posts - 97,  comments - 93,  trackbacks - 0
Problem Statement

NOTE: There are images in the examples section of this problem statement that help describe the problem. Please view the problem statement in the HTML window to view them.
Given a picture composed entirely of horizontal and vertical line segments, calculate the minimum number of times you must lift your pen to trace every line segment in the picture exactly n times.
Each line segment will be of the form "<x1> <y1> <x2> <y2>" (quotes for clarity), representing a segment from (x1,y1) to (x2,y2). Segments may cross each other. Segments may also overlap, in which case you should count the overlapping region as appearing in the drawing only once. For example, say the drawing were composed of two lines: one from (6,4) to (9,4), and one from (8,4) to (14,4). Even though they overlap from (8,4) to (9,4), you should treat the drawing as if it were a single line from (6,4) to (14,4). You would not need to lift your pen at all to trace this drawing.
Definition

Class:
PenLift
Method:
numTimes
Parameters:
String[], int
Returns:
int
Method signature:
int numTimes(String[] segments, int n)
(be sure your method is public)


Notes
-
The pen starts on the paper at a location of your choice. This initial placement does not count toward the number of times that the pen needs to be lifted.
Constraints
-
segments will contain between 1 and 50 elements, inclusive.
-
Each element of segments will contain between 7 and 50 characters, inclusive.
-
Each element of segments will be in the format "<X1>_<Y1>_<X2>_<Y2>" (quotes for clarity). The underscore character represents exactly one space. The string will have no leading or trailing spaces.
-
<X1>, <Y1>, <X2>, and <Y2> will each be between -1000000 and 1000000, inclusive, with no unnecessary leading zeroes.
-
Each element of segments will represent a horizontal or vertical line segment. No line segment will reduce to a point.
-
n will be between 1 and 1000000, inclusive.
Examples
0)

{"-10 0 10 0","0 -10 0 10"}
1
Returns: 1
This picture looks like a plus sign centered at the origin. One way to trace this image is to start your pen at (-10,0), move right to (10,0), lift your pen and place it at (0,-10), and then move up to (0,10). There is no way to trace the picture without lifting your pen at all, so the method returns 1.
1)

{"-10 0 0 0","0 0 10 0","0 -10 0 0","0 0 0 10"}
1
Returns: 1
The picture is the same as the previous example, except that it has been described with four line segments instead of two. Therefore, the method still returns 1.
2)


{"-10 0 0 0","0 0 10 0","0 -10 0 0","0 0 0 10"}
4
Returns: 0
You are now required to trace each segment exactly 4 times. You can do so without lifting your pen at all. Start at (0,0). Move your pen left to (-10,0), then back right to (0,0), then left again to (-10,0), then right again to (0,0). You have now traced the first line segment 4 times. Repeat this process for the other three segments as well. Since no pen lifts were required, the method returns 0.
3)


{"0 0 1 0",   "2 0 4 0",   "5 0 8 0",   "9 0 13 0",
 "0 1 1 1",   "2 1 4 1",   "5 1 8 1",   "9 1 13 1",
 "0 0 0 1",   "1 0 1 1",   "2 0 2 1",   "3 0 3 1",
 "4 0 4 1",   "5 0 5 1",   "6 0 6 1",   "7 0 7 1",
 "8 0 8 1",   "9 0 9 1",   "10 0 10 1", "11 0 11 1",
 "12 0 12 1", "13 0 13 1"}
1
Returns: 6
The picture looks like this:
 
To trace the picture using the minimum number of pen lifts, refer to the following diagram:
 
Start by placing your pen at the yellow dot. Trace the yellow square. Now lift your pen and place it on the red dot. Move downward, tracing the vertical line segment, and then around the perimeter of the red rectangle. Lift your pen again and place it on the green dot. Trace the green lines using the same method as you did for the red lines. Lift your pen a third time, placing it on the magenta dot. Trace the magenta lines in a similar fashion. You will need to lift your pen three more times to trace each of the leftover white segments, for a grand total of 6 pen lifts.
4)


{"-2 6 -2 1",  "2 6 2 1",  "6 -2 1 -2",  "6 2 1 2",
 "-2 5 -2 -1", "2 5 2 -1", "5 -2 -1 -2", "5 2 -1 2",
 "-2 1 -2 -5", "2 1 2 -5", "1 -2 -5 -2", "1 2 -5 2",
 "-2 -1 -2 -6","2 -1 2 -6","-1 -2 -6 -2","-1 2 -6 2"}
5
Returns: 3
This is an example of overlap. Once all the segments are drawn, the picture looks like this:
 
You would need to lift your pen 3 times to trace every segment in this drawing exactly 5 times.
5)


{"-252927 -1000000 -252927 549481","628981 580961 -971965 580961",
"159038 -171934 159038 -420875","159038 923907 159038 418077",
"1000000 1000000 -909294 1000000","1000000 -420875 1000000 66849",
"1000000 -171934 628981 -171934","411096 66849 411096 -420875",
"-1000000 -420875 -396104 -420875","1000000 1000000 159038 1000000",
"411096 66849 411096 521448","-971965 580961 -909294 580961",
"159038 66849 159038 -1000000","-971965 1000000 725240 1000000",
"-396104 -420875 -396104 -171934","-909294 521448 628981 521448",
"-909294 1000000 -909294 -1000000","628981 1000000 -909294 1000000",
"628981 418077 -396104 418077","-971965 -420875 159038 -420875",
"1000000 -1000000 -396104 -1000000","-971965 66849 159038 66849",
"-909294 418077 1000000 418077","-909294 418077 411096 418077",
"725240 521448 725240 418077","-252927 -1000000 -1000000 -1000000",
"411096 549481 -1000000 549481","628981 -171934 628981 923907",
"-1000000 66849 -1000000 521448","-396104 66849 -396104 1000000",
"628981 -1000000 628981 521448","-971965 521448 -396104 521448",
"-1000000 418077 1000000 418077","-1000000 521448 -252927 521448",
"725240 -420875 725240 -1000000","-1000000 549481 -1000000 -420875",
"159038 521448 -396104 521448","-1000000 521448 -252927 521448",
"628981 580961 628981 549481","628981 -1000000 628981 521448",
"1000000 66849 1000000 -171934","-396104 66849 159038 66849",
"1000000 66849 -396104 66849","628981 1000000 628981 521448",
"-252927 923907 -252927 580961","1000000 549481 -971965 549481",
"-909294 66849 628981 66849","-252927 418077 628981 418077",
"159038 -171934 -909294 -171934","-252927 549481 159038 549481"}
824759
Returns: 19

 
This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.
  1 import java.util.Iterator;
  2 import java.util.StringTokenizer;
  3 import java.util.TreeMap;
  4 import java.util.TreeSet;
  5 
  6 /**
  7  * @author Nicky Qu
  8  * All Rights Reserved. Oct.25th,2007.
  9  */
 10 public class PenLift {
 11 
 12     private int[] x1;
 13     private int[] y1;
 14     private int[] x2;
 15     private int[] y2;
 16     private int cnt;
 17 
 18     public PenLift() {
 19         x1 = new int[50];
 20         y1 = new int[50];
 21         x2 = new int[50];
 22         y2 = new int[50];
 23         cnt = 0;
 24     }
 25 
 26     public int numTimes(String[] segments, int n) {
 27         for (int i = 0; i < segments.length; i++) {
 28             compress();
 29         }
 30         constructGrid(4);
 31         int r4 = draw();
 32         constructGrid(3);
 33         int r3 = draw();
 34         constructGrid(2);
 35         int r2 = draw();
 36         constructGrid(1);
 37         int r1 = draw();
 38         if (n % 2 == 0) {
 39             return (r2 == 24? r2 : r2 * (n / 2);
 40         } else {
 41             return (r1 == 23? r1 : r2 * (n / 2+ r1;
 42         }
 43     }
 44 
 45     public void addLine(String l) {
 46         StringTokenizer st = new StringTokenizer(l, " ");
 47         int _x1 = Integer.parseInt(st.nextToken());
 48         int _y1 = Integer.parseInt(st.nextToken());
 49         int _x2 = Integer.parseInt(st.nextToken());
 50         int _y2 = Integer.parseInt(st.nextToken());
 51 
 52         if (_x1 > _x2) {
 53             int tmp = _x1;
 54             _x1 = _x2;
 55             _x2 = tmp;
 56         }
 57         if (_y1 > _y2) {
 58             int tmp = _y1;
 59             _y1 = _y2;
 60             _y2 = tmp;
 61         }
 62 
 63         x1[cnt] = _x1;
 64         y1[cnt] = _y1;
 65         x2[cnt] = _x2;
 66         y2[cnt] = _y2;
 67         cnt++;
 68     }
 69 
 70     static TreeMap<Integer, Integer> collect(int[] a, int[] b) {
 71         TreeSet<Integer> set = new TreeSet<Integer>();
 72         for (int i=0; i < a.length; i++) {
 73             set.add(new Integer(a[i]));
 74         }
 75         for (int i=0; i < b.length; i++) {
 76             set.add(new Integer(b[i]));
 77         }
 78         TreeMap<Integer, Integer> map = new TreeMap<Integer, Integer>();
 79         int c = 0;
 80         for (Iterator<Integer> it = set.iterator(); it.hasNext();) {
 81             map.put(it.next(), new Integer(c++));
 82         }
 83         for (int i = 0; i < a.length; i++) {
 84             a[i] = map.get(new Integer(a[i])).intValue();
 85         }
 86         for (int i = 0; i < b.length; i++) {
 87             b[i] = map.get(new Integer(b[i])).intValue();
 88         }
 89         return map;
 90     }
 91     int sizex;
 92     int sizey;
 93 
 94     public void compress() {
 95         TreeMap<Integer, Integer> xmap = collect(x1, x2);
 96         TreeMap<Integer, Integer> ymap = collect(y1, y2);
 97         sizex = xmap.size();
 98         sizey = ymap.size();
 99     }
100     private int[][] gridH;
101     private int[][] gridV; //lines remaining from (x,y) to (x+1,y)/(x,y+1)
102 
103     public void constructGrid(int n) {
104         gridH = new int[sizex][sizey];
105         gridV = new int[sizex][sizey];
106         for (int i = 0; i < cnt; i++) {
107             if (x1[i] == x2[i]) {
108                 int x = x1[i];
109                 for (int y = y1[i]; y < y2[i]; y++) {
110                     gridV[x][y] = n;
111                 }
112             } else {
113                 int y = y1[i];
114                 for (int x = x1[i]; x < x2[i]; x++) {
115                     gridH[x][y] = n;
116                 }
117             }
118         }
119     }
120     private int posx;
121     private int posy;
122 
123     public int draw() {
124         int res = 0;
125         while (findStart()) {
126             int segs = 0;
127             res++;
128             boolean OK;
129             do {
130                 OK = false;
131                 int max = maxFrom(posx, posy);
132                 segs++;
133                 if (gridH[posx][posy] == max) {
134                     gridH[posx][posy]--;
135                     posx++;
136                     OK = true;
137                     continue;
138                 }
139                 if (gridV[posx][posy] == max) {
140                     gridV[posx][posy]--;
141                     posy++;
142                     OK = true;
143                     continue;
144                 }
145                 if (posx > 0 && gridH[posx - 1][posy] == max) {
146                     gridH[posx - 1][posy]--;
147                     posx--;
148                     OK = true;
149                     continue;
150                 }
151                 if (posy > 0 && gridV[posx][posy - 1== max) {
152                     gridV[posx][-1]--;
153                     posx--;
154                     OK = true;
155                     continue;
156                 }
157                 if (!OK) {
158                     segs--;
159                 }
160             } while (OK);
161         }
162         if (res > 0) {
163             res--;
164         }
165         return res;
166     }
167 
168     boolean findStart() {
169         boolean atAll = false;
170         for (int x = 0; x < sizex; x++) {
171             for (int y = 0; y < sizey; y++) {
172                 if (gridH[x][y] > 0 || gridV[x][y] > 0) {
173                     if (!atAll) {
174                         atAll = true;
175                         posx = x;
176                         posy = y;
177                     }
178                 }
179                 if (count(x, y) % 2 == 1) {
180                     posx = x;
181                     posy = y;
182                     return true;
183                 }
184             }
185         }
186         return atAll;
187     }
188 
189     public int maxFrom(int x, int y) {
190         int a1 = gridH[x][y];
191         int a2 = gridV[x][y];
192         int a3 = x > 0 ? gridH[x - 1][y] : 0;
193         int a4 = y > 0 ? gridV[x][y - 1] : 0;
194         int max = -1;
195         if (a1 > 0 && a1 > max) {
196             max = a1;
197         }
198         if (a2 > 0 && a2 > max) {
199             max = a2;
200         }
201         if (a3 > 0 && a3 > max) {
202             max = a3;
203         }
204         if (a4 > 0 && a4 > max) {
205             max = a4;
206         }
207         return max;
208     }
209 
210     public int count(int x, int y) {
211         int c1 = (gridH[x][y] > 0? 1 : 0;
212         int c2 = (gridV[x][y] > 0? 1 : 0;
213         int c3 = (x > 0 && gridH[x - 1][y] > 0? 1 : 0;
214         int c4 = (y > 0 && gridH[x][y - 1> 0? 1 : 0;
215         return c1 + c2 + c3 + c4;
216     }
217 }

posted on 2007-10-30 21:36 wqwqwqwqwq 阅读(1185) 评论(0)  编辑  收藏 所属分类: Data Structure && Algorithm

只有注册用户登录后才能发表评论。


网站导航:
 
<2007年10月>
30123456
78910111213
14151617181920
21222324252627
28293031123
45678910




常用链接

留言簿(10)

随笔分类(95)

随笔档案(97)

文章档案(10)

相册

J2ME技术网站

java技术相关

mess

搜索

  •  

最新评论

阅读排行榜

校园梦网网络电话,中国最优秀的网络电话