2010年8月8日
posted @
2010-10-29 13:51 xiaoxinchen 阅读(1768) |
评论 (0) |
编辑 收藏
众所周知,
Linux动态库的默认搜索路径是/lib和/usr/lib。动态库被创建后,一般都复制到这两个目录中。当程序执行时需要某动态库,并且该动态库还未加载到内存中,则系统会自动到这两个默认搜索路径中去查找相应的动态库文件,然后加载该文件到内存中,这样程序就可以使用该动态库中的函数,以及该动态库的其它资源了。在Linux
中,动态库的搜索路径除了默认的搜索路径外,还可以通过以下三种方法来指定。
方法一:在配置文件/etc/ld.so.conf中指定动态库搜索路径。
可以通过编辑配置文件/etc/ld.so.conf来指定动态库的搜索路径,该文件中每行为一个动态库搜索路径。每次编辑完该文件后,都必须运行命令ldconfig使修改后的配置生效。我们通过例1来说明该方法。
例1:
我们通过以下命令用源程序pos_conf.c(见程序1)来创建动态库
libpos.so,详细创建过程请参考文[1]。
# gcc -c pos_conf.c
# gcc -shared -fPCI -o
libpos.so pos_conf.o
#
#include <stdio.h>
void
pos()
{
printf("/root/test/conf/lib\n");
}
程序1: pos_conf.c
接着通过以下命令编译main.c(见程序2)生成目标程序pos。
# gcc -o pos main.c -L. -lpos
#
void pos();
int main()
{
pos();
return 0;
}
程序2: main.c
然后把库文件移动到目录/root/test/conf/lib中。
# mkdir -p /root/test/conf/lib
# mv
libpos.so /root/test/conf/lib
#
最后编辑配置文件/etc/ld.so.conf,在该文件中追加一行"/root/test/conf/lib"。
运行程序pos试试。
# ./pos
./pos: error while loading
shared libraries: libpos.so: cannot open shared object file: No such file or
directory
#
出错了,系统未找到动态库libpos.so。找找原因,原来在编辑完配置文件/etc/ld.so.conf后,没有运行命令ldconfig,所以刚才的修改还未生效。我们运行ldconfig后再试试。
# ldconfig
# ./pos /root/test/conf/lib
#
程序pos运行成功,并且打印出正确结果。
方法二:通过环境变量LD_LIBRARY_PATH指定动态库搜索路径(!)。
通过设定环境变量LD_LIBRARY_PATH也可以指定动态库搜索路径。当通过该环境变量指定多个动态库搜索路径时,路径之间用冒号":"分隔。
不过LD_LIBRARY_PATH的设定作用是全局的,过多的使用可能会影响到其他应用程序的运行,所以多用在调试。(LD_LIBRARY_PATH的缺陷和使用准则,可以参考《Why
LD_LIBRARY_PATH is
bad》)。通常情况下推荐还是使用gcc的-R或-rpath选项来在编译时就指定库的查找路径,并且该库的路径信息保存在可执行文件中,运行时它会直接到该路径查找库,避免了使用LD_LIBRARY_PATH环境变量查找。
下面通过例2来说明本方法。
例2:
我们通过以下命令用源程序pos_env.c(见程序3)来创建动态库libpos.so。
# gcc -c pos_env.c
# gcc -shared -fPCI -o
libpos.so pos_env.o
#
#include <stdio.h>
void
pos()
{
printf("/root/test/env/lib\n");
}
程序3: pos_env.c
测试用的可执行文件pos可以使用例1中的得到的目标程序pos,不需要再次编译。因为pos_conf.c中的函数pos和pos_env.c中的函数pos
函数原型一致,且动态库名相同,这就好比修改动态库pos后重新创建该库一样。这也是使用动态库的优点之一。
然后把动态库libpos.so移动到目录/root/test/conf/lib中。
# mkdir -p /root/test/env/lib
# mv
libpos.so /root/test/env/lib
#
我们可以使用export来设置该环境变量,在设置该环境变量后所有的命令中,该环境变量都有效。
例如:
# export
LD_LIBRARY_PATH=/root/test/env/lib
#
但本文为了举例方便,使用另一种设置环境变量的方法,既在命令前加环境变量设置,该环境变量只对该命令有效,当该命令执行完成后,该环境变量就无效了。如下述命令:
# LD_LIBRARY_PATH=/root/test/env/lib ./pos
/root/test/env/lib
#
程序pos运行成功,并且打印的结果是"/root/test/env/lib",正是程序pos_env.c中的函数pos的运行结果。因此程序pos搜索到的动态库是/root/test/env/lib/libpos.so。
方法三:在编译目标代码时指定该程序的动态库搜索路径。
还可以在编译目标代码时指定程序的动态库搜索路径。这是通过gcc 的参数"-Wl,-rpath,"指定(如例3所示)。当指定多个动态库搜索路径时,路径之间用冒号":"分隔。
例3:
我们通过以下命令用源程序pos.c(见程序4)来创建动态库libpos.so。
# gcc -c pos.c
# gcc -shared -fPCI -o
libpos.so pos.o
#
#include <stdio.h>
void
pos()
{
printf("./\n");
}
程序4: pos.c
因为我们需要在编译目标代码时指定可执行文件的动态库搜索路径,所以需要用gcc命令重新编译源程序main.c(见程序2)来生成可执行文件pos。
# gcc -o pos main.c -L. -lpos
-Wl,-rpath,./
#
再运行程序pos试试。
# ./pos ./
#
程序pos运行成功,输出的结果正是pos.c中的函数pos的运行结果。因此程序pos搜索到的动态库是./libpos.so。
以上介绍了三种指定动态库搜索路径的方法,加上默认的动态库搜索路径/lib和/usr/lib,共五种动态库的搜索路径,那么它们搜索的先后顺序是什么呢?
在 介绍上述三种方法时,分别创建了动态库./libpos.so、
/root/test/env/lib/libpos.so和/root/test/conf/lib/libpos.so。我们再用源程序
pos_lib.c(见程序5)来创建动态库/lib/libpos.so,用源程序pos_usrlib.c(见程序6)来创建动态库
/usr/lib/libpos.so。
#include <stdio.h>
void
pos()
{
printf("/lib\n");
}
程序5: pos_lib.c
#include <stdio.h>
void
pos()
{
printf("/usr/lib\n");
}
程序6: pos_usrlib.c
这样我们得到五个动态库libpos.so,这些动态库的名字相同,且都包含相同函数原型的公用函数pos。但存储的位置不同和公用函数pos
打印的结果不同。每个动态库中的公用函数pos都输出该动态库所存放的位置。这样我们可以通过执行例3中的可执行文件pos得到的结果不同获知其搜索到了哪个动态库,从而获得第1个动态库搜索顺序,然后删除该动态库,再执行程序pos,获得第2个动态库搜索路径,再删除第2个被搜索到的动态库,如此往复,将可得到Linux搜索动态库的先后顺序。程序pos执行的输出结果和搜索到的动态库的对应关系如表1所示:
程序pos输出结果 |
使用的动态库 |
对应的动态库搜索路径指定方式 |
./ |
./libpos.so |
编译目标代码时指定的动态库搜索路径 |
/root/test/env/lib |
/root/test/env/lib/libpos.so |
环境变量LD_LIBRARY_PATH指定的动态库搜索路径 |
/root/test/conf/lib |
/root/test/conf/lib/libpos.so |
配置文件/etc/ld.so.conf中指定的动态库搜索路径 |
/lib |
/lib/libpos.so |
默认的动态库搜索路径/lib |
/usr/lib |
/usr/lib/libpos.so |
默认的动态库搜索路径/usr/lib |
表1: 程序pos输出结果和动态库的对应关系
创建各个动态库,并放置在相应的目录中。测试环境就准备好了。执行程序pos,并在该命令行中设置环境变量LD_LIBRARY_PATH。
# LD_LIBRARY_PATH=/root/test/env/lib ./pos
./
#
根据程序pos的输出结果可知,最先搜索的是编译目标代码时指定的动态库搜索路径。然后我们把动态库./libpos.so删除了,再运行上述命令试试。
# rm libpos.so
rm: remove regular file
`libpos.so'? y
# LD_LIBRARY_PATH=/root/test/env/lib ./pos
/root/test/env/lib
#
根据程序pos的输出结果可知,第2个动态库搜索的路径是环境变量LD_LIBRARY_PATH指定的。我们再把/root/test/env/lib/libpos.so删除,运行上述命令。
# rm /root/test/env/lib/libpos.so
rm:
remove regular file `/root/test/env/lib/libpos.so'? y
#
LD_LIBRARY_PATH=/root/test/env/lib ./pos /root/test/conf/lib
#
第3个动态库的搜索路径是配置文件/etc/ld.so.conf指定的路径。删除动态库/root/test/conf/lib/libpos.so后再运行上述命令。
# rm /root/test/conf/lib/libpos.so
rm:
remove regular file `/root/test/conf/lib/libpos.so'? y
#
LD_LIBRARY_PATH=/root/test/env/lib ./pos /lib
#
第4个动态库的搜索路径是默认搜索路径/lib。我们再删除动态库/lib/libpos.so,运行上述命令。
# rm /lib/libpos.so
rm: remove regular
file `/lib/libpos.so'? y
# LD_LIBRARY_PATH=/root/test/env/lib ./pos
/usr/lib
#
最后的动态库搜索路径是默认搜索路径/usr/lib。
综合以上结果可知,动态库的搜索路径搜索的先后顺序是:
1.编译目标代码时指定的动态库搜索路径;
2.环境变量LD_LIBRARY_PATH指定的动态库搜索路径;
3.配置文件/etc/ld.so.conf中指定的动态库搜索路径;
4.默认的动态库搜索路径/lib;
5.默认的动态库搜索路径/usr/lib。
在上述1、2、3指定动态库搜索路径时,都可指定多个动态库搜索路径,其搜索的先后顺序是按指定路径的先后顺序搜索的。对此本文不再举例说明,有兴趣的读者可以参照本文的方法验证。
posted @
2010-09-14 11:03 xiaoxinchen 阅读(210) |
评论 (0) |
编辑 收藏
序论
我曾发表过文件输入输出的文章,现在觉得有必要再写一点。文件 I/O 在C++中比烤蛋糕简单多了。 在这篇文章里,我会详细解释ASCII和二进制文件的输入输出的每个细节,值得注意的是,所有这些都是用C++完成的。
一、ASCII 输出
为了使用下面的方法,
你必须包含头文件<fstream.h>(译者注:在标准C++中,已经使用<fstream>取
代<fstream.h>,所有的C++标准头文件都是无后缀的。)。这是 <iostream.h>的一个扩展集,
提供有缓冲的文件输入输出操作. 事实上, <iostream.h> 已经被<fstream.h>包含了,
所以你不必包含所有这两个文件, 如果你想显式包含他们,那随便你。我们从文件操作类的设计开始, 我会讲解如何进行ASCII I/O操作。
如果你猜是"fstream," 恭喜你答对了! 但这篇文章介绍的方法,我们分别使用"ifstream"?和 "ofstream" 来作输入输出。
如果你用过标准控制台流"cin"?和 "cout," 那现在的事情对你来说很简单。 我们现在开始讲输出部分,首先声明一个类对象。
ofstream fout;
这就可以了,不过你要打开一个文件的话, 必须像这样调用ofstream::open()。
fout.open("output.txt");
你也可以把文件名作为构造参数来打开一个文件.
ofstream fout("output.txt");
这是我们使用的方法, 因为这样创建和打开一个文件看起来更简单. 顺便说一句, 如果你要打开的文件不存在,它会为你创建一个,
所以不用担心文件创建的问题. 现在就输出到文件,看起来和"cout"的操作很像。 对不了解控制台输出"cout"的人, 这里有个例子。
int num = 150;char name[] = "John Doe";fout << "Here is a number: " << num << "\n";fout << "Now here is a string: " << name << "\n";
现在保存文件,你必须关闭文件,或者回写文件缓冲. 文件关闭之后就不能再操作了,
所以只有在你不再操作这个文件的时候才调用它,它会自动保存文件。 回写缓冲区会在保持文件打开的情况下保存文件, 所以只要有必要就使用它。
回写看起来像另一次输出, 然后调用方法关闭。像这样:
fout << flush; fout.close();
现在你用文本编辑器打开文件,内容看起来是这样:
Here is a number: 150 Now here is a string: John Doe
很简单吧! 现在继续文件输入, 需要一点技巧, 所以先确认你已经明白了流操作,对 "<<" 和">>" 比较熟悉了, 因为你接下来还要用到他们。继续…
二、ASCII 输入
输入和"cin" 流很像. 和刚刚讨论的输出流很像, 但你要考虑几件事情。在我们开始复杂的内容之前, 先看一个文本:
12 GameDev 15.45 L This is really awesome!
为了打开这个文件,你必须创建一个in-stream对象,?像这样。
ifstream fin("input.txt");
现在读入前四行. 你还记得怎么用"<<" 操作符往流里插入变量和符号吧?好,?在 "<<" (插入)?操作符之后,是">>" (提取) 操作符. 使用方法是一样的. 看这个代码片段.
int number; float real; char letter, word[8]; fin >> number; fin >> word; fin >> real; fin >> letter;
也可以把这四行读取文件的代码写为更简单的一行。
fin >> number >> word >> real >> letter;
它是如何运作的呢? 文件的每个空白之后, ">>" 操作符会停止读取内容, 直到遇到另一个>>操作符.
因为我们读取的每一行都被换行符分割开(是空白字符), ">>"
操作符只把这一行的内容读入变量。这就是这个代码也能正常工作的原因。但是,可别忘了文件的最后一行。
This is really awesome!
如果你想把整行读入一个char数组, 我们没办法用">>"?操作符,因为每个单词之间的空格(空白字符)会中止文件的读取。为了验证:
char sentence[101]; fin >> sentence;
我们想包含整个句子, "This is really awesome!" 但是因为空白, 现在它只包含了"This". 很明显, 肯定有读取整行的方法, 它就是getline()。这就是我们要做的。
fin.getline(sentence, 100);
这是函数参数. 第一个参数显然是用来接受的char数组. 第二个参数是在遇到换行符之前,数组允许接受的最大元素数量. 现在我们得到了想要的结果:“This is really awesome!”。
你应该已经知道如何读取和写入ASCII文件了。但我们还不能罢休,因为二进制文件还在等着我们。
三、二进制 输入输出
二进制文件会复杂一点, 但还是很简单的。
首先你要注意我们不再使用插入和提取操作符(译者注:<< 和 >> 操作符).
你可以这么做,但它不会用二进制方式读写。你必须使用read() 和write() 方法读取和写入二进制文件. 创建一个二进制文件, 看下一行。
ofstream fout("file.dat", ios::binary);
这会以二进制方式打开文件, 而不是默认的ASCII模式。首先从写入文件开始。函数write() 有两个参数。 第一个是指向对象的char类型的指针, 第二个是对象的大小(译者注:字节数)。 为了说明,看例子。
int number = 30; fout.write((char *)(&number), sizeof(number));
第一个参数写做"(char *)(&number)". 这是把一个整型变量转为char
*指针。如果你不理解,可以立刻翻阅C++的书籍,如果有必要的话。第二个参数写作"sizeof(number)". sizeof()
返回对象大小的字节数. 就是这样!
二进制文件最好的地方是可以在一行把一个结构写入文件。 如果说,你的结构有12个不同的成员。 用ASCII?文件,你不得不每次一条的写入所有成员。 但二进制文件替你做好了。 看这个。
struct OBJECT { int number; char letter; } obj; obj.number = 15;obj.letter = ‘M’; fout.write((char *)(&obj), sizeof(obj));
这样就写入了整个结构! 接下来是输入. 输入也很简单,因为read()?函数的参数和 write()是完全一样的, 使用方法也相同。
ifstream fin("file.dat", ios::binary); fin.read((char *)(&obj), sizeof(obj));
我不多解释用法, 因为它和write()是完全相同的。二进制文件比ASCII文件简单, 但有个缺点是无法用文本编辑器编辑。 接着, 我解释一下ifstream 和ofstream 对象的其他一些方法作为结束.
四、更多方法
我已经解释了ASCII文件和二进制文件, 这里是一些没有提及的底层方法。
检查文件
你已经学会了open() 和close() 方法, 不过这里还有其它你可能用到的方法。
方法good() 返回一个布尔值,表示文件打开是否正确。
类似的,bad() 返回一个布尔值表示文件打开是否错误。 如果出错,就不要继续进一步的操作了。
最后一个检查的方法是fail(), 和bad()有点相似, 但没那么严重。
读文件
方法get() 每次返回一个字符。
方法ignore(int,char) 跳过一定数量的某个字符, 但你必须传给它两个参数。第一个是需要跳过的字符数。 第二个是一个字符, 当遇到的时候就会停止。 例子,
fin.ignore(100, ‘\n’);
会跳过100个字符,或者不足100的时候,跳过所有之前的字符,包括 ‘\n’。
方法peek() 返回文件中的下一个字符, 但并不实际读取它。所以如果你用peek() 查看下一个字符, 用get() 在peek()之后读取,会得到同一个字符, 然后移动文件计数器。
方法putback(char) 输入字符, 一次一个, 到流中。我没有见到过它的使用,但这个函数确实存在。
写文件
只有一个你可能会关注的方法.?那就是 put(char), 它每次向输出流中写入一个字符。
打开文件
当我们用这样的语法打开二进制文件:
ofstream fout("file.dat", ios::binary);
"ios::binary"是你提供的打开选项的额外标志. 默认的, 文件以ASCII方式打开, 不存在则创建, 存在就覆盖. 这里有些额外的标志用来改变选项。
ios::app |
添加到文件尾 |
ios::ate |
把文件标志放在末尾而非起始。 |
ios::trunc |
默认. 截断并覆写文件。 |
ios::nocreate |
文件不存在也不创建。 |
ios::noreplace |
文件存在则失败。 |
文件状态
我用过的唯一一个状态函数是eof(), 它返回是否标志已经到了文件末尾。 我主要用在循环中。 例如, 这个代码断统计小写‘e’ 在文件中出现的次数。
ifstream fin("file.txt"); char ch; int counter; while (!fin.eof()) { ch = fin.get(); if (ch == ‘e’) counter++; }fin.close();
我从未用过这里没有提到的其他方法。 还有很多方法,但是他们很少被使用。参考C++书籍或者文件流的帮助文档来了解其他的方法。
posted @
2010-08-08 17:37 xiaoxinchen 阅读(184) |
评论 (0) |
编辑 收藏