐渐缩小。
技术选型标准二:扩展性与集成性的考虑 信息化管理系统现在已经发展成为一个体系。为什么这么说呢?现在企业中所采纳的信息化管理系统,已经不是以前单一的一个财务管理软件。如某些企业,已经有了CRM客户关系管理系统、ERP企业资源计划系统、OA办公自动化系统等等。现在要成功实施一个信息化项目,已经不是一件难事,大家都有了丰富的信息化项目实施经验。像以前所说的“上ERP系统是找死,不上ERP系统是等死”的现状已经一去不复返。现在ERP实施的成功率已经非常的高。
所以,现在信息化项目成功上线已经不是我们CIO所追求的最高目标,而是最基本的目标。现在我们CIO所要考虑的,是系统的集成问题。如何把企业先后实施的各个信息化项目有效的集成起来,减少信息化项目上的重复投资,提高信息化管理的效果,这已经是考验我们CIO能力的一个非常有效的手段。
现在SOA系统,一个系统集成的平台,在信息化管理中,如一匹黑马,独树一帜。从这里就可以看出,企业对于信息化系统整合的迫切需求。
为此,我们CIO在信息化管理软件进行选型的时候,就需要考虑这个系统集成性的问题。要考虑我们所即将采用的信息化管理软件,有否提供丰富的接口,可以跟其他信息化管理系统进行交流。
虽然现在还没有统一的标准,SOA发展也只是起步,没有成熟,还有很多需要改善的地方。但是,我们CIO需要有高瞻远瞩的目光,在信息化管理软件选型的时候,需要关注软件开发商有没有这方面的尝试。如公布自己的接口的详细参数信息,如此的话,即使后面没有统一的集成平台,则通过少量的开发,也可以把两个或者两个以上的操作系统平台整合起来。
另外关于系统整合还有一个偷懒的方法。就是我们在软件选型的时候,要看看其软件开发商有没有形成一个信息化管理的体系产品。如企业现在可能只需要采用ERP系统,但是我们在CIO选型的时候,需要考虑这个软件开发商是否还开发了CRM系统或者工作六管理系统。因为他们的这些系统之间往往可以实现很好的集成。如此的话,下次若需要其他的信息化管理软件的时候,我们也可以考虑购买他们的产品,如此的话,就可以非常轻松的实现各大信息化管理系统的集成。
系统的集成是未来信息化管理软件发展的一个趋势,所以,为了后续工作的方便,我们在选择第一个信息化管理软件的时候,就需要有软件集成的思想。只有如此,后续企业需要软件集成的时候,我们才不会手忙脚乱。
技术选型标准三:技术稳定性的考虑 软件企业跟生产或者商品企业对于技术的追求可能有所区别。软件企业更多的关注是这个技术会否过时,他们往往希望利用“时髦”来推销他们的新技术产品。而对于生产企业来说,时髦并不是企业所关注的重点,他们更加关注的是这门技术的成熟程度,是否会像微软操作系统一样,隔几天就需要打补丁或者软件升级。
在我们CIO严重,最适合企业的技术不时往往不是那种刚出炉的技术,虽然他们比较先进,解决了以前产品中的种种缺陷。但是,他们也有一个致命的缺点,就是不够稳定。隔三差五的会出现几个漏洞。而这真是作为CIO最不能够忍受的。因为在企业信息化管理利用中,可能你做的好人家不一定主意,但是,一出现什么问题人家就会抓住你不妨。这大概就叫做“好事不出门、坏事传千里”吧。
各位CIO在软件选型的时候,考虑技术因素的时候,不要太关注与技术是否够时髦,会不会过时的问题;而应该更多的考虑,这门技术或者产品,是否稳定,用户群是否过大。
在信息化管理上,要学会模仿,而不是争做“第一个吃螃蟹的人”。在信息化管理行业,变数太多。第一个吃螃蟹的人,大部分是死的比较惨的人。若我们等到别人先试用了之后,产品或者技术被改善的差不多了,然后我们再去采用这种技术或者产品,则就可以最大限度的避免由此带来的风险。
技术选型有时候比产品功能选型更加难。因为技术选系的话,需要考虑的因素太多,而且现在技术的更新换代实在让人有点目不暇接。现在比较流行的不 B/S模式说不定哪一天也会像以前C/S模式一样被其他模式所代替。而功能选型的话,至少功能是可以收集的,只需要细心与时间,一般不会有多大的误差。
现在接触的信息化项目越来越多,由此带来的感受也就越来越深。你如果把现在的企业当作临时的中转站,你可能不会有这么大的顾虑,可能会以为只需要考虑未来的几年的时间就可以了。但是,你若想在这家企业中终老,那么,考虑的因素就会比较多,什么软件的集成、软件的扩展性、技术的稳定性与先进行之间的矛盾与取舍,都是我们CIO所需要关注的内容。
所以,信息化技术日新月异的发展,给我们CIO带来了发展的机遇,但是,也给我们带来的巨大的压力。
摘要: 1.文本框焦点问题onBlur:当失去输入焦点后产生该事件onFocus:当输入获得焦点后,产生该文件Onchange:当文字值改变时,产生该事件Onselect:当文字加亮后,产生该文件<input type="text" value="mm" onfocus="if(value=='mm) {value=''}" onblur="if(value=='') {value='mm'}"&g...
阅读全文
为了使web应用能使用saas模式的大规模访问,必须实现应用的集群部署.要实现集群部署主要需要实现session共享机制,使得多台应用服务器之间会话统一, tomcat等多数服务都采用了session复制技术实现session的共享.
session复制技术的问题:
(1)技术复杂,必须在同一种中间件之间完成(如:tomcat-tomcat之间).
(2)在节点持续增多的情况下,session复制带来的性能损失会快速增加.特别是当session中保存了较大的对象,而且对象变化较快时,性能下降更加显著.这种特性使得web应用的水平扩展受到了限制.
session共享的另一种思路就是把session集中起来管理,首先想到的是采用数据库来集中存储session,但数据库是文件存储相对内存慢了一个数量级,同时这势必加大数据库系统的负担.所以需要一种既速度快又能远程集中存储的服务,所以就想到了memcached.
memcached是什么?
memcached是由Danga Interactive开发的,高性能的,分布式的内存对象缓存系统,用于在动态应用中减少数据库负载,提升访问速度。
memcached能缓存什么?
通过在内存里维护一个统一的巨大的hash表,Memcached能够用来存储各种格式的数据,包括图像、视频、文件以及数据库检索的结果等。
memcached快么?
非常快。memcached使用了libevent(如果可以的话,在linux下使用epoll)来均衡任何数量的打开链接,使用非阻塞的网络I/O,对内部对象实现引用计数(因此,针对多样的客户端,对象可以处在多样的状态), 使用自己的页块分配器和哈希表, 因此虚拟内存不会产生碎片并且虚拟内存分配的时间复杂度可以保证为O(1).。
Danga Interactive为提升Danga Interactive的速度研发了memcached。目前,LiveJournal.com每天已经在向一百万用户提供多达两千万次的页面访问。而这些,是由一个由web服务器和数据库服务器组成的集群完成的。memcached几乎完全放弃了任何数据都从数据库读取的方式,同时,它还缩短了用户查看页面的速度、更好的资源分配方式,以及memcache失效时对数据库的访问速度。
memcached的特点
memcached的缓存是一种分布式的,可以让不同主机上的多个用户同时访问, 因此解决了共享内存只能单机应用的局限,更不会出现使用数据库做类似事情的时候,磁盘开销和阻塞的发生。
使用memcached来存储session有两种方案:
(1)直接通过tomcat6的扩展机制实现.
参考: http://www.javaeye.com/topic/81641
(2)通过自己编写filter实现.
考虑到系统的扩展,我们采用这种方案.这样可以使session共享机制和中间件脱钩.
参考: http://www.javaeye.com/topic/82565
主要思路:
(1)继承重构HttpServletRequestWrapper,HttpSessionWrapper类,覆盖原来和session存取相关的方法呢,都通过SessionService类来实现.
(2)使用filter拦截cookie中的sessionId,通过sessionId构造新的HttpServletRequestWrapper对象,传给后面的应用.
(3)SessionService连接memcached服务,以sessionId作为key,存取的对象是一个map.map的内容即为session的内容.
使用过程注意几个问题和改进思路:
1、memcache的内存应该足够大,这样不会出现用户session从Cache中被清除的问题(可以关闭memcached的对象退出机制)。
2、如果session的读取比写入要多很多,可以在memcache前再加一个Oscache等本地缓存,减少对memcache的读操作,从而减小网络开销,提高性能。
3、如果用户非常多,可以使用memcached组,通过set方法中带hashCode,插入到某个memcached服务器
对于session的清除有几种方案:
(1)可以在凌晨人最少的时候,对memcached做一次清空。(简单)
(2)保存在缓存中的对象设置一个失效时间,通过过滤器获取sessionId的值,定期刷新memcached中的对象.长时间没有被刷新的对象自动被清除.(相对复杂,消耗资源)
提出问题:为啥要有双缓冲队列?
引用09年9月《程序员》上的一句话:双缓冲队列就是冲着同步/互斥的开销来的。我们知道,在多个线程并发访问同一个资源的时候,需要特别注意线程的同步问题。稍稍不注意,哦活,程序结果不正确了。最经典的就是“银行取钱”的例子,想想,都跟现金挂上钩了,看来这真不容忽视。
今天我们要谈的不是如何去给资源加锁解锁来解决同步问题,今天的重点在于,如何将线程同步的开销降低到我们力所能及的程度。如果你觉得,你可以通过增加硬件资源来弥补程序开销,那么,你将不可能成为一个优秀的程序员。
进入正题,先引入一个例子,两个实体:一个是玩具工厂,它的工作就是不停地生产玩具;另外一个实体就是小孩,它的工作就是不停地从工厂拿玩具。小孩不可能直接到工厂去“拿”玩具吧?呵呵,妈妈是绝对不会放心的。所以,我们有一个“搬运工”,搬运工自然要具备“存放”的功能,不然他怎么将玩具带给小孩呢,是吧。所以,我们先将搬运工定义为一个List,用来存放工厂生产出来的玩具。
代码如下
玩具类,定义一个玩具实体
public class Toy {
private String name;
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
}
接下来是玩具工厂,它得“不停地”生产,所以,把它设计成一个线程类
玩具工厂,将玩具对象,放到list中
public class Factory extends Thread{
public void run(){
while(true){
Toy t = new Toy ();
t.setName("玩具");
synchronized (Tools.lT){
Tools.lT.add(t);
}
try {
Thread.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
}
注意到,在上面这段代码当中,必须得用synchronized (Tools.lT)将Tools.lT给加锁。不然会出现线程同步问题(开销就在这里)。
再接下来,看看小孩是怎么“玩”玩具的:
小孩类,从list中取出玩具对象
public class Kid extends Thread {
long time1 = System.currentTimeMillis();
int count = 0;
public void run() {
while(true){
synchronized(Tools.lT){
if(Tools.lT.size()!=0)
Tools.lT.remove(0);
}
count++;
if(count==100000){
javax.swing.JOptionPane.showMessageDialog(null, "用时间: "+(System.currentTimeMillis()-time1));
System.exit(0);
}
}
}
}
当list不为空的时候,将list中的玩具对象,一个一个取出来,玩完!这个小孩可真够厉害的,呵呵。可以想象为,该类的工作就是不停地向list中取出玩具对象。OK,再来编写方法,如下
主方法
public class MainTest {
/**
* @param args
*/
public static void main(String[] args) {
Factory f = new Factory();
f.start();
Kid k = new Kid();
k.start();
}
}
最后是Tools类,他里面有个静态的List对象:
Tools类
public class Tools {
public static List<Toy>lT = new ArrayList<Toy>(10000);
}
这样,我们运行一下主方法,看看我们这位“天才”玩完100000个玩具,得花销多少的时间。
好,31毫秒。
这是我们的第一种解决方法,下面再来看第二种解决方法:
其实我们在Factory类和Kid类中都进行了同步处理,这样一来,浪费了很多时间,到底是不是这样的呢?我们可不可以直接用一个不用处理线程同步的容器来放Toy类对象呢?这样以来是不是就可以节省很多开销了?这个想法是有道理的,但是,事实是不是这样的呢?马上实践!
代码就不具体贴出来了,只是我们在Tools类中用到的是一个如下的对象
Public static LinkedBlockingQueue<Toy> lT= new LinkedBlockingQueue<Toy>(1000);
对,阻塞队列,这样我们就只管往里面取,从里面拿了,不用自己考虑同步问题,Factory类和Kid类中也不同特意去加关键字进行同步了。
那么这种方案的结果是多少呢?同样是100000个玩具,看结果
哦哦,变成16毫秒了,着实提高了不少效果呢。看来,在处理同步的时候挤时间,是有发展空间的,呵呵。
等等,有人要发话了,你在这磨叽了半天,还是没有说什么是双缓冲啊,对!有了前面的两种方案,我们再来看看“双缓冲队列”。
所谓双缓冲队列,自然起码要有两个队列吧,呵呵,在这个例子中,我们可以设计两个List来存放工厂生产出来的玩具对象。
下面分析一下:
两个List,一个用来存,一个用来取。有点迷糊?就是有一个listP从工厂那里得到玩具对象,另外一个listT就专门把它得到的玩具对象送去给 Kid类处理。当listT变成空的了以后,再将listP中在这段时间内取到的所有玩具对象放到listT中,好,这完了之后,他们两个就又各自干各自的去了:listP再去取,listT再去送。这样是不是就减少了很多次的线程同步呢?至少,在它们交换之前,listP是完全被工厂类线程占有,listT是完全被Kid类线程占有的,不用处理同步。只有在listT放完了,没得给了,再去跟ListP换过来,这个时候就要处理同步了。
跟实际联系一下,有两个搬运工A,B,A在工厂,专门从工厂取玩具;B在小孩子身边,专门送玩具给小孩玩。当B身上没有玩具了,自然要回A那里,把A身上的玩具全部拿过来,再来送给小孩玩。在A还有玩具的时候,A和B是在各自的线程里被处理的,即A在拿,B在给。不用担心同步问题。
这样以来,处理同步问题的次数是不是大大减少了呢?没错,就是这样的。那么怎么跟代码结合呢?
我们要设计一个监视线程,监视listP是不是空了,要是空了,把它同步起来,把listT也同步起来,让他们交换。完了就各自干各自的了。
我们来看看这个监视类:
public class DoubleBufferList {
private List<Object> lP;
private List<Object> lT;
private int gap;
/**
* 构造方法
*
* @param lP
* 用来存放对象的队列
* @param lT
* 用来取对象的队列
* @param gap
* 交换的间隔
*/
public DoubleBufferList(List lP, List lT, int gap) {
this.lP = lP;
this.lT = lT;
this.gap = gap;
}
public void check() {
Runnable runner = new Runnable() {
public void run() {
while (true) {
if (lT.size() == 0) {
synchronized (lT) {
synchronized (lP) {
lT.addAll(lP);
}
lP.clear();
}
}
try {
Thread.sleep(gap);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
};
Thread thread = new Thread(runner);
thread.start();
}
}
这个类中的线程方法就是用来交换的,目的就是为了减少处理同步的次数。这种方案中,Facotry类和Kid类跟前面单个List的情况差不多,就不再给出了。只是有一点要注意,Facory类中将玩具对象是放到了lP中,而Kid类中,也只是从lT中去取对象。看看Tools类中,多了一个变量:
Tools类,声明两个队列
public static List<Toy>lT = new ArrayList<Toy>(10000);
public static List<Toy>lP = new ArrayList<Toy>(10000);
同样是让我们的“天才”玩完100000个玩具,来看看运行需要的时间:
哈哈,似乎跟我们上面的第二种方案,单阻塞队列,没有太大的差异。怎么解释呢?
不用着急,来,我将额定的玩具量后多加个“0”,让他玩完1000000个!改一下单阻塞队列方案的输出结果,给他们一个标记。再来看看结果:
效果出来了吧,我们再加大量,让他们同时处理10000000个玩具对象:
充分说明,使用双缓冲队列,比单缓冲阻塞队列的效果要好,更别说单缓冲队列了。
总结:
从上面的分析,我们可以得知,在处理线程同步的时候,是要花费我们的时间的,虽然在有些时候,这样的花费是我们可以接受的,但是在很多情况下,如果我们能注意到这样的浪费,并且及时地完善我们的程序,这样可以更大限度地提高我们程序的运行效率。尤其是在大的程序里面,这样的效果体现得更明显。而往往越大的系统,对性能的要求也就越高。
android在处理一写图片资源的时候,会进行一些类型的转换,现在有空整理一下:
1、Drawable → Bitmap 的简单方法
((BitmapDrawable)res.getDrawable(R.drawable.youricon)).getBitmap();
2、Drawable → Bitmap
Java代码
public static Bitmap drawableToBitmap(Drawable drawable) {
Bitmap bitmap = Bitmap
.createBitmap(
drawable.getIntrinsicWidth(),
drawable.getIntrinsicHeight(),
drawable.getOpacity() != PixelFormat.OPAQUE ? Bitmap.Config.ARGB_8888
: Bitmap.Config.RGB_565);
Canvas canvas = new Canvas(bitmap);
//canvas.setBitmap(bitmap);
drawable.setBounds(0, 0, drawable.getIntrinsicWidth(), drawable.getIntrinsicHeight());
drawable.draw(canvas);
return bitmap;
}
3.Bitmap→Drawable 的简单方法
BitmapDrawable bitmapDrawable = (BitmapDrawable)bitmap;
Drawable drawable = (Drawable)bitmapDrawable;
Bitmap bitmap = new Bitmap (...);
Drawable drawable = new BitmapDrawable(bitmap);
3、从资源中获取Bitmap
Java代码
Resources res=getResources();
Bitmap bmp=BitmapFactory.decodeResource(res, R.drawable.pic);
4、Bitmap → byte[]
Java代码
private byte[] Bitmap2Bytes(Bitmap bm){
ByteArrayOutputStream baos = new ByteArrayOutputStream();
bm.compress(Bitmap.CompressFormat.PNG, 100, baos);
return baos.toByteArray();
}
5、 byte[] → Bitmap
Java代码
private Bitmap Bytes2Bimap(byte[] b){
if(b.length!=0){
return BitmapFactory.decodeByteArray(b, 0, b.length);
}
else {
return null;
}
}
修改TabHost默认样式
TabHost是Android提供的一个容器组件,利用它可以轻松地实现TAB界面,如下图所示:
但很多时候,默认的TAB样式并不符合软件的整体风格,这时候该怎么办呢?其实,我们可以编写XML对其样式进行修改。下面修改后的效果图:
1. TabHost布局文件 main.xml
<TabHost
android:id="@+id/tabhost"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<LinearLayout
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<TabWidget
android:id="@android:id/tabs"
android:layout_width="fill_parent"
android:layout_height="30dip"
android:background="#a0a0a0"
android:layout_weight="0" />
<FrameLayout
android:id="@android:id/tabcontent"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight="1">
<ListView
android:id="@+id/user_list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:divider="@drawable/divider_line"
android:cacheColorHint="#00000000" />
<ListView
android:id="@+id/article_list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:divider="@drawable/divider_line"
android:cacheColorHint="#00000000" />
<ListView
android:id="@+id/feed_list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:divider="@drawable/divider_line"
android:cacheColorHint="#00000000" />
<ListView
android:id="@+id/book_list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:divider="@drawable/divider_line"
android:cacheColorHint="#00000000" />
</FrameLayout>
</LinearLayout>
</TabHost>
FrameLayout里有四个ListView 分别对应用户、文章、频道、图书。
TabWidget和FrameLayout的ID不能自己定义修改。
2. Activity后台代码
RelativeLayout articleTab = (RelativeLayout) LayoutInflater.from(this).inflate(R.layout.minitab, null);
TextView articleTabLabel = (TextView) articleTab.findViewById(R.id.tab_label);
articleTabLabel.setText("文章");
RelativeLayout feedTab = (RelativeLayout) LayoutInflater.from(this).inflate(R.layout.minitab, null);
TextView feedTabLabel = (TextView) feedTab.findViewById(R.id.tab_label);
feedTabLabel.setText("频道");
RelativeLayout bookTab = (RelativeLayout) LayoutInflater.from(this).inflate(R.layout.minitab, null);
TextView bookTabLabel = (TextView) bookTab.findViewById(R.id.tab_label);
bookTabLabel.setText("图书");
TabHost tabHost = (TabHost) findViewById(R.id.tabhost);
tabHost.setup();
tabHost.addTab(tabHost.newTabSpec("user").setIndicator(userTab).setContent(R.id.user_list));
tabHost.addTab(tabHost.newTabSpec("article").setIndicator(articleTab).setContent(R.id.article_list));
tabHost.addTab(tabHost.newTabSpec("feed").setIndicator(feedTab).setContent(R.id.feed_list));
tabHost.addTab(tabHost.newTabSpec("book").setIndicator(bookTab).setContent(R.id.book_list));
|
TabHost创建出来以后,必须先setup一下,tabHost.setup();
setIndicator方法设置的View其实就对应了TAB中的一个个选项卡,它们都是通过一个叫minitab的布局文件inflate出来的
3. 选项卡布局文件minitab.xml
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:paddingLeft="5dip"
android:paddingRight="5dip">
<TextView android:id="@+id/tab_label"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:gravity="center"
android:textColor="#000000"
android:textStyle="bold"
android:background="@drawable/minitab" />
</RelativeLayout>
drawable/minitab是一个selector,指定了Tab选项卡的背景颜色。
4. selector文件 minitab.xml
<?xml version="1.0" encoding="utf-8"?>
<selector
xmlns:android="http://schemas.android.com/apk/res/android"
>
<item
android:state_selected="false"
android:drawable="@drawable/minitab_unselected"
>
</item>
<item
android:state_selected="true"
android:drawable="@drawable/minitab_default"
>
</item>
</selector>
minitab_unselected是一浅蓝色背景图片
minitab_default是一白色背景图片
摘 要 Java规则引擎是一种嵌入在Java程序中的组件,它的任务是把当前提交给引擎的Java数据对象与加载在引擎中的业务规则进行测试和比对,激活那些符合当前数据状态下的业务规则,根据业务规则中声明的执行逻辑,触发应用程序中对应的操作。
引言
目前,Java社区推动并发展了一种引人注目的新技术——Java规则引擎(Rule Engine)。利用它就可以在应用系统中分离商业决策者的商业决策逻辑和应用开发者的技术决策,并把这些商业决策放在中心数据库或其他统一的地方,让它们能在运行时可以动态地管理和修改,从而为企业保持灵活性和竞争力提供有效的技术支持。
规则引擎的原理
1、基于规则的专家系统(RBES)简介
Java规则引擎起源于基于规则的专家系统,而基于规则的专家系统又是专家系统的其中一个分支。专家系统属于人工智能的范畴,它模仿人类的推理方式,使用试探性的方法进行推理,并使用人类能理解的术语解释和证明它的推理结论。为了更深入地了解Java规则引擎,下面简要地介绍基于规则的专家系统。RBES包括三部分:Rule Base(knowledge base)、Working Memory(fact base)和Inference Engine。它们的结构如下系统所示:
图1 基于规则的专家系统构成
如图1所示,推理引擎包括三部分:模式匹配器(Pattern Matcher)、议程(Agenda)和执行引擎(Execution Engine)。推理引擎通过决定哪些规则满足事实或目标,并授予规则优先级,满足事实或目标的规则被加入议程。模式匹配器决定选择执行哪个规则,何时执行规则;议程管理模式匹配器挑选出来的规则的执行次序;执行引擎负责执行规则和其他动作。
和人类的思维相对应,推理引擎存在两者推理方式:演绎法(Forward-Chaining)和归纳法(Backward-Chaining)。演绎法从一个初始的事实出发,不断地应用规则得出结论(或执行指定的动作)。而归纳法则是根据假设,不断地寻找符合假设的事实。Rete算法是目前效率最高的一个Forward-Chaining推理算法,许多Java规则引擎都是基于Rete算法来进行推理计算的。
推理引擎的推理步骤如下:
(1)将初始数据(fact)输入Working Memory。
(2)使用Pattern Matcher比较规则库(rule base)中的规则(rule)和数据(fact)。
(3)如果执行规则存在冲突(conflict),即同时激活了多个规则,将冲突的规则放入冲突集合。
(4)解决冲突,将激活的规则按顺序放入Agenda。
(5)使用执行引擎执行Agenda中的规则。重复步骤2至5,直到执行完毕所有Agenda中的规则。
上述即是规则引擎的原始架构,Java规则引擎就是从这一原始架构演变而来的。
2、规则引擎相关构件
规则引擎是一种根据规则中包含的指定过滤条件,判断其能否匹配运行时刻的实时条件来执行规则中所规定的动作的引擎。与规则引擎相关的有四个基本概念,为更好地理解规则引擎的工作原理,下面将对这些概念进行逐一介绍。
1)信息元(Information Unit)
信息元是规则引擎的基本建筑块,它是一个包含了特定事件的所有信息的对象。这些信息包括:消息、产生事件的应用程序标识、事件产生事件、信息元类型、相关规则集、通用方法、通用属性以及一些系统相关信息等等。
2)信息服务(Information Services)
信息服务产生信息元对象。每个信息服务产生它自己类型相对应的信息元对象。即特定信息服务根据信息元所产生每个信息元对象有相同的格式,但可以有不同的属性和规则集。需要注意的是,在一台机器上可以运行许多不同的信息服务,还可以运行同一信息服务的不同实例。但无论如何,每个信息服务只产生它自己类型相对应的信息元。
3)规则集(Rule Set)
顾名思义,规则集就是许多规则的集合。每条规则包含一个条件过滤器和多个动作。一个条件过滤器可以包含多个过滤条件。条件过滤器是多个布尔表达式的组合,其组合结果仍然是一个布尔类型的。在程序运行时,动作将会在条件过滤器值为真的情况下执行。除了一般的执行动作,还有三类比较特别的动作,它们分别是:放弃动作(Discard Action)、包含动作(Include Action)和使信息元对象内容持久化的动作。前两种动作类型的区别将在2.3规则引擎工作机制小节介绍。
4)队列管理器(Queue Manager)
队列管理器用来管理来自不同信息服务的信息元对象的队列。
下面将研究规则引擎的这些相关构件是如何协同工作的。
如图2所示,处理过程分为四个阶段进行:信息服务接受事件并将其转化为信息元,然后这些信息元被传给队列管理器,最后规则引擎接收这些信息元并应用它们自身携带的规则加以执行,直到队列管理器中不再有信息元。
图2 处理过程协作图
3、规则引擎的工作机制
下面专门研究规则引擎的内部处理过程。如图3所示,规则引擎从队列管理器中依次接收信息元,然后依规则的定义顺序检查信息元所带规则集中的规则。如图所示,规则引擎检查第一个规则并对其条件过滤器求值,如果值为假,所有与此规则相关的动作皆被忽略并继续执行下一条规则。如果第二条规则的过滤器值为真,所有与此规则相关的动作皆依定义顺序执行,执行完毕继续下一条规则。该信息元中的所有规则执行完毕后,信息元将被销毁,然后从队列管理器接收下一个信息元。在这个过程中并未考虑两个特殊动作:放弃动作(Discard Action)和包含动作(Include Action)。放弃动作如果被执行,将会跳过其所在信息元中接下来的所有规则,并销毁所在信息元,规则引擎继续接收队列管理器中的下一个信息元。包含动作其实就是动作中包含其它现存规则集的动作。包含动作如果被执行,规则引擎将暂停并进入被包含的规则集,执行完毕后,规则引擎还会返回原来暂停的地方继续执行。这一过程将递归进行。
图3 规则引擎工作机制
Java规则引擎的工作机制与上述规则引擎机制十分类似,只不过对上述概念进行了重新包装组合。Java规则引擎对提交给引擎的Java数据对象进行检索,根据这些对象的当前属性值和它们之间的关系,从加载到引擎的规则集中发现符合条件的规则,创建这些规则的执行实例。这些实例将在引擎接到执行指令时、依照某种优先序依次执行。一般来讲,Java规则引擎内部由下面几个部分构成:工作内存(Working Memory)即工作区,用于存放被引擎引用的数据对象集合;规则执行队列,用于存放被激活的规则执行实例;静态规则区,用于存放所有被加载的业务规则,这些规则将按照某种数据结构组织,当工作区中的数据发生改变后,引擎需要迅速根据工作区中的对象现状,调整规则执行队列中的规则执行实例。Java规则引擎的结构示意图如图4所示。
图4 Java规则引擎工作机制
当引擎执行时,会根据规则执行队列中的优先顺序逐条执行规则执行实例,由于规则的执行部分可能会改变工作区的数据对象,从而会使队列中的某些规则执行实例因为条件改变而失效,必须从队列中撤销,也可能会激活原来不满足条件的规则,生成新的规则执行实例进入队列。于是就产生了一种“动态”的规则执行链,形成规则的推理机制。这种规则的“链式”反应完全是由工作区中的数据驱动的。
任何一个规则引擎都需要很好地解决规则的推理机制和规则条件匹配的效率问题。规则条件匹配的效率决定了引擎的性能,引擎需要迅速测试工作区中的数据对象,从加载的规则集中发现符合条件的规则,生成规则执行实例。1982年美国卡耐基·梅隆大学的Charles L. Forgy发明了一种叫Rete算法,很好地解决了这方面的问题。目前世界顶尖的商用业务规则引擎产品基本上都使用Rete算法。
Java规则引擎API——JSR-94
为了使规则引擎技术标准化,Java社区制定了Java规则引擎API(JSR94)规范。它为Java平台访问规则引擎定义了一些简单的API。
Java规则引擎API在javax.rules包中定义,是访问规则引擎的标准企业级API。Java规则引擎API允许客户程序使用统一的方式和不同厂商的规则引擎产品交互,就如同使用JDBC编写独立于厂商访问不同的数据库产品一样。Java规则引擎API包括创建和管理规则集合的机制,在工作区中添加,删除和修改对象的机制,以及初始化,重置和执行规则引擎的机制。
1、Java规则引擎API体系结构
Java规则引擎API主要由两大类API组成: 规则管理API(The Rules Administrator API)和运行时客户API(The Runtime Client API)。
1)规则管理API
规则管理API在javax.rules.admin中定义,包含装载规则以及与规则对应的动作(执行集 execution sets)以及实例化规则引擎。规则可以从外部资源中装载,比如URI,Input streams, XML streams和readers等等。同时规则管理API还提供了注册和取消注册执行集以及对执行集进行维护的机制。使用admin包定义规则有助于对客户访问运行规则进行控制管理,它通过在执行集上定义许可权使得未经授权的用户无法访问受控规则。
规则管理API使用类RuleServiceProvider来获得规则管理器(RuleAdministrator)接口的实例。该接口提供方法注册和取消注册执行集。规则管理器提供了本地和远程的RuleExecutionSetProvider,它负责创建规则执行集(RuleExecutionSet)。规则执行集可以从如XML streams, binary streams等来源中创建。这些数据来源及其内容经汇集和序列化后传送到远程的运行规则引擎的服务器上。在大多数应用程序中,远程规则引擎或远程规则数据来源的情况并不多。为了避免这些情况中的网络开销,API规定了可以从运行在同一JVM中规则库中读取数据的本地RuleExecutionSetProvider。规则执行集接口除了拥有能够获得有关规则执行集的方法,还有能够检索在规则执行集中定义的所有规则对象。这使得客户能够知道规则集中的规则对象并且按照自己需要来使用它们。
2)运行时客户API
运行时API在javax.rules包中定义,为规则引擎用户运行规则获得结果提供了类和方法。运行时客户只能访问那些使用规则管理API注册过的规则,运行时API帮助用户获得规则会话,并在这个会话中执行规则。
运行时API提供了对厂商规则引擎API的访问方法,这类似于JDBC。类RuleServiceProvider提供了对具体规则引擎实现的运行时和管理API的访问,规则引擎厂商通过该类将其规则引擎实现提供给客户,并获得RuleServiceProvider唯一标识规则引擎的URL。此URL的标准用法是使用类似于“com.mycompany.myrulesengine.rules.RuleServiceProvider”这样的Internet域名空间,这保证了访问URL的唯一性。类RuleServiceProvider内部实现了规则管理和运行时访问所需的接口。所有的RuleServiceProvider要想被客户所访问都必须用RuleServiceProviderManager进行注册,注册方式类似于JDBC API的DriverManager和Driver。
运行时接口是运行时API的关键部分。运行时接口提供了用于创建规则会话(RuleSession)的方法,规则会话是用来运行规则的。运行时API同时也提供了访问在service provider注册过的所有规则执行集(RuleExecutionSets)。规则会话接口定义了客户使用的会话的类型,客户根据自己运行规则的方式可以选择使用有状态会话或者无状态会话。无状态会话的工作方式就像一个无状态会话bean。客户可以发送单个输入对象或一列对象来获得输出对象。当客户需要一个与规则引擎间的专用会话时,有状态会话就很有用。输入的对象通过addObject() 方法可以加入到会话当中。同一个会话当中可以加入多个对象。对话中已有对象可以通过使用updateObject()方法得到更新。只要客户与规则引擎间的会话依然存在,会话中的对象就不会丢失。
RuleExecutionSetMetaData接口提供给客户让其查找规则执行集的元数据(metadata)。元数据通过规则会话接口(RuleSession Interface)提供给用户。
2、Java规则引擎API安全问题
规则引擎API将管理API和运行时API加以分开,从而为这些包提供了较好粒度的安全控制。规则引擎API并没有提供明显的安全机制,它可以和J2EE规范中定义的标准安全API联合使用。安全可以由以下机制提供,如Java 认证和授权服务 (JAAS),Java加密扩展(JCE),Java安全套接字扩展(JSSE),或者其它定制的安全API。使用JAAS可以定义规则执行集的许可权限,从而只有授权用户才能访问。
3、异常与日志
规则引擎API定义了javax.rules.RuleException作为规则引擎异常层次的根类。所有其它异常都继承于这个根类。规则引擎中定义的异常都是受控制的异常(checked exceptions),所以捕获异常的任务就交给了规则引擎。规则引擎API没有提供明确的日志机制,但是它建议将Java Logging API用于规则引擎API。
JSR 94 为规则引擎提供了公用标准API,仅仅为实现规则管理API和运行时API提供了指导规范,并没有提供规则和动作该如何定义以及该用什么语言定义规则,也没有为规则引擎如何读和评价规则提供技术性指导。
结束语
规则引擎技术为管理多变的业务逻辑提供了一种解决方案。规则引擎既可以管理应用层的业务逻辑又可以使表示层的页面流程可订制。这就给软件架构师设计大型信息系统提供了一项新的选择。而Java规则引擎在Java社区制定标准规范以后必将获得更大发展。
Drools规则引擎初学入门实例HelloWorld
(1)下载eclipse(www.eclipse.org),如果是一般的java开发,下载Eclipse IDE for Java Developers就行了,解压后即可使用;
(2)下载Drools(http://jboss.org/drools/downloads.html),目前最新版本是Drools 4.0.7 Binaries,下载后解压即可;
(3)之后下载eclipse的Drools插件,版本跟eclipse对应,目前有Drools 4.0.7 Eclipse 3.2 Workbench和Drools 4.0.7 Eclipse Europa 3.3 Workbench两种。
Drools插件解压后,将里面的org.drools.eclipse_4.0.7.jar文件copy到eclipse的plugins目录中,重启eclipse,在工具栏可以看到一个 图标,这就是Drools的工作台,之后就可通过这个按钮创建Drools resource文件了。
(4)开始Hello World
Java文件:DroolsTest.java
package com.sample;
import java.io.InputStreamReader;
import java.io.Reader;
import org.drools.RuleBase;
import org.drools.RuleBaseFactory;
import org.drools.WorkingMemory;
import org.drools.compiler.PackageBuilder;
import org.drools.rule.Package;
/**
* This is a sample file to launch a rule package from a rule source file.
*/
public class DroolsTest {
public static final void main(String[] args) {
try {
//load up the rulebase
RuleBase ruleBase = readRule();
WorkingMemory workingMemory = ruleBase.newStatefulSession();
//go !
Message message = new Message();
message.setMessage( "Hello World" );
message.setStatus( Message.HELLO );
workingMemory.insert( message );
workingMemory.fireAllRules();
} catch (Throwable t) {
t.printStackTrace();
}
}
/**
* Please note that this is the "low level" rule assembly API.
*/
private static RuleBase readRule() throws Exception {
//read in the source
Reader source = new InputStreamReader( DroolsTest.class.getResourceAsStream( "/Sample.drl" ) );
//optionally read in the DSL (if you are using it).
//Reader dsl = new InputStreamReader( DroolsTest.class.getResourceAsStream( "/mylang.dsl" ) );
//Use package builder to build up a rule package.
//An alternative lower level class called "DrlParser" can also be used...
PackageBuilder builder = new PackageBuilder();
//this wil parse and compile in one step
//NOTE: There are 2 methods here, the one argument one is for normal DRL.
builder.addPackageFromDrl( source );
//Use the following instead of above if you are using a DSL:
//builder.addPackageFromDrl( source, dsl );
//get the compiled package (which is serializable)
Package pkg = builder.getPackage();
//add the package to a rulebase (deploy the rule package).
RuleBase ruleBase = RuleBaseFactory.newRuleBase();
ruleBase.addPackage( pkg );
return ruleBase;
}
public static class Message {
public static final int HELLO = 0;
public static final int GOODBYE = 1;
public static final int GAME_OVER = 2;
private String message;
private int status;
public String getMessage() {
return this.message;
}
public void setMessage(String message) {
this.message = message;
}
public int getStatus() {
return this.status;
}
public void setStatus( int status ) {
this.status = status;
}
}
}
选择插件Drools按钮里的"New Rule resource",建立规则(rule)文件:Sample.drl
package com.sample
import com.sample.DroolsTest.Message;
rule "Hello World"
when
m : Message( status == Message.HELLO, message : message )
then
System.out.println( message );
m.setMessage( "Goodbye cruel world" );
m.setStatus( Message.GOODBYE );
update( m );
end
rule "GoodBye"
no-loop true
when
m : Message( status == Message.GOODBYE, message : message )
then
System.out.println( message );
m.setStatus(Message.GAME_OVER);
m.setMessage("game over now!");
update( m );
end
rule "game over"
when
m : Message( status == Message.GAME_OVER)
then
System.out.println( m.getMessage() );
end
注意:文件要放在相应的包里,然后编译—执行,当时出现了错误,查找资料,还需要加载包,包括:
<1> Drools 4.0.7目录下的drools-core-4.0.7.jar,drools-compiler-4.0.7.jar
<2> Drools 4.0.7\lib目录下的antlr-runtime-3.0.jar,mvel-1.3.1-java1.4.jar
<3>以及eclipse\plugins目录下的org.eclipse.jdt.core_3.2.3.v_686_R32x.jar(不同版本,包名会稍有不同)。
重新运行,应该就不会有错了。执行结果如下:
Hello World
Goodbye cruel world
game over now!
Oracle JOB 间隔时间详解
INTERVAL参数设置:
每天运行一次 'SYSDATE + 1'
每小时运行一次 'SYSDATE + 1/24'
每10分钟运行一次 'SYSDATE + 10/(60*24)'
每30秒运行一次 'SYSDATE + 30/(60*24*60)'
每隔一星期运行一次 'SYSDATE + 7'
每个月最后一天运行一次 'TRUNC(LAST_DAY(ADD_MONTHS(SYSDATE,1))) + 23/24'
每年1月1号零时 'TRUNC(LAST_DAY(TO_DATE(EXTRACT(YEAR from SYSDATE)||'12'||'01','YYYY-MM-DD'))+1)'
每天午夜12点 'TRUNC(SYSDATE + 1)'
每天早上8点30分 'TRUNC(SYSDATE + 1) + (8*60+30)/(24*60)'
每星期二中午12点 'NEXT_DAY(TRUNC(SYSDATE ), ''TUESDAY'' ) + 12/24'
每个月第一天的午夜12点 'TRUNC(LAST_DAY(SYSDATE ) + 1)'
每个月最后一天的23点 'TRUNC (LAST_DAY (SYSDATE)) + 23 / 24'
每个季度最后一天的晚上11点 'TRUNC(ADD_MONTHS(SYSDATE + 2/24, 3 ), 'Q' ) -1/24'
每星期六和日早上6点10分 'TRUNC(LEAST(NEXT_DAY(SYSDATE, ''S ......
- 堆大小设置
JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
- java -Xmx3550m -Xms3550m -Xmn2g -Xss128k
-Xmx3550m:设置JVM最大可用内存为3550M。
-Xms3550m:设置JVM促使内存为3550m。此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。
-Xmn2g:设置年轻代大小为2G。整个JVM内存大小=年轻代大小 + 年老代大小 + 持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。
-Xss128k:设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。更具应用的线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。
- java -Xmx3550m -Xms3550m -Xss128k -XX:NewRatio=4 -XX:SurvivorRatio=4 -XX:MaxPermSize=16m -XX:MaxTenuringThreshold=0
-XX:NewRatio=4:设置年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。设置为4,则年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5
-XX:SurvivorRatio=4:设置年轻代中Eden区与Survivor区的大小比值。设置为4,则两个Survivor区与一个Eden区的比值为2:4,一个Survivor区占整个年轻代的1/6
-XX:MaxPermSize=16m:设置持久代大小为16m。
-XX:MaxTenuringThreshold=0:设置垃圾最大年龄。如果设置为0的话,则年轻代对象不经过Survivor区,直接进入年老代。对于年老代比较多的应用,可以提高效率。如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行多次复制,这样可以增加对象再年轻代的存活时间,增加在年轻代即被回收的概论。
- 回收器选择
JVM给了三种选择:串行收集器、并行收集器、并发收集器,但是串行收集器只适用于小数据量的情况,所以这里的选择主要针对并行收集器和并发收集器。默认情况下,JDK5.0以前都是使用串行收集器,如果想使用其他收集器需要在启动时加入相应参数。JDK5.0以后,JVM会根据当前系统配置进行判断。
- 吞吐量优先的并行收集器
如上文所述,并行收集器主要以到达一定的吞吐量为目标,适用于科学技术和后台处理等。
典型配置:
- java -Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20
-XX:+UseParallelGC:选择垃圾收集器为并行收集器。此配置仅对年轻代有效。即上述配置下,年轻代使用并发收集,而年老代仍旧使用串行收集。
-XX:ParallelGCThreads=20:配置并行收集器的线程数,即:同时多少个线程一起进行垃圾回收。此值最好配置与处理器数目相等。
- java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20 -XX:+UseParallelOldGC
-XX:+UseParallelOldGC:配置年老代垃圾收集方式为并行收集。JDK6.0支持对年老代并行收集。
- java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100
-XX:MaxGCPauseMillis=100:设置每次年轻代垃圾回收的最长时间,如果无法满足此时间,JVM会自动调整年轻代大小,以满足此值。
- java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100 -XX:+UseAdaptiveSizePolicy
-XX:+UseAdaptiveSizePolicy:设置此选项后,并行收集器会自动选择年轻代区大小和相应的Survivor区比例,以达到目标系统规定的最低相应时间或者收集频率等,此值建议使用并行收集器时,一直打开。
- 响应时间优先的并发收集器
如上文所述,并发收集器主要是保证系统的响应时间,减少垃圾收集时的停顿时间。适用于应用服务器、电信领域等。
典型配置:
- java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC:设置年老代为并发收集。测试中配置这个以后,-XX:NewRatio=4的配置失效了,原因不明。所以,此时年轻代大小最好用-Xmn设置。
-XX:+UseParNewGC:设置年轻代为并行收集。可与CMS收集同时使用。JDK5.0以上,JVM会根据系统配置自行设置,所以无需再设置此值。
- java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseConcMarkSweepGC -XX:CMSFullGCsBeforeCompaction=5 -XX:+UseCMSCompactAtFullCollection
-XX:CMSFullGCsBeforeCompaction:由于并发收集器不对内存空间进行压缩、整理,所以运行一段时间以后会产生“碎片”,使得运行效率降低。此值设置运行多少次GC以后对内存空间进行压缩、整理。
-XX:+UseCMSCompactAtFullCollection:打开对年老代的压缩。可能会影响性能,但是可以消除碎片
- 辅助信息
JVM提供了大量命令行参数,打印信息,供调试使用。主要有以下一些:
- -XX:+PrintGC
输出形式:[GC 118250K->113543K(130112K), 0.0094143 secs]
[Full GC 121376K->10414K(130112K), 0.0650971 secs]
- -XX:+PrintGCDetails
输出形式:[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs]
[GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured: 112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs]
- -XX:+PrintGCTimeStamps -XX:+PrintGC:PrintGCTimeStamps可与上面两个混合使用
输出形式:11.851: [GC 98328K->93620K(130112K), 0.0082960 secs]
- -XX:+PrintGCApplicationConcurrentTime:打印每次垃圾回收前,程序未中断的执行时间。可与上面混合使用
输出形式:Application time: 0.5291524 seconds
- -XX:+PrintGCApplicationStoppedTime:打印垃圾回收期间程序暂停的时间。可与上面混合使用
输出形式:Total time for which application threads were stopped: 0.0468229 seconds
- -XX:PrintHeapAtGC:打印GC前后的详细堆栈信息
输出形式:
34.702: [GC {Heap before gc invocations=7:
def new generation total 55296K, used 52568K [0x1ebd0000, 0x227d0000, 0x227d0000)
eden space 49152K, 99% used [0x1ebd0000, 0x21bce430, 0x21bd0000)
from space 6144K, 55% used [0x221d0000, 0x22527e10, 0x227d0000)
to space 6144K, 0% used [0x21bd0000, 0x21bd0000, 0x221d0000)
tenured generation total 69632K, used 2696K [0x227d0000, 0x26bd0000, 0x26bd0000)
the space 69632K, 3% used [0x227d0000, 0x22a720f8, 0x22a72200, 0x26bd0000)
compacting perm gen total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)
the space 8192K, 35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)
ro space 8192K, 66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)
rw space 12288K, 46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)
34.735: [DefNew: 52568K->3433K(55296K), 0.0072126 secs] 55264K->6615K(124928K)Heap after gc invocations=8:
def new generation total 55296K, used 3433K [0x1ebd0000, 0x227d0000, 0x227d0000)
eden space 49152K, 0% used [0x1ebd0000, 0x1ebd0000, 0x21bd0000)
from space 6144K, 55% used [0x21bd0000, 0x21f2a5e8, 0x221d0000)
to space 6144K, 0% used [0x221d0000, 0x221d0000, 0x227d0000)
tenured generation total 69632K, used 3182K [0x227d0000, 0x26bd0000, 0x26bd0000)
the space 69632K, 4% used [0x227d0000, 0x22aeb958, 0x22aeba00, 0x26bd0000)
compacting perm gen total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)
the space 8192K, 35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)
ro space 8192K, 66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)
rw space 12288K, 46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)
}
, 0.0757599 secs]
- -Xloggc:filename:与上面几个配合使用,把相关日志信息记录到文件以便分析。
- 常见配置汇总
- 堆设置
- -Xms:初始堆大小
- -Xmx:最大堆大小
- -XX:NewSize=n:设置年轻代大小
- -XX:NewRatio=n:设置年轻代和年老代的比值。如:为3,表示年轻代与年老代比值为1:3,年轻代占整个年轻代年老代和的1/4
- -XX:SurvivorRatio=n:年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示Eden:Survivor=3:2,一个Survivor区占整个年轻代的1/5
- -XX:MaxPermSize=n:设置持久代大小
- 收集器设置
- -XX:+UseSerialGC:设置串行收集器
- -XX:+UseParallelGC:设置并行收集器
- -XX:+UseParalledlOldGC:设置并行年老代收集器
- -XX:+UseConcMarkSweepGC:设置并发收集器
- 垃圾回收统计信息
- -XX:+PrintGC
- -XX:+PrintGCDetails
- -XX:+PrintGCTimeStamps
- -Xloggc:filename
- 并行收集器设置
- -XX:ParallelGCThreads=n:设置并行收集器收集时使用的CPU数。并行收集线程数。
- -XX:MaxGCPauseMillis=n:设置并行收集最大暂停时间
- -XX:GCTimeRatio=n:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)
- 并发收集器设置
- -XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况。
- -XX:ParallelGCThreads=n:设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。
四、调优总结
- 年轻代大小选择
- 响应时间优先的应用:尽可能设大,直到接近系统的最低响应时间限制(根据实际情况选择)。在此种情况下,年轻代收集发生的频率也是最小的。同时,减少到达年老代的对象。
- 吞吐量优先的应用:尽可能的设置大,可能到达Gbit的程度。因为对响应时间没有要求,垃圾收集可以并行进行,一般适合8CPU以上的应用。
- 年老代大小选择
- 响应时间优先的应用:年老代使用并发收集器,所以其大小需要小心设置,一般要考虑并发会话率和会话持续时间等一些参数。如果堆设置小了,可以会造成内存碎片、高回收频率以及应用暂停而使用传统的标记清除方式;如果堆大了,则需要较长的收集时间。最优化的方案,一般需要参考以下数据获得:
- 并发垃圾收集信息
- 持久代并发收集次数
- 传统GC信息
- 花在年轻代和年老代回收上的时间比例
减少年轻代和年老代花费的时间,一般会提高应用的效率
- 吞吐量优先的应用:一般吞吐量优先的应用都有一个很大的年轻代和一个较小的年老代。原因是,这样可以尽可能回收掉大部分短期对象,减少中期的对象,而年老代尽存放长期存活对象。
- 较小堆引起的碎片问题
因为年老代的并发收集器使用标记、清除算法,所以不会对堆进行压缩。当收集器回收时,他会把相邻的空间进行合并,这样可以分配给较大的对象。但是,当堆空间较小时,运行一段时间以后,就会出现“碎片”,如果并发收集器找不到足够的空间,那么并发收集器将会停止,然后使用传统的标记、清除方式进行回收。如果出现“碎片”,可能需要进行如下配置:
- -XX:+UseCMSCompactAtFullCollection:使用并发收集器时,开启对年老代的压缩。
- -XX:CMSFullGCsBeforeCompaction=0:上面配置开启的情况下,这里设置多少次Full GC后,对年老代进行压缩
数据类型
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
基本类型包括:byte,short,int,long,char,float,double,Boolean,returnAddress
引用类型包括:类类型,接口类型和数组。
堆与栈
堆和栈是程序运行的关键,很有必要把他们的关系说清楚。
栈是运行时的单位,而堆是存储的单位。
栈解决程序的运行问题,即程序如何执行,或者说如何处理数据;堆解决的是数据存储的问题,即数据怎么放、放在哪儿。
在Java中一个线程就会相应有一个线程栈与之对应,这点很容易理解,因为不同的线程执行逻辑有所不同,因此需要一个独立的线程栈。而堆则是所有线程共享的。栈因为是运行单位,因此里面存储的信息都是跟当前线程(或程序)相关信息的。包括局部变量、程序运行状态、方法返回值等等;而堆只负责存储对象信息。
为什么要把堆和栈区分出来呢?栈中不是也可以存储数据吗?
第一,从软件设计的角度看,栈代表了处理逻辑,而堆代表了数据。这样分开,使得处理逻辑更为清晰。分而治之的思想。这种隔离、模块化的思想在软件设计的方方面面都有体现。
第二,堆与栈的分离,使得堆中的内容可以被多个栈共享(也可以理解为多个线程访问同一个对象)。这种共享的收益是很多的。一方面这种共享提供了一种有效的数据交互方式(如:共享内存),另一方面,堆中的共享常量和缓存可以被所有栈访问,节省了空间。
第三,栈因为运行时的需要,比如保存系统运行的上下文,需要进行地址段的划分。由于栈只能向上增长,因此就会限制住栈存储内容的能力。而堆不同,堆中的对象是可以根据需要动态增长的,因此栈和堆的拆分,使得动态增长成为可能,相应栈中只需记录堆中的一个地址即可。
第四,面向对象就是堆和栈的完美结合。其实,面向对象方式的程序与以前结构化的程序在执行上没有任何区别。但是,面向对象的引入,使得对待问题的思考方式发生了改变,而更接近于自然方式的思考。当我们把对象拆开,你会发现,对象的属性其实就是数据,存放在堆中;而对象的行为(方法),就是运行逻辑,放在栈中。我们在编写对象的时候,其实即编写了数据结构,也编写的处理数据的逻辑。不得不承认,面向对象的设计,确实很美。
在Java中,Main函数就是栈的起始点,也是程序的起始点。
程序要运行总是有一个起点的。同C语言一样,java中的Main就是那个起点。无论什么java程序,找到main就找到了程序执行的入口:)
堆中存什么?栈中存什么?
堆中存的是对象。栈中存的是基本数据类型和堆中对象的引用。一个对象的大小是不可估计的,或者说是可以动态变化的,但是在栈中,一个对象只对应了一个4btye的引用(堆栈分离的好处:))。
为什么不把基本类型放堆中呢?因为其占用的空间一般是1~8个字节——需要空间比较少,而且因为是基本类型,所以不会出现动态增长的情况——长度固定,因此栈中存储就够了,如果把他存在堆中是没有什么意义的(还会浪费空间,后面说明)。可以这么说,基本类型和对象的引用都是存放在栈中,而且都是几个字节的一个数,因此在程序运行时,他们的处理方式是统一的。但是基本类型、对象引用和对象本身就有所区别了,因为一个是栈中的数据一个是堆中的数据。最常见的一个问题就是,Java中参数传递时的问题。
Java中的参数传递时传值呢?还是传引用?
要说明这个问题,先要明确两点:
1. 不要试图与C进行类比,Java中没有指针的概念
2. 程序运行永远都是在栈中进行的,因而参数传递时,只存在传递基本类型和对象引用的问题。不会直接传对象本身。
明确以上两点后。Java在方法调用传递参数时,因为没有指针,所以它都是进行传值调用(这点可以参考C的传值调用)。因此,很多书里面都说Java是进行传值调用,这点没有问题,而且也简化的C中复杂性。
但是传引用的错觉是如何造成的呢?在运行栈中,基本类型和引用的处理是一样的,都是传值,所以,如果是传引用的方法调用,也同时可以理解为“传引用值”的传值调用,即引用的处理跟基本类型是完全一样的。但是当进入被调用方法时,被传递的这个引用的值,被程序解释(或者查找)到堆中的对象,这个时候才对应到真正的对象。如果此时进行修改,修改的是引用对应的对象,而不是引用本身,即:修改的是堆中的数据。所以这个修改是可以保持的了。
对象,从某种意义上说,是由基本类型组成的。可以把一个对象看作为一棵树,对象的属性如果还是对象,则还是一颗树(即非叶子节点),基本类型则为树的叶子节点。程序参数传递时,被传递的值本身都是不能进行修改的,但是,如果这个值是一个非叶子节点(即一个对象引用),则可以修改这个节点下面的所有内容。
堆和栈中,栈是程序运行最根本的东西。程序运行可以没有堆,但是不能没有栈。而堆是为栈进行数据存储服务,说白了堆就是一块共享的内存。不过,正是因为堆和栈的分离的思想,才使得Java的垃圾回收成为可能。
Java中,栈的大小通过-Xss来设置,当栈中存储数据比较多时,需要适当调大这个值,否则会出现java.lang.StackOverflowError异常。常见的出现这个异常的是无法返回的递归,因为此时栈中保存的信息都是方法返回的记录点。
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
3.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
5.in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
6.下面的查询也将导致全表扫描:
select id from t where name like '%abc%'
若要提高效率,可以考虑全文检索。
7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2
9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)='abc'--name以abc开头的id
select id from t where datediff(day,createdate,'2005-11-30')=0--‘2005-11-30’生成的id
应改为:
select id from t where name like 'abc%'
select id from t where createdate>='2005-11-30' and createdate<'2005-12-1'
10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
12.不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(...)
13.很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
15.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。
16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。
17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
18.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
21.避免频繁创建和删除临时表,以减少系统表资源的消耗。
22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。
23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。
26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。
29.尽量避免大事务操作,提高系统并发能力。
30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。
在很多大型应用中都会对数据进行切分,并且采用多个数据库实例进行管理,这样可以有效提高系统的水平伸缩性。而这样的方案就会不同于常见的单一数据实例的方案,这就要程序在运行时根据当时的请求及系统状态来动态的决定将数据
存储在哪个数据库实例中,以及从哪个数据库提取数据。
Figure 1 数据分割及多数据库架构
通常这种多数据源的逻辑会渗透到业务逻辑中,同时也会给我们使用的数据访问API诸如Hibernate和iBatis等带来不便(需要指定多个SessionFactory或SqlMapClient实例来对应多个DataSource)。
Figure 2 多数据源的选择逻辑渗透至客户端
解决方案
Figure 3 采用Proxy模式来封装数据源选择逻辑
通过采用Proxy模式我们在方案中实现一个虚拟的数据源,并且用它来封装数据源选择逻辑,这样就可以有效地将数据源选择逻辑从Client中分离出来。
Client提供选择所需的上下文(因为这是Client所知道的),由虚拟的DataSource根据Client提供的上下文来实现数据源的选择。
Spring2.x的版本中提供了实现这种方式的基本框架,虚拟的DataSource仅需继承AbstractRoutingDataSource实现determineCurrentLookupKey()在其中封装数据源的选择逻辑。
实例:
publicclass DynamicDataSource extends AbstractRoutingDataSource {
static Logger log = Logger.getLogger("DynamicDataSource");
@Override
protected Object determineCurrentLookupKey() {
String userId=(String)DbContextHolder.getContext();
Integer dataSourceId=getDataSourceIdByUserId(userId);
return dataSourceId;
}
}
|
实例中通过UserId来决定数据存放在哪个数据库中。
配置文件示例:
<bean id="dataSource" class="com.bitfone.smartdm.datasource.DynamicDataSource">
<property name="targetDataSources">
<map key-type="java.lang.Integer">
<entry key="0" value-ref="dataSource0"/>
<entry key="1" value-ref="dataSource1"/>
<entry key="2" value-ref="dataSource2"/>
</map>
</property>
<property name="defaultTargetDataSource" ref="dataSource0"/>
</bean>
<bean id="sqlMapClient" class="org.springframework.orm.ibatis.SqlMapClientFactoryBean">
<property name="configLocation" value="classpath:com/bitfone/smartdm/dao/sqlmap/sql-map-config.xml"/>
<property name="dataSource" ref="dataSource"/>
</bean>
<bean id="UserInfoDAO" class="com.bitfone.smartdm.dao.impl.UserInfoDAO">
<property name="sqlMapClient" ref="sqlMapClient"/>
</bean>
|
摘要:
通过使用JAVA中的动态代理实现数据库连接池,使使用者可以以普通的jdbc连接的使用习惯来使用连接池。
数据库连接池在编写应用服务是经常需要用到的模块,太过频繁的连接数据库对服务性能来讲是一个瓶颈,使用缓冲池技术可以来消除这个瓶颈。我们可以在互联网上找到很多关于数据库连接池的源程序,但是都发现这样一个共同的问题:这些连接池的实现方法都不同程度地增加了与使用者之间的耦合度。很多的连...
阅读全文
1.所需包
(1) jfreechart-1.0.8a.jar
(2) jcommon-1.0.12.jar
2.运行环境
JDK 1.5
3.源代码
import java.awt.Color;
import java.awt.Font;
import java.io.File;
import java.io.FileOutputStream;
import java.text.DecimalFormat;
import java.text.NumberFormat;
import org.jfree.chart.ChartFactory;
import org.jfree.chart.ChartUtilities;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.axis.CategoryAxis;
import org.jfree.chart.axis.CategoryLabelPositions;
import org.jfree.chart.axis.NumberAxis;
import org.jfree.chart.axis.ValueAxis;
import org.jfree.chart.labels.StandardCategoryItemLabelGenerator;
import org.jfree.chart.labels.StandardPieSectionLabelGenerator;
import org.jfree.chart.plot.CategoryPlot;
import org.jfree.chart.plot.PiePlot3D;
import org.jfree.chart.plot.PlotOrientation;
import org.jfree.chart.renderer.category.BarRenderer;
import org.jfree.chart.renderer.category.LineAndShapeRenderer;
import org.jfree.chart.renderer.category.StackedBarRenderer;
import org.jfree.chart.title.TextTitle;
import org.jfree.data.category.CategoryDataset;
import org.jfree.data.general.DatasetUtilities;
import org.jfree.data.general.DefaultPieDataset;
import org.jfree.data.general.PieDataset;
/**
* 实际取色的时候一定要16位的,这样比较准确
*
* @author new
*/
public class CreateChartServiceImpl
{
private static final String CHART_PATH = "E:/test/";
public static void main(String[] args)
{
// TODO Auto-generated method stub
CreateChartServiceImpl pm = new CreateChartServiceImpl();
// 生成饼状图
pm.makePieChart();
// 生成单组柱状图
pm.makeBarChart();
// 生成多组柱状图
pm.makeBarGroupChart();
// 生成堆积柱状图
pm.makeStackedBarChart();
// 生成折线图
pm.makeLineAndShapeChart();
}
/**
* 生成折线图
*/
public void makeLineAndShapeChart()
{
double[][] data = new double[][]
{
{ 672, 766, 223, 540, 126 },
{ 325, 521, 210, 340, 106 },
{ 332, 256, 523, 240, 526 } };
String[] rowKeys =
{ "苹果", "梨子", "葡萄" };
String[] columnKeys =
{ "北京", "上海", "广州", "成都", "深圳" };
CategoryDataset dataset = getBarData(data, rowKeys, columnKeys);
createTimeXYChar("折线图", "x轴", "y轴", dataset, "lineAndShap.png");
}
/**
* 生成分组的柱状图
*/
public void makeBarGroupChart()
{
double[][] data = new double[][]
{
{ 672, 766, 223, 540, 126 },
{ 325, 521, 210, 340, 106 },
{ 332, 256, 523, 240, 526 } };
String[] rowKeys =
{ "苹果", "梨子", "葡萄" };
String[] columnKeys =
{ "北京", "上海", "广州", "成都", "深圳" };
CategoryDataset dataset = getBarData(data, rowKeys, columnKeys);
createBarChart(dataset, "x坐标", "y坐标", "柱状图", "barGroup.png");
}
/**
* 生成柱状图
*/
public void makeBarChart()
{
double[][] data = new double[][]
{
{ 672, 766, 223, 540, 126 } };
String[] rowKeys =
{ "苹果" };
String[] columnKeys =
{ "北京", "上海", "广州", "成都", "深圳" };
CategoryDataset dataset = getBarData(data, rowKeys, columnKeys);
createBarChart(dataset, "x坐标", "y坐标", "柱状图", "bar.png");
}
/**
* 生成堆栈柱状图
*/
public void makeStackedBarChart()
{
double[][] data = new double[][]
{
{ 0.21, 0.66, 0.23, 0.40, 0.26 },
{ 0.25, 0.21, 0.10, 0.40, 0.16 } };
String[] rowKeys =
{ "苹果", "梨子" };
String[] columnKeys =
{ "北京", "上海", "广州", "成都", "深圳" };
CategoryDataset dataset = getBarData(data, rowKeys, columnKeys);
createStackedBarChart(dataset, "x坐标", "y坐标", "柱状图", "stsckedBar.png");
}
/**
* 生成饼状图
*/
public void makePieChart()
{
double[] data =
{ 9, 91 };
String[] keys =
{ "失败率", "成功率" };
createValidityComparePimChar(getDataPieSetByUtil(data, keys), "饼状图",
"pie2.png", keys);
}
// 柱状图,折线图 数据集
public CategoryDataset getBarData(double[][] data, String[] rowKeys,
String[] columnKeys)
{
return DatasetUtilities
.createCategoryDataset(rowKeys, columnKeys, data);
}
// 饼状图 数据集
public PieDataset getDataPieSetByUtil(double[] data,
String[] datadescription)
{
if (data != null && datadescription != null)
{
if (data.length == datadescription.length)
{
DefaultPieDataset dataset = new DefaultPieDataset();
for (int i = 0; i < data.length; i++)
{
dataset.setValue(datadescription[i], data[i]);
}
return dataset;
}
}
return null;
}
/**
* 柱状图
*
*@param dataset 数据集
* @param xName x轴的说明(如种类,时间等)
* @param yName y轴的说明(如速度,时间等)
* @param chartTitle 图标题
* @param charName 生成图片的名字
* @return
*/
public String createBarChart(CategoryDataset dataset, String xName,
String yName, String chartTitle, String charName)
{
JFreeChart chart = ChartFactory.createBarChart(chartTitle, // 图表标题
xName, // 目录轴的显示标签
yName, // 数值轴的显示标签
dataset, // 数据集
PlotOrientation.VERTICAL, // 图表方向:水平、垂直
true, // 是否显示图例(对于简单的柱状图必须是false)
false, // 是否生成工具
false // 是否生成URL链接
);
Font labelFont = new Font("SansSerif", Font.TRUETYPE_FONT, 12);
/*
* VALUE_TEXT_ANTIALIAS_OFF表示将文字的抗锯齿关闭,
* 使用的关闭抗锯齿后,字体尽量选择12到14号的宋体字,这样文字最清晰好看
*/
// chart.getRenderingHints().put(RenderingHints.KEY_TEXT_ANTIALIASING,RenderingHints.VALUE_TEXT_ANTIALIAS_OFF);
chart.setTextAntiAlias(false);
chart.setBackgroundPaint(Color.white);
// create plot
CategoryPlot plot = chart.getCategoryPlot();
// 设置横虚线可见
plot.setRangeGridlinesVisible(true);
// 虚线色彩
plot.setRangeGridlinePaint(Color.gray);
// 数据轴精度
NumberAxis vn = (NumberAxis) plot.getRangeAxis();
// vn.setAutoRangeIncludesZero(true);
DecimalFormat df = new DecimalFormat("#0.00");
vn.setNumberFormatOverride(df); // 数据轴数据标签的显示格式
// x轴设置
CategoryAxis domainAxis = plot.getDomainAxis();
domainAxis.setLabelFont(labelFont);// 轴标题
domainAxis.setTickLabelFont(labelFont);// 轴数值
// Lable(Math.PI/3.0)度倾斜
// domainAxis.setCategoryLabelPositions(CategoryLabelPositions
// .createUpRotationLabelPositions(Math.PI / 3.0));
domainAxis.setMaximumCategoryLabelWidthRatio(0.6f);// 横轴上的 Lable 是否完整显示
// 设置距离图片左端距离
domainAxis.setLowerMargin(0.1);
// 设置距离图片右端距离
domainAxis.setUpperMargin(0.1);
// 设置 columnKey 是否间隔显示
// domainAxis.setSkipCategoryLabelsToFit(true);
plot.setDomainAxis(domainAxis);
// 设置柱图背景色(注意,系统取色的时候要使用16位的模式来查看颜色编码,这样比较准确)
plot.setBackgroundPaint(new Color(255, 255, 204));
// y轴设置
ValueAxis rangeAxis = plot.getRangeAxis();
rangeAxis.setLabelFont(labelFont);
rangeAxis.setTickLabelFont(labelFont);
// 设置最高的一个 Item 与图片顶端的距离
rangeAxis.setUpperMargin(0.15);
// 设置最低的一个 Item 与图片底端的距离
rangeAxis.setLowerMargin(0.15);
plot.setRangeAxis(rangeAxis);
BarRenderer renderer = new BarRenderer();
// 设置柱子宽度
renderer.setMaximumBarWidth(0.05);
// 设置柱子高度
renderer.setMinimumBarLength(0.2);
// 设置柱子边框颜色
renderer.setBaseOutlinePaint(Color.BLACK);
// 设置柱子边框可见
renderer.setDrawBarOutline(true);
// // 设置柱的颜色
renderer.setSeriesPaint(0, new Color(204, 255, 255));
renderer.setSeriesPaint(1, new Color(153, 204, 255));
renderer.setSeriesPaint(2, new Color(51, 204, 204));
// 设置每个地区所包含的平行柱的之间距离
renderer.setItemMargin(0.0);
// 显示每个柱的数值,并修改该数值的字体属性
renderer.setIncludeBaseInRange(true);
renderer
.setBaseItemLabelGenerator(new StandardCategoryItemLabelGenerator());
renderer.setBaseItemLabelsVisible(true);
plot.setRenderer(renderer);
// 设置柱的透明度
plot.setForegroundAlpha(1.0f);
FileOutputStream fos_jpg = null;
try
{
isChartPathExist(CHART_PATH);
String chartName = CHART_PATH + charName;
fos_jpg = new FileOutputStream(chartName);
ChartUtilities.writeChartAsPNG(fos_jpg, chart, 500, 500, true, 10);
return chartName;
}
catch (Exception e)
{
e.printStackTrace();
return null;
}
finally
{
try
{
fos_jpg.close();
}
catch (Exception e)
{
e.printStackTrace();
}
}
}
/**
* 横向图
*
* @param dataset 数据集
* @param xName x轴的说明(如种类,时间等)
* @param yName y轴的说明(如速度,时间等)
* @param chartTitle 图标题
* @param charName 生成图片的名字
* @return
*/
public String createHorizontalBarChart(CategoryDataset dataset,
String xName, String yName, String chartTitle, String charName)
{
JFreeChart chart = ChartFactory.createBarChart(chartTitle, // 图表标题
xName, // 目录轴的显示标签
yName, // 数值轴的显示标签
dataset, // 数据集
PlotOrientation.VERTICAL, // 图表方向:水平、垂直
true, // 是否显示图例(对于简单的柱状图必须是false)
false, // 是否生成工具
false // 是否生成URL链接
);
CategoryPlot plot = chart.getCategoryPlot();
// 数据轴精度
NumberAxis vn = (NumberAxis) plot.getRangeAxis();
//设置刻度必须从0开始
// vn.setAutoRangeIncludesZero(true);
DecimalFormat df = new DecimalFormat("#0.00");
vn.setNumberFormatOverride(df); // 数据轴数据标签的显示格式
CategoryAxis domainAxis = plot.getDomainAxis();
domainAxis.setCategoryLabelPositions(CategoryLabelPositions.UP_45); // 横轴上的
// Lable
Font labelFont = new Font("SansSerif", Font.TRUETYPE_FONT, 12);
domainAxis.setLabelFont(labelFont);// 轴标题
domainAxis.setTickLabelFont(labelFont);// 轴数值
domainAxis.setMaximumCategoryLabelWidthRatio(0.8f);// 横轴上的 Lable 是否完整显示
// domainAxis.setVerticalCategoryLabels(false);
plot.setDomainAxis(domainAxis);
ValueAxis rangeAxis = plot.getRangeAxis();
// 设置最高的一个 Item 与图片顶端的距离
rangeAxis.setUpperMargin(0.15);
// 设置最低的一个 Item 与图片底端的距离
rangeAxis.setLowerMargin(0.15);
plot.setRangeAxis(rangeAxis);
BarRenderer renderer = new BarRenderer();
// 设置柱子宽度
renderer.setMaximumBarWidth(0.03);
// 设置柱子高度
renderer.setMinimumBarLength(30);
renderer.setBaseOutlinePaint(Color.BLACK);
// 设置柱的颜色
renderer.setSeriesPaint(0, Color.GREEN);
renderer.setSeriesPaint(1, new Color(0, 0, 255));
// 设置每个地区所包含的平行柱的之间距离
renderer.setItemMargin(0.5);
// 显示每个柱的数值,并修改该数值的字体属性
renderer
.setBaseItemLabelGenerator(new StandardCategoryItemLabelGenerator());
// 设置柱的数值可见
renderer.setBaseItemLabelsVisible(true);
plot.setRenderer(renderer);
// 设置柱的透明度
plot.setForegroundAlpha(0.6f);
FileOutputStream fos_jpg = null;
try
{
isChartPathExist(CHART_PATH);
String chartName = CHART_PATH + charName;
fos_jpg = new FileOutputStream(chartName);
ChartUtilities.writeChartAsPNG(fos_jpg, chart, 500, 500, true, 10);
return chartName;
}
catch (Exception e)
{
e.printStackTrace();
return null;
}
finally
{
try
{
fos_jpg.close();
}
catch (Exception e)
{
e.printStackTrace();
}
}
}
/**
* 饼状图
*
* @param dataset 数据集
* @param chartTitle 图标题
* @param charName 生成图的名字
* @param pieKeys 分饼的名字集
* @return
*/
public String createValidityComparePimChar(PieDataset dataset,
String chartTitle, String charName, String[] pieKeys)
{
JFreeChart chart = ChartFactory.createPieChart3D(chartTitle, // chart
// title
dataset,// data
true,// include legend
true, false);
// 使下说明标签字体清晰,去锯齿类似于
// chart.getRenderingHints().put(RenderingHints.KEY_TEXT_ANTIALIASING,RenderingHints.VALUE_TEXT_ANTIALIAS_OFF);的效果
chart.setTextAntiAlias(false);
// 图片背景色
chart.setBackgroundPaint(Color.white);
// 设置图标题的字体重新设置title
Font font = new Font("隶书", Font.BOLD, 25);
TextTitle title = new TextTitle(chartTitle);
title.setFont(font);
chart.setTitle(title);
PiePlot3D plot = (PiePlot3D) chart.getPlot();
// 图片中显示百分比:默认方式
// 指定饼图轮廓线的颜色
// plot.setBaseSectionOutlinePaint(Color.BLACK);
// plot.setBaseSectionPaint(Color.BLACK);
// 设置无数据时的信息
plot.setNoDataMessage("无对应的数据,请重新查询。");
// 设置无数据时的信息显示颜色
plot.setNoDataMessagePaint(Color.red);
// 图片中显示百分比:自定义方式,{0} 表示选项, {1} 表示数值, {2} 表示所占比例 ,小数点后两位
plot.setLabelGenerator(new StandardPieSectionLabelGenerator(
"{0}={1}({2})", NumberFormat.getNumberInstance(),
new DecimalFormat("0.00%")));
// 图例显示百分比:自定义方式, {0} 表示选项, {1} 表示数值, {2} 表示所占比例
plot.setLegendLabelGenerator(new StandardPieSectionLabelGenerator(
"{0}={1}({2})"));
plot.setLabelFont(new Font("SansSerif", Font.TRUETYPE_FONT, 12));
// 指定图片的透明度(0.0-1.0)
plot.setForegroundAlpha(0.65f);
// 指定显示的饼图上圆形(false)还椭圆形(true)
plot.setCircular(false, true);
// 设置第一个 饼块section 的开始位置,默认是12点钟方向
plot.setStartAngle(90);
// // 设置分饼颜色
plot.setSectionPaint(pieKeys[0], new Color(244, 194, 144));
plot.setSectionPaint(pieKeys[1], new Color(144, 233, 144));
FileOutputStream fos_jpg = null;
try
{
// 文件夹不存在则创建
isChartPathExist(CHART_PATH);
String chartName = CHART_PATH + charName;
fos_jpg = new FileOutputStream(chartName);
// 高宽的设置影响椭圆饼图的形状
ChartUtilities.writeChartAsPNG(fos_jpg, chart, 500, 230);
return chartName;
}
catch (Exception e)
{
e.printStackTrace();
return null;
}
finally
{
try
{
fos_jpg.close();
System.out.println("create pie-chart.");
}
catch (Exception e)
{
e.printStackTrace();
}
}
}
/**
* 判断文件夹是否存在,如果不存在则新建
* @param chartPath
*/
private void isChartPathExist(String chartPath)
{
File file = new File(chartPath);
if (!file.exists())
{
file.mkdirs();
// log.info("CHART_PATH="+CHART_PATH+"create.");
}
}
/**
* 折线图
*
* @param chartTitle
* @param x
* @param y
* @param xyDataset
* @param charName
* @return
*/
public String createTimeXYChar(String chartTitle, String x, String y,
CategoryDataset xyDataset, String charName)
{
JFreeChart chart = ChartFactory.createLineChart(chartTitle, x, y,
xyDataset, PlotOrientation.VERTICAL, true, true, false);
chart.setTextAntiAlias(false);
chart.setBackgroundPaint(Color.WHITE);
// 设置图标题的字体重新设置title
Font font = new Font("隶书", Font.BOLD, 25);
TextTitle title = new TextTitle(chartTitle);
title.setFont(font);
chart.setTitle(title);
// 设置面板字体
Font labelFont = new Font("SansSerif", Font.TRUETYPE_FONT, 12);
chart.setBackgroundPaint(Color.WHITE);
CategoryPlot categoryplot = (CategoryPlot) chart.getPlot();
// x轴 // 分类轴网格是否可见
categoryplot.setDomainGridlinesVisible(true);
// y轴 //数据轴网格是否可见
categoryplot.setRangeGridlinesVisible(true);
categoryplot.setRangeGridlinePaint(Color.WHITE);// 虚线色彩
categoryplot.setDomainGridlinePaint(Color.WHITE);// 虚线色彩
categoryplot.setBackgroundPaint(Color.lightGray);
// 设置轴和面板之间的距离
// categoryplot.setAxisOffset(new RectangleInsets(5D, 5D, 5D, 5D));
CategoryAxis domainAxis = categoryplot.getDomainAxis();
domainAxis.setLabelFont(labelFont);// 轴标题
domainAxis.setTickLabelFont(labelFont);// 轴数值
domainAxis.setCategoryLabelPositions(CategoryLabelPositions.UP_45); // 横轴上的
// Lable
// 45度倾斜
// 设置距离图片左端距离
domainAxis.setLowerMargin(0.0);
// 设置距离图片右端距离
domainAxis.setUpperMargin(0.0);
NumberAxis numberaxis = (NumberAxis) categoryplot.getRangeAxis();
numberaxis.setStandardTickUnits(NumberAxis.createIntegerTickUnits());
numberaxis.setAutoRangeIncludesZero(true);
// 获得renderer 注意这里是下嗍造型到lineandshaperenderer!!
LineAndShapeRenderer lineandshaperenderer = (LineAndShapeRenderer) categoryplot
.getRenderer();
lineandshaperenderer.setBaseShapesVisible(true); // series 点(即数据点)可见
lineandshaperenderer.setBaseLinesVisible(true); // series 点(即数据点)间有连线可见
// 显示折点数据
// lineandshaperenderer.setBaseItemLabelGenerator(new
// StandardCategoryItemLabelGenerator());
// lineandshaperenderer.setBaseItemLabelsVisible(true);
FileOutputStream fos_jpg = null;
try
{
isChartPathExist(CHART_PATH);
String chartName = CHART_PATH + charName;
fos_jpg = new FileOutputStream(chartName);
// 将报表保存为png文件
ChartUtilities.writeChartAsPNG(fos_jpg, chart, 500, 510);
return chartName;
}
catch (Exception e)
{
e.printStackTrace();
return null;
}
finally
{
try
{
fos_jpg.close();
System.out.println("create time-createTimeXYChar.");
}
catch (Exception e)
{
e.printStackTrace();
}
}
}
/**
* 堆栈柱状图
*
* @param dataset
* @param xName
* @param yName
* @param chartTitle
* @param charName
* @return
*/
public String createStackedBarChart(CategoryDataset dataset, String xName,
String yName, String chartTitle, String charName)
{
// 1:得到 CategoryDataset
// 2:JFreeChart对象
JFreeChart chart = ChartFactory.createStackedBarChart(chartTitle, // 图表标题
xName, // 目录轴的显示标签
yName, // 数值轴的显示标签
dataset, // 数据集
PlotOrientation.VERTICAL, // 图表方向:水平、垂直
true, // 是否显示图例(对于简单的柱状图必须是false)
false, // 是否生成工具
false // 是否生成URL链接
);
// 图例字体清晰
chart.setTextAntiAlias(false);
chart.setBackgroundPaint(Color.WHITE);
// 2 .2 主标题对象 主标题对象是 TextTitle 类型
chart
.setTitle(new TextTitle(chartTitle, new Font("隶书", Font.BOLD,
25)));
// 2 .2.1:设置中文
// x,y轴坐标字体
Font labelFont = new Font("SansSerif", Font.TRUETYPE_FONT, 12);
// 2 .3 Plot 对象 Plot 对象是图形的绘制结构对象
CategoryPlot plot = chart.getCategoryPlot();
// 设置横虚线可见
plot.setRangeGridlinesVisible(true);
// 虚线色彩
plot.setRangeGridlinePaint(Color.gray);
// 数据轴精度
NumberAxis vn = (NumberAxis) plot.getRangeAxis();
// 设置最大值是1
vn.setUpperBound(1);
// 设置数据轴坐标从0开始
// vn.setAutoRangeIncludesZero(true);
// 数据显示格式是百分比
DecimalFormat df = new DecimalFormat("0.00%");
vn.setNumberFormatOverride(df); // 数据轴数据标签的显示格式
// DomainAxis (区域轴,相当于 x 轴), RangeAxis (范围轴,相当于 y 轴)
CategoryAxis domainAxis = plot.getDomainAxis();
domainAxis.setLabelFont(labelFont);// 轴标题
domainAxis.setTickLabelFont(labelFont);// 轴数值
// x轴坐标太长,建议设置倾斜,如下两种方式选其一,两种效果相同
// 倾斜(1)横轴上的 Lable 45度倾斜
// domainAxis.setCategoryLabelPositions(CategoryLabelPositions.UP_45);
// 倾斜(2)Lable(Math.PI 3.0)度倾斜
// domainAxis.setCategoryLabelPositions(CategoryLabelPositions
// .createUpRotationLabelPositions(Math.PI / 3.0));
domainAxis.setMaximumCategoryLabelWidthRatio(0.6f);// 横轴上的 Lable 是否完整显示
plot.setDomainAxis(domainAxis);
// y轴设置
ValueAxis rangeAxis = plot.getRangeAxis();
rangeAxis.setLabelFont(labelFont);
rangeAxis.setTickLabelFont(labelFont);
// 设置最高的一个 Item 与图片顶端的距离
rangeAxis.setUpperMargin(0.15);
// 设置最低的一个 Item 与图片底端的距离
rangeAxis.setLowerMargin(0.15);
plot.setRangeAxis(rangeAxis);
// Renderer 对象是图形的绘制单元
StackedBarRenderer renderer = new StackedBarRenderer();
// 设置柱子宽度
renderer.setMaximumBarWidth(0.05);
// 设置柱子高度
renderer.setMinimumBarLength(0.1);
//设置柱的边框颜色
renderer.setBaseOutlinePaint(Color.BLACK);
//设置柱的边框可见
renderer.setDrawBarOutline(true);
// // 设置柱的颜色(可设定也可默认)
renderer.setSeriesPaint(0, new Color(204, 255, 204));
renderer.setSeriesPaint(1, new Color(255, 204, 153));
// 设置每个地区所包含的平行柱的之间距离
renderer.setItemMargin(0.4);
plot.setRenderer(renderer);
// 设置柱的透明度(如果是3D的必须设置才能达到立体效果,如果是2D的设置则使颜色变淡)
// plot.setForegroundAlpha(0.65f);
FileOutputStream fos_jpg = null;
try
{
isChartPathExist(CHART_PATH);
String chartName = CHART_PATH + charName;
fos_jpg = new FileOutputStream(chartName);
ChartUtilities.writeChartAsPNG(fos_jpg, chart, 500, 500, true, 10);
return chartName;
}
catch (Exception e)
{
e.printStackTrace();
return null;
}
finally
{
try
{
fos_jpg.close();
}
catch (Exception e)
{
e.printStackTrace();
}
}
}
}
很高兴看到阿里云的成立。这意味着阿里已经把对互联网技术的投入提高到了的战略高度。过去经常听工程师抱怨阿里不是一家技术公司。现在再没有理由可以这样抱怨了。但是要实现这个战略,没有技术储备是不行的。招聘和培养工程师显然是目前集团各子公司同时面临的一个令人头痛的难题。
由于曾经在硅谷工作过,我常想,为什么硅谷有这么多40岁以上的工程师,而国内30岁以上的就已经寥寥无几了?为什么硅谷的工程师的技术寿命可以这么长?为什么他们可以不浮躁,不急功近利呢?阿里要走102年,阿里的工程师可以一起走多远呢?
在国内,有2-3年工作经历的工程师就可以算有经验的了。工作了5年以上的工程师往往会考虑向管理岗位转型,或者向业务转型。中国目前处于高度发展的阶段。很多企业缺乏管理人才,工作5年就被提吧为干部很正常。但留下的后遗症是30岁以上的优秀技术人才极度缺乏。
在硅谷,5年以下工作经验的人都算是初级的。一般高级工程师需要5年以上的工作经验,架构师一般需要10年以上的工作经验。这还不算上大部分硅谷的工程师都有计算机硕士学位。毕业的时候一般已经是24,25岁了。再工作10年,35岁才升为架构师是非常正常的。然而,公司里的架构师有限。其实大部分 40岁的工程师仍然在一线工作,比如写程序,做测试,进行项目管理等。
美国硅谷是计算机人才集中的地方,也是创业公司群集的地方。在硅谷,从只有几个人到几十个人的创业公司比比皆是。他们的共同梦想就是经过几年的奋斗,通过技术的创新,再次缔造像英特尔,苹果,思科,甲骨文,雅虎,Google,Facebook等这样的神话。即使创造不了神话,也可以通过IPO或者被收购的途径创造财富。在这样的环境中,公司对管理人才的需求同样是非常大的,但为什么仍然有大量的工程师“无动于衷”,仍然从事着技术活儿呢?
我认为有两个主要原因。
一个是外因。在美国,管理岗位的待遇和技术岗位待遇相差不大。特别在崇尚技术的硅谷,经理的地位并不比工程师高,甚至更低。比如架构师在公司里的重要性往往要超过经理。因此管理岗位的“诱惑”并不大。在这样一种技术氛围中,走技术路线很正常。
但是即使在这样一个技术环境中,硅谷对管理人才依然需要。当工程师表现出色时,也有很多机会转成管理岗位。然而相当一部分工程师会主动放弃这样的机会,而继续干他们的技术活儿。这就是内因在驱动了。技术工作和管理工作的本质区别是,前者面对的是系统(软件,硬件等),而后者面对的是人。系统问题再难,只要有足够的时间和资源,一般都可以解决。越难的问题,解决之后越有成就感。而人的问题,有时候看似很简单,却解决不了。是人,总要有头疼脑热,生病的时候。是人,免不了产生情绪,从而影响工作。有人的地方,就会有矛盾,就会有摩擦。简单地讲,系统会按照事先设定的逻辑运行,是死的,因此往往可控,可规划。而人是活的,不是输入几条命令就可以控制的,而是需要沟通,需要感情的。因此,大部分硅谷的工程师很“聪明”。他们主动选择“简单”地工作。白天好好地工作,晚上好好地生活。何必去“自寻烦恼”,转做管理呢。
其实不光是硅谷的,其它地区的工程师都有一个共同的性格特点,追求简单,追求完美,思维方式上比较理性和逻辑性,看问题比较趋向于非黑即白。这样的性格非常适合做技术工作,可是我们中国的工程师有时候偏偏看不到自己的这个特点。
不想当元帅的士兵不是好士兵。工程师希望向管理方向发展是非常正常的。但问题是为什么和怎样?我碰到过不只一个工程师告诉我,希望转做管理的原因是担心今后年级大了,技术能力跟不上了。我觉得非常可笑。这就好比是一个士兵说:我杀敌本领不行,不适合上战场,那就让我做军官吧。一个没做过士兵的元帅肯定不是好元帅。其实做技术和当兵毕竟不同,不是靠体力吃饭的。年级大点往往是优势。
我觉得走技术路线对工程师性格的人是一条捷径。如果能静下心来仔细钻研技术,一定能在某个方面做得比别人好。这里的关键是好奇心和耐心。在今天这样的信息时代,找到答案并不是一件难事。难就难在有没有好奇心和耐心去找。比如,Java程序员天天都用到String这个类型。但有没有想过为什么 Java语言里有String和StringBuffer两种字符串类型,而不是一种?有没有去看过String和StringBuffer的源代码?再例如,天天做网站和HTTP打交道,有没有看过HTTP协议?有没有尝试过不用浏览器,wget等工具,而用最原始的telnet方式来访问网站?看看这 HTTP的头里到底是什么东东?在我面试过的工程师中,做过这几件事的人不到5%。
一旦了解得比别人深,就容易看到问题本质,产生信心,激发乐趣。这时候你的解决方案就比别人漂亮,逐渐建立起了影响力,成为了“专家”。因此公司里的疑难杂症会主动找上门来。你就比别人得到了更多的解决问题的机会,从而更快地提升能力。一旦进入良性循环,你的进步就比别人快,但付出的却不一定比别人多。这时候你已经走上了捷径。
在技术人才极度缺乏的中国,在众人盲目追求管理岗位的那点虚荣的今天,如果你的性格是工程师类型的,走技术路线其实是非常适合的。如果你才毕业,那你是最幸福的。你可以给自己制定3个甚至4个五年计划。例如5年打基础,10年变专家,15年国内知名,20年世界闻名。如果你已经奔三或者三十出头,那你快成熟了,但离开花结果还早呢。不信你看看下面几位我们都熟悉的人。
拉里-沃尔(Larry Wall)33岁时出版了《Perl语言编程》一书。之前他是一个系统管理员。
互联网之父温特-瑟夫(Vint Cerf)在发明TCP/IP时,已经35岁。
万维网之父蒂姆·伯纳斯—李(Tim Berners-Lee)在37岁时才发明了万维网(WWW)。
丹尼斯-里奇(Dennis Ritchie)的《C程序设计语言》一书出版时,他37岁。
Java之父詹姆斯·戈士林(James Gosling)40岁时才因为发明Java而成名。
苹果公司创始人之一史蒂夫?沃兹尼艾克(Steven Wozniak)在今年年初以首席科学家的身份加入一家创业公司,研发基于高速闪存技术的存储。他如今已经59岁了。
本文来源:百度博客
Sql Server 中一个非常强大的日期格式化函数
Select CONVERT(varchar(100), GETDATE(), 0): 05 16 2006 10:57AM
Select CONVERT(varchar(100), GETDATE(), 1): 05/16/06
Select CONVERT(varchar(100), GETDATE(), 2): 06.05.16
Select CONVERT(varchar(100), GETDATE(), 3): 16/05/06
Select CONVERT(varchar(100), GETDATE(), 4): 16.05.06
Select CONVERT(varchar(100), GETDATE(), 5): 16-05-06
Select CONVERT(varchar(100), GETDATE(), 6): 16 05 06
Select CONVERT(varchar(100), GETDATE(), 7): 05 16, 06
Select CONVERT(varchar(100), GETDATE(), 8): 10:57:46
Select CONVERT(varchar(100), GETDATE(), 9): 05 16 2006 10:57:46:827AM
Select CONVERT(varchar(100), GETDATE(), 10): 05-16-06
Select CONVERT(varchar(100), GETDATE(), 11): 06/05/16
Select CONVERT(varchar(100), GETDATE(), 12): 060516
Select CONVERT(varchar(100), GETDATE(), 13): 16 05 2006 10:57:46:937
Select CONVERT(varchar(100), GETDATE(), 14): 10:57:46:967
Select CONVERT(varchar(100), GETDATE(), 20): 2006-05-16 10:57:47
Select CONVERT(varchar(100), GETDATE(), 21): 2006-05-16 10:57:47.157
Select CONVERT(varchar(100), GETDATE(), 22): 05/16/06 10:57:47 AM
Select CONVERT(varchar(100), GETDATE(), 23): 2006-05-16
Select CONVERT(varchar(100), GETDATE(), 24): 10:57:47
Select CONVERT(varchar(100), GETDATE(), 25): 2006-05-16 10:57:47.250
Select CONVERT(varchar(100), GETDATE(), 100): 05 16 2006 10:57AM
Select CONVERT(varchar(100), GETDATE(), 101): 05/16/2006
Select CONVERT(varchar(100), GETDATE(), 102): 2006.05.16
Select CONVERT(varchar(100), GETDATE(), 103): 16/05/2006
Select CONVERT(varchar(100), GETDATE(), 104): 16.05.2006
Select CONVERT(varchar(100), GETDATE(), 105): 16-05-2006
Select CONVERT(varchar(100), GETDATE(), 106): 16 05 2006
Select CONVERT(varchar(100), GETDATE(), 107): 05 16, 2006
Select CONVERT(varchar(100), GETDATE(), 108): 10:57:49
Select CONVERT(varchar(100), GETDATE(), 109): 05 16 2006 10:57:49:437AM
Select CONVERT(varchar(100), GETDATE(), 110): 05-16-2006
Select CONVERT(varchar(100), GETDATE(), 111): 2006/05/16
Select CONVERT(varchar(100), GETDATE(), 112): 20060516
Select CONVERT(varchar(100), GETDATE(), 113): 16 05 2006 10:57:49:513
Select CONVERT(varchar(100), GETDATE(), 114): 10:57:49:547
Select CONVERT(varchar(100), GETDATE(), 120): 2006-05-16 10:57:49
Select CONVERT(varchar(100), GETDATE(), 121): 2006-05-16 10:57:49.700
Select CONVERT(varchar(100), GETDATE(), 126): 2006-05-16T10:57:49.827
Select CONVERT(varchar(100), GETDATE(), 130): 18 ???? ?????? 1427 10:57:49:907AM
Select CONVERT(varchar(100), GETDATE(), 131): 18/04/1427 10:57:49:920AM