Nodetype task-node
A task node represents one or more tasks that are to be performed by humans. So when execution arrives in a task node, task instances will be created in the task lists of the workflow participants. After that, the node will behave as a wait state. So when the users perform their task, the task completion will trigger the resuming of the execution. In other words, that leads to a new signal being called on the token.
任务节点:一个或多个可以人为执行的任务。所以当执行到任务节点,任务实例将由工作流参与者的任务列表创建。之后,这个节点会表现为等待状态。当用户执行他们的任务,任务完成将会触发执行继续。还句话说,在token上会调用一个新的signal
Nodetype state
A state is a bare-bones wait state. The difference with a task node is that no task instances will be created in any task list. This can be usefull if the process should wait for an external system. E.g. upon entry of the node (via an action on the node-enter event), a message could be sent to the external system. After that, the process will go into a wait state. When the external system send a response message, this can lead to a token.signal(), which triggers resuming of the process execution.
Nodetype decision
Actually there are 2 ways to model a decision. The distinction between the two is based on *who* is making the decision. Should the decision made by the process (read: specified in the process definition). Or should an external entity provide the result of the decision.
When the decision is to be taken by the process, a decision node should be used. There are basically 2 ways to specify the decision criteria. Simplest is by adding condition elements on the transitions. Conditions are beanshell script expressions that return a boolean. At runtime the decision node will loop over its leaving transitions (in the order as specified in the xml), and evaluate each condition. The first transition for which the conditions resolves to 'true' will be taken. Alternatively, an implementation of the DecisionHandler can be specified. Then the decision is calculated in a java class and the selected leaving transition is returned by the decide-method of the DecisionHandler implementation.
When the decision is taken by an external party (meaning: not part of the process definition), you should use multiple transitions leaving a state or wait state node. Then the leaving transition can be provided in the external trigger that resumes execution after the wait state is finished. E.g. Token.signal(String transitionName) and TaskInstance.end(String transitionName).
Nodetype fork
A fork splits one path of execution into multiple concurrent paths of execution. The default fork behaviour is to create a child token for each transition that leaves the fork, creating a parent-child relation between the token that arrives in the fork.
Nodetype join
The default join assumes that all tokens that arrive in the join are children of the same parent. This situation is created when using the fork as mentioned above and when all tokens created by a fork arrive in the same join. A join will end every token that enters the join. Then the join will examine the parent-child relation of the token that enters the join. When all sibling tokens have arrived in the join, the parent token will be propagated over the (unique!) leaving transition. When there are still sibling tokens active, the join will behave as a wait state.
Nodetype node
The type node serves the situation where you want to write your own code in a node. The nodetype node expects one subelement action. The action is executed when the execution arrives in the node. The code you write in the actionhandler can do anything you want but it is also responsible for propagating the execution.
This node can be used if you want to use a JavaAPI to implement some functional logic that is important for the business analyst. By using a node, the node is visible in the graphical representation of the process. For comparison, actions --covered next-- will allow you to add code that is invisible in the graphical representation of the process, in case that logic is not important for the business analyst.