The important thing in life is to have a great aim , and the determination

常用链接

统计

IT技术链接

保险相关

友情链接

基金知识

生活相关

最新评论

#

在python中获取mac和ip地址

python 获得本机MAC地址:
import uuid
     def get_mac_address():
     mac=uuid.UUID(int=uuid.getnode()).hex[-12:]
     return ":".join([mac[e:e+2] for e in range(0,11,2)])


python获取IP的方法:使用socket

import socket

myname=socket.getfqdn(socket.gethostname( ))
    myaddr=socket.gethostbyname(myname)
    print(myname)
    print(myaddr)

posted @ 2017-05-15 23:26 鸿雁 阅读(240) | 评论 (0)编辑 收藏

Spring—Quartz定时调度CronTrigger时间配置格式说明与实例

spring中使用Quartz时 时间配置例子:

<!-- 定义调用对象和调用对象的方法 end   -->
<!-- 定义调用时间 begin -->
<bean id="realweatherTime" class="org.springframework.scheduling.quartz.CronTriggerBean">
<property name="jobDetail">
<ref bean="realweatherTask" />
</property>
<property name="cronExpression">
<value>0 10/30 * * * ?</value><!-- 表示每小时的10,40时执行任务 -->
</property>
</bean>
<!-- 定义调用时间 end   -->


<!-- 定义调用对象和调用对象的方法 end   -->
<!-- 定义调用时间 begin -->
<bean id="weatherTime" class="org.springframework.scheduling.quartz.CronTriggerBean">
<property name="jobDetail">
<ref bean="weatherTask" />
</property>
<property name="cronExpression">
<!--  <value>0 30 8,13 * * ?</value>  --><!-- 表示每天的8:30和13:30时执行任务 -->
<value>0 0,30 0-23 * * ?</value><!---表示每天从0-23时中每时的整点或半点执行任务->
</property>
</bean>

<!-- 定义调用时间 end   -->1、   CronTrigger时间格式配置说明

CronTrigger配置格式:

格式: [秒] [分] [小时] [日] [月] [周] [年]

序号

说明

是否必填

允许填写的值

允许的通配符

1

0-59 

, - * /

2

0-59

, - * /

3

小时

0-23

, - * /

4

1-31

, - * ? / L W

5

1-12 or JAN-DEC

, - * /

6

1-7 or SUN-SAT

, - * ? / L #

7

empty 或 1970-2099

, - * /

通配符说明:

:表示所有值. 例如:在分的字段上设置 "*",表示每一分钟都会触发。
? 
:表示不指定值。使用的场景为不需要关心当前设置这个字段的值。例如:要在每月的10号触发一个操作,但不关心是周几,所以需要周位置的那个字段设置为"?" 具体设置为 0 0 0 10 * ?
- 
:表示区间。例如 在小时上设置 "10-12",表示 10,11,12点都会触发。

, :表示指定多个值,例如在周字段上设置 "MON,WED,FRI" 表示周一,周三和周五触发
:用于递增触发。如在秒上面设置"5/15" 表示从5秒开始,每增15秒触发(5,20,35,50)。 在月字段上设置'1/3'所示每月1号开始,每隔三天触发一次。
L :表示最后的意思。在日字段设置上,表示当月的最后一天(依据当前月份,如果是二月还会依据是否是润年[leap]), 在周字段上表示星期六,相当于"7"或"SAT"。如果在"L"前加上数字,则表示该数据的最后一个。

例如在周字段上设置"6L"这样的格式,则表示“本月最后一个星期五"

W :表示离指定日期的最近那个工作日(周一至周五). 例如在日字段上设置"15W",表示离每月15号最近的那个工作日触发。如果15号正好是周六,则找最近的周五(14号)触发, 如果15号是周未,则找最近的下周一(16号)触发.如果15号正好在工作日(周一至周五),则就在该天触发。如果指定格式为 "1W",它则表示每月1号往后最近的工作日触发。如果1号正是周六,则将在3号下周一触发。(注,"W"前只能设置具体的数字,不允许区间"-").

'L'和 'W'可以一组合使用。如果在日字段上设置"LW",则表示在本月的最后一个工作日触发

 

# :序号(表示每月的第几周星期几),例如在周字段上设置"6#3"表示在每月的第三个周星期六.注意如果指定"6#5",正好第五周没有星期六,则不会触发该配置(用在母亲节和父亲节再合适不过了)

周字段的设置,若使用英文字母是不区分大小写的 MON 与mon相同.

常用示例:

格式: [秒] [分] [小时] [日] [月] [周] [年]

0 0 12 * * ?           每天12点触发 
0 15 10 ? * *          每天10点15分触发
 
0 15 10 * * ?          每天10点15分触发
  
0 15 10 * * ? *        每天10点15分触发
  
0 15 10 * * ? 2005     2005年每天10点15分触发
 
0 * 14 * * ?           每天下午的 2点到2点59分每分触发
 
0 0/5 14 * * ?         每天下午的 2点到2点59分(整点开始,每隔5分触发
)  
0 0/5 14,18 * * ?        每天下午的 18点到18点59分(整点开始,每隔5分触发)

0 0-5 14 * * ?            每天下午的 2点到2点05分每分触发 
0 10,44 14 ? 3 WED        3月分每周三下午的 2点10分和2点44分触发
 
0 15 10 ? * MON-FRI       从周一到周五每天上午的10点15分触发
 
0 15 10 15 * ?            每月15号上午10点15分触发
 
0 15 10 L * ?             每月最后一天的10点15分触发
 
0 15 10 ? * 6L            每月最后一周的星期五的10点15分触发
 
0 15 10 ? * 6L 2002-2005  从2002年到2005年每月最后一周的星期五的10点15分触发

0 15 10 ? * 6#3           每月的第三周的星期五开始触发 
0 0 12 1/5 * ?            每月的第一个中午开始每隔5天触发一次
 
0 11 11 11 11 ?           每年的11月11号 11点11分触发(光棍节)

spring中使用Quartz时 时间配置例子:

<!-- 定义调用对象和调用对象的方法 end   -->
<!-- 定义调用时间 begin -->
<bean id="realweatherTime" class="org.springframework.scheduling.quartz.CronTriggerBean">
<property name="jobDetail">
<ref bean="realweatherTask" />
</property>
<property name="cronExpression">
<value>0 10/30 * * * ?</value><!-- 表示每小时的10,40时执行任务 -->
</property>
</bean>
<!-- 定义调用时间 end   -->


<!-- 定义调用对象和调用对象的方法 end   -->
<!-- 定义调用时间 begin -->
<bean id="weatherTime" class="org.springframework.scheduling.quartz.CronTriggerBean">
<property name="jobDetail">
<ref bean="weatherTask" />
</property>
<property name="cronExpression">
<!--  <value>0 30 8,13 * * ?</value>  --><!-- 表示每天的8:30和13:30时执行任务 -->
<value>0 0,30 0-23 * * ?</value><!---表示每天从0-23时中每时的整点或半点执行任务->
</property>
</bean>
<!-- 定义调用时间 end   -->


posted @ 2017-04-29 12:01 鸿雁 阅读(308) | 评论 (0)编辑 收藏

前端内容展示操作

1.有时表格内容太多,只显示部分,其余部分已省略号表示,用css处理如下:
.template td{
    word-break:keep-all;/* 不换行 */
    white-space:nowrap;/* 不换行 */
    overflow:hidden;/* 内容超出宽度时隐藏超出部分的内容 */
    text-overflow:ellipsis;/* 当对象内文本溢出时显示省略标记(...) ;需与overflow:hidden;一起使用。*/
}

template 是该表单所在的table class属性。

posted @ 2016-03-09 11:36 鸿雁 阅读(209) | 评论 (0)编辑 收藏

js 金额 用逗号 隔开数字格式化

代码如下:
引用

function fmoney(s, n)  
{  
   n = n > 0 && n <= 20 ? n : 2;  
   s = parseFloat((s + "").replace(/[^\d\.-]/g, "")).toFixed(n) + "";  
   var l = s.split(".")[0].split("").reverse(),  
   r = s.split(".")[1];  
   t = "";  
   for(i = 0; i < l.length; i ++ )  
   {  
      t += l[i] + ((i + 1) % 3 == 0 && (i + 1) != l.length ? "," : "");  
   }  
   return t.split("").reverse().join("") + "." + r;  
}


调用:fmoney("12345.675910", 3),返回12,345.676

还原函数:
引用

function rmoney(s)  
{  
   return parseFloat(s.replace(/[^\d\.-]/g, ""));  
}


示例(可保存一下代码为html文件,运行查看效果):
引用

<SCRIPT>  
function fmoney(s, n)  
{  
   n = n > 0 && n <= 20 ? n : 2;  
   s = parseFloat((s + "").replace(/[^\d\.-]/g, "")).toFixed(n) + "";  
   var l = s.split(".")[0].split("").reverse(),  
   r = s.split(".")[1];  
   t = "";  
   for(i = 0; i < l.length; i ++ )  
   {  
      t += l[i] + ((i + 1) % 3 == 0 && (i + 1) != l.length ? "," : "");  
   }  
   return t.split("").reverse().join("") + "." + r;  
}  
function rmoney(s)  
{  
   return parseFloat(s.replace(/[^\d\.-]/g, ""));  
}  
function g(id)  
{  
   return document.getElementById(id);  
}  
window.onload = function()  
{  
   var num,  
   txt = g("txt"),  
   txt2 = g("txt2"),  
   btn = g("btn"),  
   btn2 = g("btn2"),  
   span = g("span");  
   btn.onclick = function()  
   {  
      num = parseInt(g("num").value);  
      txt.value = fmoney(txt.value, num);  
      txt2.value = fmoney(txt2.value, num);  
   }  
   ;  
   btn2.onclick = function()  
   {  
      num = parseInt(g("num").value);  
      span.innerHTML = "=" + fmoney(rmoney(txt.value) + rmoney(txt2.value), num);  
   }  
   ;  
}  
;  
</SCRIPT>  
小数点位数:  
<select id="num">  
<option value="2">2</option>  
<option value="3">3</option>  
<option value="4">4</option>  
<option value="5">5</option>  
</select>  
<input type="text" id="txt" value="12345.675910"> +  
<input type="text" id="txt2" value="1223"> <span id="span"></span>  
<br>  
<input type="button" id="btn" value="格式化">  
<input type="button" id="btn2" value="相加">

posted @ 2015-09-27 10:23 鸿雁 阅读(232) | 评论 (0)编辑 收藏

BigDecimal用法详解

一、简介
Java在java.math包中提供的API类BigDecimal,用来对超过16位有效位的数进行精确的运算。双精度浮点型变量double可以处理16位有效数。在实际应用中,需要对更大或者更小的数进行运算和处理。float和double只能用来做科学计算或者是工程计算,在商业计算中要用java.math.BigDecimal。BigDecimal所创建的是对象,我们不能使用传统的+、-、*、/等算术运算符直接对其对象进行数学运算,而必须调用其相对应的方法。方法中的参数也必须是BigDecimal的对象。构造器是类的特殊方法,专门用来创建对象,特别是带有参数的对象。


二、构造器描述 
BigDecimal(int)       创建一个具有参数所指定整数值的对象。 
BigDecimal(double) 创建一个具有参数所指定双精度值的对象。 
BigDecimal(long)    创建一个具有参数所指定长整数值的对象。 
BigDecimal(String) 创建一个具有参数所指定以字符串表示的数值的对象。

三、方法描述 
add(BigDecimal)        BigDecimal对象中的值相加,然后返回这个对象。 
subtract(BigDecimal) BigDecimal对象中的值相减,然后返回这个对象。 
multiply(BigDecimal)  BigDecimal对象中的值相乘,然后返回这个对象。 
divide(BigDecimal)     BigDecimal对象中的值相除,然后返回这个对象。 
toString()                将BigDecimal对象的数值转换成字符串。 
doubleValue()          将BigDecimal对象中的值以双精度数返回。 
floatValue()             将BigDecimal对象中的值以单精度数返回。 
longValue()             将BigDecimal对象中的值以长整数返回。 
intValue()               将BigDecimal对象中的值以整数返回。

四、格式化及例子
由于NumberFormat类的format()方法可以使用BigDecimal对象作为其参数,可以利用BigDecimal对超出16位有效数字的货币值,百分值,以及一般数值进行格式化控制。

以利用BigDecimal对货币和百分比格式化为例。首先,创建BigDecimal对象,进行BigDecimal的算术运算后,分别建立对货币和百分比格式化的引用,最后利用BigDecimal对象作为format()方法的参数,输出其格式化的货币值和百分比。

复制代码
public static void main(String[] args) {     
    NumberFormat currency = NumberFormat.getCurrencyInstance(); //建立货币格式化引用
    NumberFormat percent = NumberFormat.getPercentInstance(); //建立百分比格式化引用
    percent.setMaximumFractionDigits(3); //百分比小数点最多3位
    BigDecimal loanAmount = new BigDecimal("15000.48"); //贷款金额
    BigDecimal interestRate = new BigDecimal("0.008"); //利率
    BigDecimal interest = loanAmount.multiply(interestRate); //相乘
    System.out.println("贷款金额:\t" + currency.format(loanAmount));
    System.out.println("利率:\t" + percent.format(interestRate));
    System.out.println("利息:\t" + currency.format(interest)); }
复制代码

运行结果如下:

贷款金额:    ¥15,000.48 
利率:
0.8%
利息: ¥
120.00

五、BigDecimal比较
BigDecimal是通过使用compareTo(BigDecimal)来比较的,具体比较情况如下:

复制代码
public static void main(String[] args) {     
    BigDecimal a = new BigDecimal("1");
    BigDecimal b = new BigDecimal("2");
    BigDecimal c = new BigDecimal("1");
    int result1 = a.compareTo(b);
    int result2 = a.compareTo(c);
    int result3 = b.compareTo(a);
    System.out.println(result1);
    System.out.println(result2);
    System.out.println(result3);
}
复制代码

打印结果是:-1、0、1,即左边比右边数大,返回1,相等返回0,比右边小返回-1。
注意不能使用equals方法来比较大小。

使用BigDecimal的坏处是性能比double和float差,在处理庞大,复杂的运算时尤为明显,因根据实际需求决定使用哪种类型。

posted @ 2015-08-22 12:56 鸿雁 阅读(370) | 评论 (0)编辑 收藏

oracle列转行

如果你只是寻求多行转换成一列,比如把同一个id的某个字段col变成一行数据库,把多个col用逗号链接起来。下面几个SQL可以立竿见影。
《1》最简短的方式,使用WMSYS.WM_CONCAT:
SELECT id, REPLACE(wmsys.wm_concat(col), ',', '/') str
FROM Table1
GROUP BY id;
《2》使用sys_connect_by_path:
SELECT t.id id, MAX(substr(sys_connect_by_path(t.col, ','), 2)) str
FROM (SELECT id, col, row_number() over(PARTITION BY id ORDER BY col) rn
FROM Table1) t
START WITH rn = 1
CONNECT BY rn = PRIOR rn + 1
AND id = PRIOR id
GROUP BY t.id;
或者
SELECT t.id id, substr(sys_connect_by_path(t.col, ','), 2) str
FROM (SELECT id, col, row_number() over(PARTITION BY id ORDER BY col) rn
FROM Table1) t
WHERE connect_by_isleaf = 1
START WITH rn = 1
CONNECT BY rn = PRIOR rn + 1
AND id = PRIOR id;
《3》使用MODEL:
SELECT id, substr(str, 2) str FROM Table1
MODEL
RETURN UPDATED ROWS
PARTITION BY(ID)
DIMENSION BY(row_number() over(PARTITION BY ID ORDER BY col) AS rn)
MEASURES (CAST(col AS VARCHAR2(20)) AS str)
RULES UPSERT
ITERATE(3) UNTIL( presentv(str[iteration_number+2],1,0)=0)
(str[0] = str[0] || ',' || str[iteration_number+1])
ORDER BY 1;
 
 
下面是原文:
1.
概述
最近论坛很多人提的问题都与行列转换有关系,所以我对行列转换的相关知识做了一个总结,希望对大家有所帮助,同时有何错疏,恳请大家指出,我也是在写作过程中学习,算是一起和大家学习吧!
行列转换包括以下六种情况:
1)
列转行
2)
行转列
3)
多列转换成字符串
4)
多行转换成字符串
5)
字符串转换成多列
6)
字符串转换成多行
下面分别进行举例介绍。
首先声明一点,有些例子需要如下10g及以后才有的知识:
A.
掌握model子句
B.
正则表达式
C.
加强的层次查询
讨论的适用范围只包括8i,9i,10g及以后版本。
2.
列转行
CREATE TABLE t_col_row(
ID INT,
c1 VARCHAR2(10),
c2 VARCHAR2(10),
c3 VARCHAR2(10));
INSERT INTO t_col_row VALUES (1, 'v11', 'v21', 'v31');
INSERT INTO t_col_row VALUES (2, 'v12', 'v22', NULL);
INSERT INTO t_col_row VALUES (3, 'v13', NULL, 'v33');
INSERT INTO t_col_row VALUES (4, NULL, 'v24', 'v34');
INSERT INTO t_col_row VALUES (5, 'v15', NULL, NULL);
INSERT INTO t_col_row VALUES (6, NULL, NULL, 'v35');
INSERT INTO t_col_row VALUES (7, NULL, NULL, NULL);
COMMIT;
SELECT * FROM t_col_row;
2.1
UNION ALL
适用范围:8i,9i,10g及以后版本
SELECT id, 'c1' cn, c1 cv
FROM t_col_row
UNION ALL
SELECT id, 'c2' cn, c2 cv
FROM t_col_row
UNION ALL
SELECT id, 'c3' cn, c3 cv FROM t_col_row;
若空行不需要转换,只需加一个where条件,
WHERE COLUMN IS NOT NULL 即可。
2.2
MODEL
适用范围:10g及以后
SELECT id, cn, cv FROM t_col_row
MODEL
RETURN UPDATED ROWS
PARTITION BY (ID)
DIMENSION BY (0 AS n)
MEASURES ('xx' AS cn,'yyy' AS cv,c1,c2,c3)
RULES UPSERT ALL
(
cn[1] = 'c1',
cn[2] = 'c2',
cn[3] = 'c3',
cv[1] = c1[0],
cv[2] = c2[0],
cv[3] = c3[0]
)
ORDER BY ID,cn;
2.3
COLLECTION
适用范围:8i,9i,10g及以后版本
要创建一个对象和一个集合:
CREATE TYPE cv_pair AS OBJECT(cn VARCHAR2(10),cv VARCHAR2(10));
CREATE TYPE cv_varr AS VARRAY(8) OF cv_pair;
SELECT id, t.cn AS cn, t.cv AS cv
FROM t_col_row,
TABLE(cv_varr(cv_pair('c1', t_col_row.c1),
cv_pair('c2', t_col_row.c2),
cv_pair('c3', t_col_row.c3))) t
ORDER BY 1, 2;
3.
行转列
CREATE TABLE t_row_col AS
SELECT id, 'c1' cn, c1 cv
FROM t_col_row
UNION ALL
SELECT id, 'c2' cn, c2 cv
FROM t_col_row
UNION ALL
SELECT id, 'c3' cn, c3 cv FROM t_col_row;
SELECT * FROM t_row_col ORDER BY 1,2;
3.1
AGGREGATE FUNCTION
适用范围:8i,9i,10g及以后版本
SELECT id,
MAX(decode(cn, 'c1', cv, NULL)) AS c1,
MAX(decode(cn, 'c2', cv, NULL)) AS c2,
MAX(decode(cn, 'c3', cv, NULL)) AS c3
FROM t_row_col
GROUP BY id
ORDER BY 1;
MAX聚集函数也可以用sum、min、avg等其他聚集函数替代。
被指定的转置列只能有一列,但固定的列可以有多列,请看下面的例子:
SELECT mgr, deptno, empno, ename FROM emp ORDER BY 1, 2;
SELECT mgr,
deptno,
MAX(decode(empno, '7788', ename, NULL)) "7788",
MAX(decode(empno, '7902', ename, NULL)) "7902",
MAX(decode(empno, '7844', ename, NULL)) "7844",
MAX(decode(empno, '7521', ename, NULL)) "7521",
MAX(decode(empno, '7900', ename, NULL)) "7900",
MAX(decode(empno, '7499', ename, NULL)) "7499",
MAX(decode(empno, '7654', ename, NULL)) "7654"
FROM emp
WHERE mgr IN (7566, 7698)
AND deptno IN (20, 30)
GROUP BY mgr, deptno
ORDER BY 1, 2;
这里转置列为empno,固定列为mgr,deptno。
还有一种行转列的方式,就是相同组中的行值变为单个列值,但转置的行值不变为列名:
ID CN_1 CV_1 CN_2 CV_2 CN_3 CV_3
1 c1 v11 c2 v21 c3 v31
2 c1 v12 c2 v22 c3
3 c1 v13 c2 c3 v33
4 c1 c2 v24 c3 v34
5 c1 v15 c2 c3
6 c1 c2 c3 v35
7 c1 c2 c3
这种情况可以用分析函数实现:
SELECT id,
MAX(decode(rn, 1, cn, NULL)) cn_1,
MAX(decode(rn, 1, cv, NULL)) cv_1,
MAX(decode(rn, 2, cn, NULL)) cn_2,
MAX(decode(rn, 2, cv, NULL)) cv_2,
MAX(decode(rn, 3, cn, NULL)) cn_3,
MAX(decode(rn, 3, cv, NULL)) cv_3
FROM (SELECT id,
cn,
cv,
row_number() over(PARTITION BY id ORDER BY cn, cv) rn
FROM t_row_col)
GROUP BY ID;
3.2
PL/SQL
适用范围:8i,9i,10g及以后版本
这种对于行值不固定的情况可以使用。
下面是我写的一个包,包中
p_rows_column_real用于前述的第一种不限定列的转换;
p_rows_column用于前述的第二种不限定列的转换。
CREATE OR REPLACE PACKAGE pkg_dynamic_rows_column AS
TYPE refc IS REF CURSOR;
PROCEDURE p_print_sql(p_txt VARCHAR2);
FUNCTION f_split_str(p_str VARCHAR2, p_division VARCHAR2, p_seq INT)
RETURN VARCHAR2;
PROCEDURE p_rows_column(p_table IN VARCHAR2,
p_keep_cols IN VARCHAR2,
p_pivot_cols IN VARCHAR2,
p_where IN VARCHAR2 DEFAULT NULL,
p_refc IN OUT refc);
PROCEDURE p_rows_column_real(p_table IN VARCHAR2,
p_keep_cols IN VARCHAR2,
p_pivot_col IN VARCHAR2,
p_pivot_val IN VARCHAR2,
p_where IN VARCHAR2 DEFAULT NULL,
p_refc IN OUT refc);
END;
/
CREATE OR REPLACE PACKAGE BODY pkg_dynamic_rows_column AS
PROCEDURE p_print_sql(p_txt VARCHAR2) IS
v_len INT;
BEGIN
v_len := length(p_txt);
FOR i IN 1 .. v_len / 250 + 1 LOOP
dbms_output.put_line(substrb(p_txt, (i - 1) * 250 + 1, 250));
END LOOP;
END;
FUNCTION f_split_str(p_str VARCHAR2, p_division VARCHAR2, p_seq INT)
RETURN VARCHAR2 IS
v_first INT;
v_last INT;
BEGIN
IF p_seq < 1 THEN
RETURN NULL;
END IF;
IF p_seq = 1 THEN
IF instr(p_str, p_division, 1, p_seq) = 0 THEN
RETURN p_str;
ELSE
RETURN substr(p_str, 1, instr(p_str, p_division, 1) - 1);
END IF;
ELSE
v_first := instr(p_str, p_division, 1, p_seq - 1);
v_last := instr(p_str, p_division, 1, p_seq);
IF (v_last = 0) THEN
IF (v_first > 0) THEN
RETURN substr(p_str, v_first + 1);
ELSE
RETURN NULL;
END IF;
ELSE
RETURN substr(p_str, v_first + 1, v_last - v_first - 1);
END IF;
END IF;
END f_split_str;
PROCEDURE p_rows_column(p_table IN VARCHAR2,
p_keep_cols IN VARCHAR2,
p_pivot_cols IN VARCHAR2,
p_where IN VARCHAR2 DEFAULT NULL,
p_refc IN OUT refc) IS
v_sql VARCHAR2(4000);
TYPE v_keep_ind_by IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER;
v_keep v_keep_ind_by;
TYPE v_pivot_ind_by IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER;
v_pivot v_pivot_ind_by;
v_keep_cnt INT;
v_pivot_cnt INT;
v_max_cols INT;
v_partition VARCHAR2(4000);
v_partition1 VARCHAR2(4000);
v_partition2 VARCHAR2(4000);
BEGIN
v_keep_cnt := length(p_keep_cols) - length(REPLACE(p_keep_cols, ',')) + 1;
v_pivot_cnt := length(p_pivot_cols) -
length(REPLACE(p_pivot_cols, ',')) + 1;
FOR i IN 1 .. v_keep_cnt LOOP
v_keep(i) := f_split_str(p_keep_cols, ',', i);
END LOOP;
FOR j IN 1 .. v_pivot_cnt LOOP
v_pivot(j) := f_split_str(p_pivot_cols, ',', j);
END LOOP;
v_sql := 'select max(count(*)) from ' || p_table || ' group by ';
FOR i IN 1 .. v_keep.LAST LOOP
v_sql := v_sql || v_keep(i) || ',';
END LOOP;
v_sql := rtrim(v_sql, ',');
EXECUTE IMMEDIATE v_sql
INTO v_max_cols;
v_partition := 'select ';
FOR x IN 1 .. v_keep.COUNT LOOP
v_partition1 := v_partition1 || v_keep(x) || ',';
END LOOP;
FOR y IN 1 .. v_pivot.COUNT LOOP
v_partition2 := v_partition2 || v_pivot(y) || ',';
END LOOP;
v_partition1 := rtrim(v_partition1, ',');
v_partition2 := rtrim(v_partition2, ',');
v_partition := v_partition || v_partition1 || ',' || v_partition2 ||
', row_number() over (partition by ' || v_partition1 ||
' order by ' || v_partition2 || ') rn from ' || p_table;
v_partition := rtrim(v_partition, ',');
v_sql := 'select ';
FOR i IN 1 .. v_keep.COUNT LOOP
v_sql := v_sql || v_keep(i) || ',';
END LOOP;
FOR i IN 1 .. v_max_cols LOOP
FOR j IN 1 .. v_pivot.COUNT LOOP
v_sql := v_sql || ' max(decode(rn,' || i || ',' || v_pivot(j) ||
',null))' || v_pivot(j) || '_' || i || ',';
END LOOP;
END LOOP;
IF p_where IS NOT NULL THEN
v_sql := rtrim(v_sql, ',') || ' from (' || v_partition || ' ' ||
p_where || ') group by ';
ELSE
v_sql := rtrim(v_sql, ',') || ' from (' || v_partition ||
') group by ';
END IF;
FOR i IN 1 .. v_keep.COUNT LOOP
v_sql := v_sql || v_keep(i) || ',';
END LOOP;
v_sql := rtrim(v_sql, ',');
p_print_sql(v_sql);
OPEN p_refc FOR v_sql;
EXCEPTION
WHEN OTHERS THEN
OPEN p_refc FOR
SELECT 'x' FROM dual WHERE 0 = 1;
END;
PROCEDURE p_rows_column_real(p_table IN VARCHAR2,
p_keep_cols IN VARCHAR2,
p_pivot_col IN VARCHAR2,
p_pivot_val IN VARCHAR2,
p_where IN VARCHAR2 DEFAULT NULL,
p_refc IN OUT refc) IS
v_sql VARCHAR2(4000);
TYPE v_keep_ind_by IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER;
v_keep v_keep_ind_by;
TYPE v_pivot_ind_by IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER;
v_pivot v_pivot_ind_by;
v_keep_cnt INT;
v_group_by VARCHAR2(2000);
BEGIN
v_keep_cnt := length(p_keep_cols) - length(REPLACE(p_keep_cols, ',')) + 1;
FOR i IN 1 .. v_keep_cnt LOOP
v_keep(i) := f_split_str(p_keep_cols, ',', i);
END LOOP;
v_sql := 'select ' || 'cast(' || p_pivot_col ||
' as varchar2(200)) as ' || p_pivot_col || ' from ' || p_table ||
' group by ' || p_pivot_col;
EXECUTE IMMEDIATE v_sql BULK COLLECT
INTO v_pivot;
FOR i IN 1 .. v_keep.COUNT LOOP
v_group_by := v_group_by || v_keep(i) || ',';
END LOOP;
v_group_by := rtrim(v_group_by, ',');
v_sql := 'select ' || v_group_by || ',';
FOR x IN 1 .. v_pivot.COUNT LOOP
v_sql := v_sql || ' max(decode(' || p_pivot_col || ',' || chr(39) ||
v_pivot(x) || chr(39) || ',' || p_pivot_val ||
',null)) as "' || v_pivot(x) || '",';
END LOOP;
v_sql := rtrim(v_sql, ',');
IF p_where IS NOT NULL THEN
v_sql := v_sql || ' from ' || p_table || p_where || ' group by ' ||
v_group_by;
ELSE
v_sql := v_sql || ' from ' || p_table || ' group by ' || v_group_by;
END IF;
p_print_sql(v_sql);
OPEN p_refc FOR v_sql;
EXCEPTION
WHEN OTHERS THEN
OPEN p_refc FOR
SELECT 'x' FROM dual WHERE 0 = 1;
END;
END;
/
4.
多列转换成字符串
CREATE TABLE t_col_str AS
SELECT * FROM t_col_row;
这个比较简单,用||或concat函数可以实现:
SELECT concat('a','b') FROM dual;
4.1
|| OR CONCAT
适用范围:8i,9i,10g及以后版本
SELECT * FROM t_col_str;
SELECT ID,c1||','||c2||','||c3 AS c123
FROM t_col_str;
5.
多行转换成字符串
CREATE TABLE t_row_str(
ID INT,
col VARCHAR2(10));
INSERT INTO t_row_str VALUES(1,'a');
INSERT INTO t_row_str VALUES(1,'b');
INSERT INTO t_row_str VALUES(1,'c');
INSERT INTO t_row_str VALUES(2,'a');
INSERT INTO t_row_str VALUES(2,'d');
INSERT INTO t_row_str VALUES(2,'e');
INSERT INTO t_row_str VALUES(3,'c');
COMMIT;
SELECT * FROM t_row_str;
5.1
MAX + DECODE
适用范围:8i,9i,10g及以后版本
SELECT id,
MAX(decode(rn, 1, col, NULL)) ||
MAX(decode(rn, 2, ',' || col, NULL)) ||
MAX(decode(rn, 3, ',' || col, NULL)) str
FROM (SELECT id,
col,
row_number() over(PARTITION BY id ORDER BY col) AS rn
FROM t_row_str) t
GROUP BY id
ORDER BY 1;
5.2
ROW_NUMBER + LEAD
适用范围:8i,9i,10g及以后版本
SELECT id, str
FROM (SELECT id,
row_number() over(PARTITION BY id ORDER BY col) AS rn,
col || lead(',' || col, 1) over(PARTITION BY id ORDER BY col) ||
lead(',' || col, 2) over(PARTITION BY id ORDER BY col) ||
lead(',' || col, 3) over(PARTITION BY id ORDER BY col) AS str
FROM t_row_str)
WHERE rn = 1
ORDER BY 1;
5.3
MODEL
适用范围:10g及以后版本
SELECT id, substr(str, 2) str FROM t_row_str
MODEL
RETURN UPDATED ROWS
PARTITION BY(ID)
DIMENSION BY(row_number() over(PARTITION BY ID ORDER BY col) AS rn)
MEASURES (CAST(col AS VARCHAR2(20)) AS str)
RULES UPSERT
ITERATE(3) UNTIL( presentv(str[iteration_number+2],1,0)=0)
(str[0] = str[0] || ',' || str[iteration_number+1])
ORDER BY 1;
5.4
SYS_CONNECT_BY_PATH
适用范围:8i,9i,10g及以后版本
SELECT t.id id, MAX(substr(sys_connect_by_path(t.col, ','), 2)) str
FROM (SELECT id, col, row_number() over(PARTITION BY id ORDER BY col) rn
FROM t_row_str) t
START WITH rn = 1
CONNECT BY rn = PRIOR rn + 1
AND id = PRIOR id
GROUP BY t.id;
适用范围:10g及以后版本
SELECT t.id id, substr(sys_connect_by_path(t.col, ','), 2) str
FROM (SELECT id, col, row_number() over(PARTITION BY id ORDER BY col) rn
FROM t_row_str) t
WHERE connect_by_isleaf = 1
START WITH rn = 1
CONNECT BY rn = PRIOR rn + 1
AND id = PRIOR id;
5.5
WMSYS.WM_CONCAT
适用范围:10g及以后版本
这个函数预定义按','分隔字符串,若要用其他符号分隔可以用,replace将','替换。
SELECT id, REPLACE(wmsys.wm_concat(col), ',', '/') str
FROM t_row_str
GROUP BY id;
6.
字符串转换成多列
其实际上就是一个字符串拆分的问题。
CREATE TABLE t_str_col AS
SELECT ID,c1||','||c2||','||c3 AS c123
FROM t_col_str;
SELECT * FROM t_str_col;
6.1
SUBSTR + INSTR
适用范围:8i,9i,10g及以后版本
SELECT id,
c123,
substr(c123, 1, instr(c123 || ',', ',', 1, 1) - 1) c1,
substr(c123,
instr(c123 || ',', ',', 1, 1) + 1,
instr(c123 || ',', ',', 1, 2) - instr(c123 || ',', ',', 1, 1) - 1) c2,
substr(c123,
instr(c123 || ',', ',', 1, 2) + 1,
instr(c123 || ',', ',', 1, 3) - instr(c123 || ',', ',', 1, 2) - 1) c3
FROM t_str_col
ORDER BY 1;
6.2
REGEXP_SUBSTR
适用范围:10g及以后版本
SELECT id,
c123,
rtrim(regexp_substr(c123 || ',', '.*?' || ',', 1, 1), ',') AS c1,
rtrim(regexp_substr(c123 || ',', '.*?' || ',', 1, 2), ',') AS c2,
rtrim(regexp_substr(c123 || ',', '.*?' || ',', 1, 3), ',') AS c3
FROM t_str_col
ORDER BY 1;
7.
字符串转换成多行
CREATE TABLE t_str_row AS
SELECT id,
MAX(decode(rn, 1, col, NULL)) ||
MAX(decode(rn, 2, ',' || col, NULL)) ||
MAX(decode(rn, 3, ',' || col, NULL)) str
FROM (SELECT id,
col,
row_number() over(PARTITION BY id ORDER BY col) AS rn
FROM t_row_str) t
GROUP BY id
ORDER BY 1;
SELECT * FROM t_str_row;
7.1
UNION ALL
适用范围:8i,9i,10g及以后版本
SELECT id, 1 AS p, substr(str, 1, instr(str || ',', ',', 1, 1) - 1) AS cv
FROM t_str_row
UNION ALL
SELECT id,
2 AS p,
substr(str,
instr(str || ',', ',', 1, 1) + 1,
instr(str || ',', ',', 1, 2) - instr(str || ',', ',', 1, 1) - 1) AS cv
FROM t_str_row
UNION ALL
SELECT id,
3 AS p,
substr(str,
instr(str || ',', ',', 1, 1) + 1,
instr(str || ',', ',', 1, 2) - instr(str || ',', ',', 1, 1) - 1) AS cv
FROM t_str_row
ORDER BY 1, 2;
适用范围:10g及以后版本
SELECT id, 1 AS p, rtrim(regexp_substr(str||',', '.*?' || ',', 1, 1), ',') AS cv
FROM t_str_row
UNION ALL
SELECT id, 2 AS p, rtrim(regexp_substr(str||',', '.*?' || ',', 1, 2), ',') AS cv
FROM t_str_row
UNION ALL
SELECT id, 3 AS p, rtrim(regexp_substr(str||',', '.*?' || ',',1,3), ',') AS cv
FROM t_str_row
ORDER BY 1, 2;
7.2
VARRAY
适用范围:8i,9i,10g及以后版本
要创建一个可变数组:
CREATE OR REPLACE TYPE ins_seq_type IS VARRAY(8) OF NUMBER;
SELECT * FROM TABLE(ins_seq_type(1, 2, 3, 4, 5));
SELECT t.id,
c.column_value AS p,
substr(t.ca,
instr(t.ca, ',', 1, c.column_value) + 1,
instr(t.ca, ',', 1, c.column_value + 1) -
(instr(t.ca, ',', 1, c.column_value) + 1)) AS cv
FROM (SELECT id,
',' || str || ',' AS ca,
length(str || ',') - nvl(length(REPLACE(str, ',')), 0) AS cnt
FROM t_str_row) t
INNER JOIN TABLE(ins_seq_type(1, 2, 3)) c ON c.column_value <=
t.cnt
ORDER BY 1, 2;
7.3
SEQUENCE SERIES
这类方法主要是要产生一个连续的整数列,产生连续整数列的方法有很多,主要有:
CONNECT BY,ROWNUM+all_objects,CUBE等。
适用范围:8i,9i,10g及以后版本
SELECT t.id,
c.lv AS p,
substr(t.ca,
instr(t.ca, ',', 1, c.lv) + 1,
instr(t.ca, ',', 1, c.lv + 1) -
(instr(t.ca, ',', 1, c.lv) + 1)) AS cv
FROM (SELECT id,
',' || str || ',' AS ca,
length(str || ',') - nvl(length(REPLACE(str, ',')), 0) AS cnt
FROM t_str_row) t,
(SELECT LEVEL lv FROM dual CONNECT BY LEVEL <= 5) c
WHERE c.lv <= t.cnt
ORDER BY 1, 2;
SELECT t.id,
c.rn AS p,
substr(t.ca,
instr(t.ca, ',', 1, c.rn) + 1,
instr(t.ca, ',', 1, c.rn + 1) -
(instr(t.ca, ',', 1, c.rn) + 1)) AS cv
FROM (SELECT id,
',' || str || ',' AS ca,
length(str || ',') - nvl(length(REPLACE(str, ',')), 0) AS cnt
FROM t_str_row) t,
(SELECT rownum rn FROM all_objects WHERE rownum <= 5) c
WHERE c.rn <= t.cnt
ORDER BY 1, 2;
SELECT t.id,
c.cb AS p,
substr(t.ca,
instr(t.ca, ',', 1, c.cb) + 1,
instr(t.ca, ',', 1, c.cb + 1) -
(instr(t.ca, ',', 1, c.cb) + 1)) AS cv
FROM (SELECT id,
',' || str || ',' AS ca,
length(str || ',') - nvl(length(REPLACE(str, ',')), 0) AS cnt
FROM t_str_row) t,
(SELECT rownum cb FROM (SELECT 1 FROM dual GROUP BY CUBE(1, 2))) c
WHERE c.cb <= t.cnt
ORDER BY 1, 2;
适用范围:10g及以后版本
SELECT t.id,
c.lv AS p,
rtrim(regexp_substr(t.str || ',', '.*?' || ',', 1, c.lv), ',') AS cv
FROM (SELECT id,
str,
length(regexp_replace(str || ',', '[^' || ',' || ']', NULL)) AS cnt
FROM t_str_row) t
INNER JOIN (SELECT LEVEL lv FROM dual CONNECT BY LEVEL <= 5) c ON c.lv <= t.cnt
ORDER BY 1, 2;
7.4
HIERARCHICAL + DBMS_RANDOM
适用范围:10g及以后版本
SELECT id,
LEVEL AS p,
rtrim(regexp_substr(str || ',', '.*?' || ',', 1, LEVEL), ',') AS cv
FROM t_str_row
CONNECT BY id = PRIOR id
AND PRIOR dbms_random.VALUE IS NOT NULL
AND LEVEL <=
length(regexp_replace(str || ',', '[^' || ',' || ']', NULL))
ORDER BY 1, 2;
7.5
HIERARCHICAL + CONNECT_BY_ROOT
适用范围:10g及以后版本
SELECT id,
LEVEL AS p,
rtrim(regexp_substr(str || ',', '.*?' || ',', 1, LEVEL), ',') AS cv
FROM t_str_row
CONNECT BY id = connect_by_root id
AND LEVEL <=
length(regexp_replace(str || ',', '[^' || ',' || ']', NULL))
ORDER BY 1, 2;
7.6
MODEL
适用范围:10g及以后版本
SELECT id, p, cv FROM t_str_row
MODEL
RETURN UPDATED ROWS
PARTITION BY(ID)
DIMENSION BY( 0 AS p)
MEASURES( str||',' AS cv)
RULES UPSERT
(cv
[ FOR p
FROM 1 TO length(regexp_replace(cv[0],'[^'||','||']',null))

例子:
SELECT t.dutyname , substr(sys_connect_by_path(t.username, ','), 2) str
FROM (SELECT dutyname, username, row_number() over(PARTITION BY dutyname ORDER BY username) rn
FROM test) t
WHERE connect_by_isleaf = 1
START WITH rn = 1
CONNECT BY rn = PRIOR rn + 1
AND dutyname = PRIOR dutyname;


posted @ 2015-07-27 23:52 鸿雁 阅读(251) | 评论 (0)编辑 收藏

Https通讯原理

Https是什么? Https是基于安全目的的Http通道,其安全基础由SSL层来保证。最初由netscape公司研发,主要提供了通讯双方的身份认证和加密通信方法。现在广泛应用于互联网上安全敏感通讯。 Https与Http主要区别 协议基础不同:Https在Http下加入了SSL层, 通讯方式不同:Https在数据通信之前需要客户端、服务器进行握手(身份认证),建立连接后,传输数据经过加密,通信端口443。 Http传输数据不加密,明文,通信端口80。 SSL协议基础 SSL协议位于TCP/IP协议与各种应用层协议之间,本身又分为两层: SSL记录协议(SSL Record Protocol):建立在可靠传输层协议(TCP)之上,为上层协议提供数据封装、压缩、加密等基本功能。 SSL握手协议(SSL Handshake Procotol):在SSL记录协议之上,用于实际数据传输前,通讯双方进行身份认证、协商加密算法、交换加密密钥等。 SSL协议通信过程 (1) 浏览器发送一个连接请求给服务器;服务器将自己的证书(包含服务器公钥S_PuKey)、对称加密算法种类及其他相关信息返回客户端; (2) 客户端浏览器检查服务器传送到CA证书是否由自己信赖的CA中心签发。若是,执行4步;否则,给客户一个警告信息:询问是否继续访问。 (3) 客户端浏览器比较证书里的信息,如证书有效期、服务器域名和公钥S_PK,与服务器传回的信息是否一致,如果一致,则浏览器完成对服务器的身份认证。 (4) 服务器要求客户端发送客户端证书(包含客户端公钥C_PuKey)、支持的对称加密方案及其他相关信息。收到后,服务器进行相同的身份认证,若没有通过验证,则拒绝连接; (5) 服务器根据客户端浏览器发送到密码种类,选择一种加密程度最高的方案,用客户端公钥C_PuKey加密后通知到浏览器; (6) 客户端通过私钥C_PrKey解密后,得知服务器选择的加密方案,并选择一个通话密钥key,接着用服务器公钥S_PuKey加密后发送给服务器; (7) 服务器接收到的浏览器传送到消息,用私钥S_PrKey解密,获得通话密钥key。 (8) 接下来的数据传输都使用该对称密钥key进行加密。 上面所述的是双向认证 SSL 协议的具体通讯过程,服务器和用户双方必须都有证书。由此可见,SSL协议是通过非对称密钥机制保证双方身份认证,并完成建立连接,在实际数据通信时通过对称密钥机制保障数据安全性

posted @ 2014-06-13 16:16 鸿雁 阅读(220) | 评论 (0)编辑 收藏

8种Nosql数据库系统对比

1. CouchDB
•所用语言: Erlang
•特点:DB一致性,易于使用
•使用许可: Apache
•协议: HTTP/REST
•双向数据复制,
•持续进行或临时处理,
•处理时带冲突检查,
•因此,采用的是master-master复制(见编注2)
•MVCC – 写操作不阻塞读操作
•可保存文件之前的版本
•Crash-only(可靠的)设计
•需要不时地进行数据压缩
•视图:嵌入式 映射/减少
•格式化视图:列表显示
•支持进行服务器端文档验证
•支持认证
•根据变化实时更新
•支持附件处理
•因此, CouchApps(独立的 js应用程序)
•需要 jQuery程序库
最佳应用场景:适用于数据变化较少,执行预定义查询,进行数据统计的应用程序。适用于需要提供数据版本支持的应用程序。 例如: CRM、CMS系统。
master-master复制对于多站点部署是非常有用的。 (编注2:master-master复制:是一种数据库同步方法,允许数据在一组计算机之间共享数据,
并且可以通过小组中任意成员在组内进行数据更新。)

2. Redis
•所用语言:C/C++
•特点:运行异常快
•使用许可: BSD
•协议:类 Telnet
•有硬盘存储支持的内存数据库,
•但自2.0版本以后可以将数据交换到硬盘(注意, 2.4以后版本不支持该特性!)
•Master-slave复制(见编注3)
•虽然采用简单数据或以键值索引的哈希表,但也支持复杂操作,例如 ZREVRANGEBYSCORE。
•INCR & co (适合计算极限值或统计数据)
•支持 sets(同时也支持 union/diff/inter)
•支持列表(同时也支持队列;阻塞式 pop操作)
•支持哈希表(带有多个域的对象)
•支持排序 sets(高得分表,适用于范围查询)
•Redis支持事务 •支持将数据设置成过期数据(类似快速缓冲区设计)
•Pub/Sub允许用户实现消息机制
最佳应用场景:适用于数据变化快且数据库大小可遇见(适合内存容量)的应用程序。 例如:股票价格、数据分析、实时数据搜集、实时通讯。
(编注3:Master-slave复制:如果同一时刻只有一台服务器处理所有的复制请求,这被称为 Master-slave复制,通常应用在需要提供高可用性的服务器集群。)

 3. MongoDB
•所用语言:C++
•特点:保留了SQL一些友好的特性(查询,索引)。
•使用许可: AGPL(发起者: Apache)
•协议: Custom, binary( BSON)
•Master/slave复制(支持自动错误恢复,使用 sets 复制)
•内建分片机制
•支持 javascript表达式查询
•可在服务器端执行任意的 javascript函数
•update-in-place支持比CouchDB更好
•在数据存储时采用内存到文件映射
•对性能的关注超过对功能的要求
•建议最好打开日志功能(参数 –journal)
•在32位操作系统上,数据库大小限制在约2.5Gb
•空数据库大约占 192Mb
•采用 GridFS存储大数据或元数据(不是真正的文件系统)
最佳应用场景:适用于需要动态查询支持;需要使用索引而不是 map/reduce功能;需要对大数据库有性能要求;需要使用 CouchDB但因为数据改变太频繁而占满内存的应用程序。 例如:你本打算采用 MySQL或 PostgreSQL,但因为它们本身自带的预定义栏让你望而却步。

4. Riak
 •所用语言:Erlang和C,以及一些Javascript
•特点:具备容错能力
•使用许可: Apache
•协议: HTTP/REST或者 custom binary
•可调节的分发及复制(N, R, W)
•用 JavaScript or Erlang在操作前或操作后进行验证和安全支持。
•使用JavaScript或Erlang进行 Map/reduce
•连接及连接遍历:可作为图形数据库使用
•索引:输入元数据进行搜索(1.0版本即将支持)
•大数据对象支持( Luwak)
•提供“开源”和“企业”两个版本
•全文本搜索,索引,通过 Riak搜索服务器查询( beta版)
•支持Masterless多站点复制及商业许可的 SNMP监控
最佳应用场景:适用于想使用类似 Cassandra(类似Dynamo)数据库但无法处理 bloat及复杂性的情况。适用于你打算做多站点复制,但又需要对单个站点的扩展性,可用性及出错处理有要求的情况。 例如:销售数据搜集,工厂控制系统;对宕机时间有严格要求;可以作为易于更新的 web服务器使用。
 
5. Membase
•所用语言: Erlang和C
•特点:兼容 Memcache,但同时兼具持久化和支持集群
•使用许可: Apache 2.0
•协议:分布式缓存及扩展
•非常快速(200k+/秒),通过键值索引数据
•可持久化存储到硬盘
•所有节点都是唯一的( master-master复制)
•在内存中同样支持类似分布式缓存的缓存单元
•写数据时通过去除重复数据来减少 IO
•提供非常好的集群管理 web界面
•更新软件时软无需停止数据库服务
•支持连接池和多路复用的连接代理
最佳应用场景:适用于需要低延迟数据访问,高并发支持以及高可用性的应用程序 例如:低延迟数据访问比如以广告为目标的应用,高并发的 web 应用比如网络游戏(例如 Zynga)

6. Neo4j
•所用语言: Java
•特点:基于关系的图形数据库
•使用许可: GPL,其中一些特性使用 AGPL/商业许可
•协议: HTTP/REST(或嵌入在 Java中)
•可独立使用或嵌入到 Java应用程序
•图形的节点和边都可以带有元数据
•很好的自带web管理功能
•使用多种算法支持路径搜索
•使用键值和关系进行索引
•为读操作进行优化
•支持事务(用 Java api)
•使用 Gremlin图形遍历语言
•支持 Groovy脚本
•支持在线备份,高级监控及高可靠性支持使用 AGPL/商业许可 最佳应用场景:适用于图形一类数据。这是 Neo4j与其他nosql数据库的最显著区别 例如:社会关系,公共交通网络,地图及网络拓谱

7. Cassandra
•所用语言: Java
•特点:对大型表格和 Dynamo支持得最好
•使用许可: Apache
•协议: Custom, binary (节约型)
•可调节的分发及复制(N, R, W)
•支持以某个范围的键值通过列查询
•类似大表格的功能:列,某个特性的列集合
•写操作比读操作更快
•基于 Apache分布式平台尽可能地 Map/reduce
•我承认对 Cassandra有偏见,一部分是因为它本身的臃肿和复杂性,也因为 Java的问题(配置,出现异常,等等)
最佳应用场景:当使用写操作多过读操作(记录日志)如果每个系统组建都必须用 Java编写(没有人因为选用 Apache的软件被解雇) 例如:银行业,金融业(虽然对于金融交易不是必须的,但这些产业对数据库的要求会比它们更大)写比读更快,所以一个自然的特性就是实时数据分析

8. HBase (配合 ghshephard使用)
•所用语言: Java
•特点:支持数十亿行X上百万列
•使用许可: Apache
•协议:HTTP/REST (支持 Thrift,见编注4)
•在 BigTable之后建模
•采用分布式架构 Map/reduce
•对实时查询进行优化
•高性能 Thrift网关
•通过在server端扫描及过滤实现对查询操作预判
•支持 XML, Protobuf, 和binary的HTTP
•Cascading, hive, and pig source and sink modules
•基于 Jruby( JIRB)的shell
•对配置改变和较小的升级都会重新回滚
•不会出现单点故障
•堪比MySQL的随机访问性能 最佳应用场景:适用于偏好BigTable:)并且需要对大数据进行随机、实时访问的场合。 例如: Facebook消息数据库(更多通用的用例即将出现)

posted @ 2014-05-23 11:19 鸿雁 阅读(310) | 评论 (0)编辑 收藏

Oracle 10g内存结构之共享池的相关知识及使用简介

SGA中的第三个组成部分是共享池。共享池是对sql ,pl/sql 程序进行语法分析、编译、执行的内存区域。共享池包括库缓冲区(library cache)、数据字典缓冲区(Data Directory Cache)用户全局区(User Global Area)。其中库缓冲区含有Sql 语句的分析码、执行计划;数据字典缓冲区含有从数据字典中得到的表、列定义、权限。用户全局区包含用户的MTS 会话信息。

共享池主要用于对SQL 、pl/sql 程序语句进行语法分析、编译、执行、所以,如果应用中药运行大量存储过程或包,则要增加共享池的尺寸。共享池的大小由参数SHARE_POOL_SIZE确定。要了解共享池大小,可以用以下方法:

方法一:

 

  1. ………  
  2. Shared_Pool_size = 52428800 
  3. ….. 

 

方法二:

 

  1. SQL> select name,value from v$parameter where name like ‘%size’; 

 

方法三:

 

  1. SQL> show parameter share_pool_size 

 

共享池应计算存储过程、包等的成功率。

可以查询数据字典 v$rowcache 了解数据字典的成功与失败次数。

 

  1. SQL> select sum(gets) “dictionary gets”,  
  2. Sum(getmisses) “dictionary cache getmisses”  
  3. From v$rowcache ; 

 

其中gets 表示读取某一类数据字典的成功次数,getsmisses 表示读取某一类数据字典的失败次数。此外还可以通过查询结果计算共享池中读取数据字典的成功率

 

  1. SQL> select parameter, get, getmisses, getmisses/(getmisses+gets)*100 “miss ratio”,  
  2. (1-    (sum(getmisses)/(sum(getmisses)+sum(gets)) ) ) *100 “hit ratio”  
  3. From v$rowcache  
  4. Where gets+getmisses<>0  
  5. Group by parameter,gets,getmisses; 

 

查询数据字典 v$librarycache 可以计算共享池中库缓存的失败率,结果应该小于1%。

 

  1. SQL>select sum(pins) “ total pins”, sum(reloads) “ total reloads”, sum(reloads)/sum(pins)*100 libarycache  from  v$librarycache; 

 

其中 total pins 表示驻留内存的次数, total reloads 表示重新加载到内存的次数,librarycache 表示失败率。

上面分析了系统全局区的三个组成部分-----数据缓冲区、日志缓冲区及共享池,如果要得到SGA的总大小,可以在SQL*Plus中使用show sga 命令。

SQL>show sga或查询数据字典

SQL> select * from v$sga;

如果要查询某个参数的大小,可以查询数据字典v_$sagstat,通过计算可以知道sga的使用空间与空闲空间的比。

 

  1. SQL>col OBJECT_NAME format a20  
  2. SQL> col 空闲空间百分比(%) format 90.99  
  3. SQL> select name,  
  4. Sgasize/1024/1024  “allocated(M)” ,  
  5. Bytes/1024        “空闲空间(k)” ,  
  6. Round(bytes/sagsize*100,2)  “空闲空间百分比(%)”  
  7. From ( select sum(bytes) sgasize from sys.v_$sgastat) s ,sys.v_$sgastat f  
  8. Where f.name=’free memory’ ;  

 

关于Oracle 10g内存结构之共享池的相关知识及使用方法就介绍到这里了,希望本次的介绍能够对您有所收获!

posted @ 2014-05-17 23:37 鸿雁 阅读(160) | 评论 (0)编辑 收藏

Oracle 10g内存结构之系统全局区简介

我们知道,内存结构是Oracle体系结构中最重要的部分之一。按照系统对内存使用方法的不同,可以分为系统全局区(SGA)、程序全局区(PGA)、排序区(Sort Area)、大池(Large Pool)、及java池(java Pool),本文我们先介绍一下Oracle 10g内存结构之系统全局区的内容,接下来我们就开始介绍这部分内容。

系统全局区(System Global Area)

它是一组为系统分配的内存共享结构,可以包含一个数据库实例的数据和控制信息。如果多个用户连接到一个实例,在实例的系统全局区中,数据可以被多个用户共享,所以又称共享全局区。系统全局区按其作用不同,可以分为数据缓冲区、日志缓冲区及共享池。

数据缓冲区:

数据缓冲区用于从磁盘读入的数据,供所有用户共享。

修改的数据、插入的数据存储在数据缓冲区中,修改完成或DBWR进程的其他条件引发时,数据被写入数据文件

数据缓冲区工作原理:

LRU (Least recently used):最近最少使用原则的缩写,是一种数据缓冲区的一种管理机制,,只保留最近数据,不保留旧数据。

Dirty:表示脏数据,脏数据是修改后还没有写到数据文件的数据。

Oracle10g 的数据库内存的设置参数不再由DB_BLOCK_BUFFERS确定,而是由oracle的新参数DB_CACHE_SIZE 和DB_nK_CACHE_SIZE确定,不同的数据段可以使用不同的数据块。大表可以存储在大的数据块表空间中,小表可以存储在小的数据块表空间中,以优化i/o性能。对于系统表空间、临时表空间、及其它默认设置的表空间,可以使用标准的数据块DB_BLOCK_SIZE确定。

标准数据块DB_BLOCK_SIZE用于系统表空间及默认表空间,其他表空间可以使用非标准数据块BLOCKSIZE(创建表空间时使用),其值分别为 2k 4k 8k 16k 32k ,非标准数据块的数据缓冲区使用参数DB_Nk_CACHE_SIZE确定。

需要注意的是BLOCKSIZE不得用于标准块。如果设置了DB_BLOCK_SIZE=2048,则不得设置DB_2K_CACHE_SIZE,标准块必须使用参数DB_CACHE_SIZE 来设置。同时可以在线修改数据缓冲区参数:SQL> alter system set db_2k_cache_size = 10M ;如果要查询数据缓冲区大小,可以如下:SQL> show parameter db。

在创建不同数据块表空间时,要使用参数BLOCKSIZE指出数据块的大小,同时在参数文件中要使用DB_Nk_CACHE_SIZE 进行配置,与BLOCKSIZE的个数相对应,否则会出现错误。

设置动态内存时,可以将多个参数全部写入参数文件,格式如下:

  1. # cache and i/o  
  2.  DB_BLOCK_SIZE=4096 
  3.  DB_CACHE_SIZE=20971520 
  4.  DB_2K_CACHE_SIZE=8M 
  5.  DB_8K_CACHE_SIZE=4M 
  6.  …….. 

其中,参数 DB_CACHE_SIZE 只适用于系统表空间、临时表空间、及默认表空间,DB_2K_CACHE_SIZE  适合 BLOCKSIZE 为2K的表空间。8K 也是一样的道理。

数据缓冲区对数据库德存取速度又直接影响。一般的缓冲区命中率应该在90% 以上。例如,使用数据字典 v$sysstat 计算数据缓冲区命中率:

  1. SQL> select a.value+b.value “logical_reads” , c.value “phys_reads”,  
  2.       Round(100* ( ( a.value+b.value)- c.value) /  
  3.       ( a.value+b.value ) ) “buffer hit radio “  
  4.       From v$sysstat a, v$sysstat b,v$sysstat c  
  5.       Where a.statistic#=38 and b.statistic#=39 and c.statistic#=40; 

下面是计算数据缓冲命中率的另一种方法:

  1. SQL> select name, value  
  2.       From v$sysstat  
  3.       Where name in ( ‘session logical reads’,’physical reads’,physical reads direct’, ‘physical reads direct (lob)’); 

其中:Session logical reads 为读的总量。Physical reads为从数据文件读。Physical reads direct 为从缓冲区读(不含lobs)。Physical reads direct (lobs) 为从缓冲区读(含lobs)。Hit Ratio = 1- ( ( physical reads- physical reads direct – physical reads direct(lob) ) /session logical reads) = 95%。

日志缓冲区

日志缓冲区用来存储数据库的修改信息。日志信息首先在日志缓冲区中产生,当日志缓冲区的日志达到一定数量时,由日志写入进程LGWR将日志数据写入日志文件组,再经过切换,由归档进程ARCH将日志数据写入归档介质。

日志缓冲区大小由参数LOG_BUFFER确定,要查询日志缓冲区大小可以用以下方法:

方法一:参数文件中:

  1.  ……  
  2.  Processes = 150 
  3.  Parallel_max_servers = 5 
  4. Log_buffer = 32768 
  5. …….. 

方法二:

  1. SQL> select name,value from v$parameter where name like ‘%buffer’; 

方法三:

  1. SQL> show parameter log_buffer 

对于日志缓冲区而言可以计算失败率,使用数据字典v$latch 计算日志缓冲区的失败率

  1. SQL>select name,gets,misses,immediate_gets,immediate_misses,  
  2.      Decode(gets,0,0,misses/gets*100) ratiol,  
  3.      Decode (immediate_gets+immediate_misses,0,0,  
  4. immediate_misses/(immediate_gets+immediate_misses)*100)   ratio2  
  5.      from v$latch  
  6.      where name in (‘redo allocation’, ‘redo copy’); 

其中

Gets 表示成功等待日志缓冲区的次数。

Immediate gets 表示成功立即得到日志缓冲区的次数。

Immediate misses 表示未成功立即得到日志缓冲区的次数。

等待表示日志在进入日志缓冲区时,因为日志缓冲区过小而没有空闲空间,所以日志缓冲区的失败可以表示日志缓冲区是否足够大,不够大时,用户的日志写将产生等待过程。日志缓冲区的失败率应该小于1%。

此外,可以查询用户进程等待日志缓冲区时的次数,通过数据字典v$sysstat 得到:

  1. SQL> select name,value from v$sysstat  
  2.       Where name = ‘ redo buffer allocation retries’ ; 

关于Oracle 10g内存结构之系统全局区的相关知识就介绍到这里了,希望本次的介绍能够对您有所收获!

posted @ 2014-05-17 23:31 鸿雁 阅读(190) | 评论 (0)编辑 收藏

仅列出标题
共18页: 上一页 1 2 3 4 5 6 7 8 9 下一页 Last