随笔-314  评论-209  文章-0  trackbacks-0

部分内容出处:

http://www.atatech.org/article/detail/5617/0

http://www.atatech.org/article/detail/4392/515 

一.UDFS函数介绍

1. 基本UDF

(1)SHOWFUNCTIONS:这个用来熟悉未知函数。

     DESCRIBE FUNCTION<function_name>;

(2)A IS NULL

     A IS NOT NULL

(3)A LIKE B 普通sql匹配如 like “a%”

     A RLIKE B通过正则表达式匹配

     A REGEXP B 通过正则表达式匹配

(4)round(double a):四舍五入

(5)rand(),rand(int seed):返回在(0,1)平均分布的随机数

(6)COALESCE(pv, 0):将 pv 为 null 的行转为0,很实用

2. 日期函数

(1)datediff(string enddate, stringstartdate):

     返回enddate和startdate的天数的差,例如datediff('2009-03-01','2009-02-27') = 2

(2)date_add(stringstartdate, int days):

     加days天数到startdate:date_add('2008-12-31', 1) ='2009-01-01'

(3)date_sub(stringstartdate, int days):

     减days天数到startdate:date_sub('2008-12-31', 1) ='2008-12-30'

(4)date_format(date,date_pattern)

     CREATETEMPORARY FUNCTION date_format AS'com.taobao.hive.udf.UDFDateFormat';

     根据格式串format 格式化日期和时间值date,返回结果串。

     date_format('2010-10-10','yyyy-MM-dd','yyyyMMdd')

(5)str_to_date(str,format)

     将字符串转化为日期函数

CREATE TEMPORARY FUNCTIONstr_to_date AS 'com.taobao.hive.udf.UDFStrToDate';

      str_to_date('09/01/2009','MM/dd/yyyy')

3. 字符串函数

(1)length(stringA):返回字符串长度

(2)concat(stringA, string B...):

     合并字符串,例如concat('foo','bar')='foobar'。注意这一函数可以接受任意个数的参数

(3)substr(stringA, int start) substring(string A,int start):

     返回子串,例如substr('foobar',4)='bar'

(4)substring(string A, int start,int len):

     返回限定长度的子串,例如substr('foobar',4, 1)='b'

(5)split(stringstr, string pat):

     返回使用pat作为正则表达式分割str字符串的列表。例如,split('foobar','o')[2] = 'bar'。

(6)getkeyvalue(str,param):

     从字符串中获得指定 key 的 value 值 UDFKeyValue

     CREATE TEMPORARY FUNCTION getkeyvalue  AS 'com.taobao.hive.udf.UDFKeyValue';

4. 自定义函数

(1)row_number

  1. CREATE TEMPORARY FUNCTION row_number  AS 'com.taobao.ad.data.search.udf.UDFrow_number';   
  2. select ip,uid,row_number(ip,uid) from (   
  3.     select ip,uid,logtime from atpanel   
  4.     distribute by ip,uid   
  5.     sort by ip,uid,logtime desc   
  6. ) a  

(2)拆分key_value键值对

  1. CREATE TEMPORARY FUNCTION ExplodeEX AS 'com.taobao.hive.udtf.UDTFExplodeEX';   
  2. select   
  3.     split(kvs,'_')[0] as key,  
  4.     split(kvs,'_')[1] as key,  
  5. from ( select 'a-1|b-2' as kv from dual ) t  
  6. lateral view explode (split(kv,'\\|')) result as kvs  

二. HIVE新特性

1. 支持多列的COUNT(*)和COUNT DISTINCT查询

   select count(distinct col1, col2) from table_name;select count(*) from table_name;

2. 提供以本地模式运行Hive的选项

   设置mapred.job.tracker=local可开启本地运行模式

3. 增强的列重命名语法

   增加 ALTERTABLE table_name CHANGE old_name new_name语法。

4. 支持UNIQUE JOIN HIVE-591

   select .. from JOINTABLES (A,B,C) WITH KEYS (A.key, B.key, C.key) where ....

5. 增加检测表和分区状态的语法HIVE-667

   使用show table_name语法,检查表和分区的状态,包括大小和创建、访问时间戳。6.      增加建表时支持STRUCT,结构体

7. 增加选择驱动表的提示

8. 增加/*+STREAMTABLE(tb_alias)*/ HINT,以在Join操作时指定驱动表:

   SELECT /*+ STREAMTABLE(a) */ a.val, b.val, c.valFROM a

   JOIN b ON (a.key = b.key1)JOIN c ON (c.key = b.key1)

   指定此HINT后,原先默认的右表驱动会失效。

9. left Semi-Join HIVE-870

   Left Semi-Join是可以高效实现IN/EXISTS子查询的语义。以下SQL语义:

(1)SELECT a.key, a.value FROM a WHERE a.key in (SELECT b.key FROM b);

   未实现Left Semi-Join之前,Hive实现上述语义的语句是:  

   SELECT t1.key, t1.value FROM a t1

   left outer join (SELECT distinct key from b) t2

   on t1.id = t2.id where t2.id is not null;

(2)可被替换为Left Semi-Join如下:

   SELECT a.key, a.valFROM a LEFT SEMI JOIN b on (a.key = b.key)

   这一实现减少至少1次MapReduce过程,注意Left Semi-Join的Join条件必须是等值。

10.Skew Join优化 HIVE-964 ,数据倾斜

   优化skewed join key为map join。开启hive.optimize.skewjoin=true可优化倾斜的数据。Skew Join优化需要额外的mapjoin操作,且不能节省shuffle的代价。

11.Sorted merge (map) join HIVE-1194

   (对关键表key排序)

   如果MapJoin中的表都是有序的,这一特性使得Join操作无需扫描整个表,这将大大加速Join操作。可通过hive.optimize.bucketmapjoin.sortedmerge=true开启这个功能,获得高的性能提升。

12.支持ALTER TABLE修改分区的InputFormat/OutputFormat定义

   这一特性使得我们可以用压缩方式(SequenceFileInputFormat)存储后续表分区的数据,同时又不需要对以前的表分区做修改,即透明切换到压缩格式。

13.支持并发提交没有依赖关系的MR过程HIVE-549

   此前的Hive仅仅顺序提交MR任务。这一增强使得没有依赖关系的多次MR过程(例如Union all语义中的多个子查询)可以并发提交。某些情况下可以提高单条HQL命令的响应速度。以下参数对并发提交功能启作用:

   hive.exec.parallel[=false]

   hive.exec.parallel.thread.number[=8]

14.Sorted Group byHIVE-931

  (中间表的预处理)

   对已排序的字段做Group by可以不再额外提交一次MR过程。这种情况下可以提高执行效率。

15.UDTF支持

   UDTF即User defined table function,是一种UDF,区别是这种UDF可以返回多条记录。这一修改使得当前很多Transform脚本可以被替换为更通用、更高效、更用户友好的UDTF实现。UDTF是一种1:n输出,可用于行转列等。

   UDTF不支持UDTF/列混合的select、不支持嵌套、不支持相同子查询中的GROUP BY / CLUSTER BY /DISTRIBUTE BY / SORT BY。

UDTF可与Lateral View相结合。

16.支持动态分区HIVE-1002HIVE-1238              

   动态分区可通过设定hive.exec.dynamic.partition=true打开DP特性。使用方法:

   INSERT OVERWRITETABLE tbl partition (col1[=value][, col2[=value] …])

   使用hive.exec.dynamic.partition.mode = nonstrict动态分区有一定风险,包括小文件、覆盖数据等。默认分区开关:

   hive.exec.default.dynamic.partition.name

17.插入强制排序HIVE-1193

   只需要打开hive.enforce.sorting选项即可。这一特性对Sorted merge bucket (map) join非常有用

18.支持视图功能

   可用于字段级别的权限控制

19.支持持笛卡尔积join(1.0特性       SELECT a.*, b.*FROM aCROSS JOIN b

  1. CREATE VIEW [IF NOT EXISTS] view_name  
  2. [ (column_name [COMMENT column_comment], … ) ]  
  3. [COMMENT ‘view_comment’]  
  4. AS SELECT …  
  5. ORDER BY …  LIMIT … ]  

 

三. hive优化方式总结

1. 多表join优化代码结构:

   select .. from JOINTABLES (A,B,C) WITH KEYS (A.key, B.key, C.key) where ....

关联条件相同多表join会优化成一个job

2. LeftSemi-Join是可以高效实现IN/EXISTS子查询的语义

   SELECT a.key,a.value FROM a WHERE a.key in (SELECT b.key FROM b);

(1)未实现Left Semi-Join之前,Hive实现上述语义的语句是:

   SELECT t1.key, t1.valueFROM a  t1

   left outer join (SELECT distinctkey from b) t2 on t1.id = t2.id

   where t2.id is not null;

(2)可被替换为Left Semi-Join如下:

   SELECT a.key, a.valFROM a LEFT SEMI JOIN b on (a.key = b.key)

   这一实现减少至少1次MR过程,注意Left Semi-Join的Join条件必须是等值。

3. 预排序减少map  join和group by扫描数据HIVE-1194

(1)重要报表预排序,打开hive.enforce.sorting选项即可

(2)如果MapJoin中的表都是有序的,这一特性使得Join操作无需扫描整个表,这将大大加速Join操作。可通过

     hive.optimize.bucketmapjoin.sortedmerge=true开启这个功能,获得高的性能提升。

  1. set hive.mapjoin.cache.numrows=10000000;  
  2. set hive.mapjoin.size.key=100000;  
  3. Insert overwrite table pv_users  
  4. Select /*+MAPJOIN(pv)*/ pv.pageid,u.age   
  5. from page_view pv  
  6. join user u on (pv.userid=u.userid;  

(3)Sorted Group byHIVE-931    

    对已排序的字段做Group by可以不再额外提交一次MR过程。这种情况下可以提高执行效率。

4. 次性pv uv计算框架

(1)多个mr任务批量提交

     hive.exec.parallel[=false]

     hive.exec.parallel.thread.number[=8]

(2) 一次性计算框架,结合multi group by

     如果少量数据多个union会优化成一个job;

     反之计算量过大可以开启批量mr任务提交减少计算压力;

     利用两次group by 解决count distinct 数据倾斜问题 

  1. Set hive.exec.parallel=true;  
  2. Set hive.exec.parallel.thread.number=2;  
  3. From(  
  4.     Select  
  5.         Yw_type,  
  6.         Sum(case when type=’pv’ then ct endas pv,  
  7.         Sum(case when type=’pv’ then 1 endas uv,  
  8.         Sum(case when type=’click’ then ct endas ipv,  
  9.         Sum(case when type=’click’ then 1 endas ipv_uv  
  10.     from (  
  11.         select   
  12.             yw_type,log_type,uid,count(1) as ct  
  13.         from (  
  14.             select ‘total’ yw_type,‘pv’ log_type,uid from pv_log   
  15.             union all  
  16.             select ‘cat’ yw_type,‘click’ log_type,uid from click_log  
  17.         ) t group by yw_type,log_type  
  18.     ) t group by yw_type  
  19. ) t           
  20. Insert overwrite table tmp_1   
  21. Select pv,uv,ipv,ipv_uv   
  22. Where yw_type=’total’  
  23.   
  24. Insert overwrite table tmp_2  
  25. Select pv,uv,ipv,ipv_uv  
  26. Where yw_type=’cat’;    


5. 控制hive中的map和reduce数

(1)合并小文件

  1. set mapred.max.split.size=100000000;  
  2. set mapred.min.split.size.per.node=100000000;  
  3. set mapred.min.split.size.per.rack=100000000;  
  4. set hive.input.format=  
  5. org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;  

    hive.input.format=……表示合并小文件。大于文件块大小128m的,按照128m来分隔,小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的),进行合并,最终生成了74个块

(2)耗时任务增大map数

    setmapred.reduce.tasks=10;

6. 利用随机数减少数据倾斜

   大表之间join容易因为空值产生数据倾斜 

  1. select   
  2.     a.uid  
  3. from big_table_a a  
  4. left outer join big_table_b b  
  5. on b.uid = case when a.uid is null or length(a.uid)=0  
  6.         then concat('rd_sid',rand()) else a.uid end;  


四. 小技巧

1.空值处理, 结果表\N用空字符串代替

   ALTER TABLE a SETSERDEPROPERTIES('serialization.null.format' = '');

2. 避免暴力扫描分区

   今日全量=昨日全量+今日增量

   30数据=前一个30日数据-31日数据+今日数据

   适用场景:需求稳定,需要访问30天或1年数据

3. 利用动态分区减少任务执行时间

 

五. 通过JobTracker 源数据找出低效代码

1. On条件没写或者扫描过多分区情况

   Uv计算参考一次性pv uv计算框架解决方案,on或者分区条件没写去掉即可

  1. select  
  2.     id as 天网id,prgname as 任务路径,viewname as 显示名称,job_id ,job_name,job_value,  
  3.     length(trim(inputdir))-length(replace(trim(inputdir),',',''))+1 as pathcnt  
  4. from (  
  5.     select  
  6.         t1.id,t1.prgname,t1.viewname,  
  7.         t3.job_id,t3.job_name ,  
  8.         t3.job_value,  
  9.         DBMS_LOB.SUBSTR(t3.job_value,4000) as inputdir  
  10.     from(  
  11.          select  
  12.             id,prgname,paravalue,viewname from dwa.etl_task_program t  
  13.          where priority in('xx','xxx'--##统计的时候输入自己的业务基线id  
  14.             and appflag=0  
  15.     ) t1,  
  16.     dwa.hdp_job_map t2,  
  17.     dwa.hdp_job_conf t3  
  18.     where t1.id = t2.id  
  19.         and t2.job_id = t3.job_id  
  20.         and t2.gmtdate = trunc(sysdate-1)  
  21.         and t3.gmtdate = trunc(sysdate-1)  
  22.         and t3.job_name = 'mapred.input.dir'  
  23. )  
  24. where length(trim(inputdir))-length(replace(trim(inputdir),',','')) > 10;  

2. 同一个脚本相同单表被扫描多次

   尽量把所需要的数据一次性读出来

  1. select sky_id as 天网id,viewname as 天网显示名称,  
  2.     tab_name as 被扫描表,on_duty as 负责人,count(1) as  扫描次数   
  3. from(  
  4.     select distinct a.tab_name,c.sql_id,a.sub_sql_id,c.sky_id,e.viewname,e.on_duty  
  5.     from dwa.meta_tab a,  
  6.     dwa.meta_sqlsub b,  
  7.     (select * from   
  8.         (select sky_id,sql_id,sql_src,  
  9.         row_number() over(partition by sky_id,length(sql_src) order by sql_id) rn   
  10.      from dwa.meta_sqlfull  
  11.     )where rn=1) c,  
  12.     dwa.meta_col d,dwa.etl_task_program e  
  13.     where e.priority  in('xx','xxx'--##统计的时候输入自己的业务基线id  
  14.         and e.appflag=0 and e.id=c.sky_id  
  15.         and a.sub_sql_id=b.sub_sql_id and a.tab_id=d.tab_id and a.sub_sql_id=d.sub_sql_id and b.sqlfull_id=c.sql_id   
  16.         and a.tab_name not like '%-%'  and b.sql_type='select'  
  17.     order by c.sky_id,c.sql_id,a.sub_sql_id  
  18. )group by sky_id,viewname,tab_name,on_duty  
  19. having count(1) >1  
  20. order by cnt desc;  

3. Job数过多

   尽量一次性读取所需数据

   才有union方式合并任务

   Left  outer join on条件相同会合并成一个job

  1. SELECT /*+ parallel(t,32) */   
  2. groupname,  
  3. id,  
  4. BIZ_SORTID,  
  5. ON_DUTY,  
  6. PRGNAME,  
  7. job_cnt,  
  8. JOB_TOTAL_MAPS,  
  9. JOB_TOTAL_REDUCES,  
  10. TOTAL_TIME,  
  11. HDFS_BYTES_READ,  
  12. HDFS_BYTES_WRITTEN,  
  13. TOTAL_MAP_TIME,  
  14. TOTAL_REDUCE_TIME,  
  15. MAP_INPUT_RECORDS,  
  16. MAP_OUTPUT_RECORDS,  
  17. REDUCE_INPUT_RECORDS,  
  18. REDUCE_OUTPUT_RECORDS,  
  19. time,  
  20. row_number() over(partition by groupname order by TIME desc) rn_time,  
  21. row_number() over(partition by groupname order by TOTAL_MAP_TIME+TOTAL_REDUCE_TIME desc) rn_slots  
  22. rom(  
  23. select   
  24.   DWA.ETL_TASK_BASELINE.name as  groupname,  
  25.   DWA.HDP_JOB_MAP.ID,  
  26.   DWA.ETL_TASK_PROGRAM.BIZ_SORTID,  
  27.   DWA.ETL_TASK_PROGRAM.ON_DUTY,  
  28.   DWA.ETL_TASK_LOG.PRGNAME,  
  29.   count(DWA.HDP_JOB_MAP.job_id) job_cnt,  --天网任务的job数  
  30.   sum(DWA.HDP_JOB_STAT.JOB_TOTAL_MAPS) JOB_TOTAL_MAPS,  
  31.   sum(DWA.HDP_JOB_STAT.JOB_TOTAL_REDUCES) JOB_TOTAL_REDUCES,  
  32.   sum(DWA.HDP_JOB_STAT.TOTAL_TIME) TOTAL_TIME,  
  33.   sum(DWA.HDP_JOB_STAT.HDFS_BYTES_READ) HDFS_BYTES_READ,  
  34.   sum(DWA.HDP_JOB_STAT.HDFS_BYTES_WRITTEN) HDFS_BYTES_WRITTEN,  
  35.   sum(DWA.HDP_JOB_STAT.TOTAL_MAP_TIME) TOTAL_MAP_TIME,  
  36.   sum(DWA.HDP_JOB_STAT.TOTAL_REDUCE_TIME) TOTAL_REDUCE_TIME,  
  37.   sum(DWA.HDP_JOB_STAT.MAP_INPUT_RECORDS) MAP_INPUT_RECORDS,  
  38.   sum(DWA.HDP_JOB_STAT.MAP_OUTPUT_RECORDS) MAP_OUTPUT_RECORDS, --new  
  39.   sum(DWA.HDP_JOB_STAT.REDUCE_INPUT_RECORDS) REDUCE_INPUT_RECORDS,  
  40.   sum(DWA.HDP_JOB_STAT.REDUCE_OUTPUT_RECORDS) REDUCE_OUTPUT_RECORDS, --new  
  41.   trunc((DWA.ETL_TASK_LOG.edate-DWA.ETL_TASK_LOG.sdate)*24*60) time  
  42. FROM  
  43.   DWA.HDP_JOB_MAP,  
  44.   DWA.ETL_TASK_PROGRAM,  
  45.   DWA.ETL_TASK_LOG,  
  46.   DWA.HDP_JOB_STAT,  
  47.   DWA.ETL_TASK_BASELINE  
  48. WHERE  
  49.   ( DWA.HDP_JOB_STAT.JOB_ID=DWA.HDP_JOB_MAP.JOB_ID  )  
  50.   AND  ( DWA.HDP_JOB_MAP.ID=DWA.ETL_TASK_LOG.ID  )  
  51.   AND  ( DWA.ETL_TASK_LOG.ID=DWA.ETL_TASK_PROGRAM.ID  )  
  52.   AND  ( DWA.ETL_TASK_PROGRAM.BASELINE_ID=DWA.ETL_TASK_BASELINE.ID  )  
  53.   AND    
  54.   (  
  55.    ( ( DWA.HDP_JOB_STAT.GMTDATE ) = trunc(sysdate)  )  
  56.    AND  
  57.    ( ( DWA.HDP_JOB_MAP.GMTDATE ) = trunc(sysdate)  )  
  58.    AND  
  59.    ( ( DWA.ETL_TASK_LOG.GMTDATE ) = trunc(sysdate)  )  
  60.    AND DWA.ETL_TASK_PROGRAM.priority  in('xx','xxx'--##统计的时候输入自己的业务基线id    
  61.   )  
  62. GROUP BY  
  63.   DWA.ETL_TASK_BASELINE.name,  
  64.   DWA.HDP_JOB_MAP.ID,   
  65.   DWA.ETL_TASK_PROGRAM.BIZ_SORTID,   
  66.   DWA.ETL_TASK_PROGRAM.ON_DUTY,   
  67.   DWA.ETL_TASK_LOG.PRGNAME,  
  68.   (DWA.ETL_TASK_LOG.edate-DWA.ETL_TASK_LOG.sdate)*24*60  
  69. ) t  
  70. where time is not null  and job_cnt>10 --job数量,可以自己定义;  

4. From表个数过多(节点入度过高)

  1. select sky_id as 天网id,viewname as 显示名称,  
  2.     sum(cnt) as 来源表使用次数,count(cnt) as 来源表个数   
  3. from(  
  4.     select sky_id,viewname,tab_name,on_duty,count(1) cnt   
  5.     from(  
  6.         select distinct a.tab_name,c.sql_id,a.sub_sql_id,c.sky_id,e.viewname,e.on_duty  
  7.         from dwa.meta_tab a,dwa.meta_sqlsub b,  
  8.         (  
  9.             select *   
  10.             from(  
  11.                 select sky_id,sql_id,sql_src,  
  12.                 row_number() over(partition by sky_id,length(sql_src) order by sql_id) rn   
  13.                 from dwa.meta_sqlfull)  
  14.             where rn=1  
  15.         ) c,  
  16.         dwa.meta_col d,dwa.etl_task_program e  
  17.         where e.priority  in('xx','xxx'--##统计的时候输入自己的业务基线id    
  18.             and e.appflag=0 and e.id=c.sky_id  
  19.             and a.sub_sql_id=b.sub_sql_id   
  1.             and a.tab_id=d.tab_id and a.sub_sql_id=d.sub_sql_id and b.sqlfull_id=c.sql_id   
  2.             and a.tab_name not like '%-%'  and b.sql_type='select'  
  3.         order by c.sky_id,c.sql_id,a.sub_sql_id  
  4.     )  
  5.     group by sky_id,viewname,tab_name,on_duty  
  6.     order by cnt desc  
  7. )   
  8. group by sky_id,viewname  
  9. order by sum(cnt) desc;  

5. Job倾斜情况

空值处理方法:

(1)直接过滤掉

(2)空值加上随机数分散到不同的reduce

解决方法一job2,方法二job1

  1. select   a11.GMTDATE as  任务执行日期,  
  2.    a11.GROUP_NAME  as 业务线名称,  
  3.    a11.ID as 天网id,  
  4.    a11.SORT_ID as 云梯优先级,  
  5.    a11.NAME as 天网显示名称,  
  6.    a11.JOB_ID as job_id,  
  7.    a11.KEY_FLAG  是否关键节点任务,  
  8.    a11.USER_NAME  用户名,  
  9.    sum(a11.JOB_AVG_TIME)  WJXBFS1,  
  10.    sum(a11.JOB_MAX_TIME)  WJXBFS2,  
  11.    sum(a11.JOB_AVG_RECORDS)  WJXBFS3,  
  12.    sum(a11.JOB_MAX_RECORDS)  WJXBFS4  
  13. from   DWA.VIEW_HDP_JOB_STAT   a11  
  14. where gmtdate=date'2012-09-27'  
  15.     and group_name in ('xxxxx')  
  16. --业务线名称即天网任务配置里的“项目”  
  17. group by   a11.GMTDATE,  
  18.    a11.GROUP_NAME,  
  19.    a11.ID,  
  20.    a11.SORT_ID,  
  21.    a11.NAME,  
  22.    a11.JOB_ID,  
  23.    a11.KEY_FLAG,  
  24.    a11.USER_NAME ;  

6. 相同输入字节数的任务抽取与合并

   数据源相同的任务,抽取相同的job进行合并

  1. drop table gv_job_mapinput;  
  2. create table gv_job_mapinput as  
  3. select   
  4.     id,prgname,job_id,MAP_INPUT_BYTES  
  5. from   
  6. (  
  7. select   
  8.  DWA.ETL_TASK_BASELINE.name groupname,  
  9.   DWA.HDP_JOB_MAP.ID,  
  10.   DWA.ETL_TASK_PROGRAM.BIZ_SORTID,  
  11.   DWA.ETL_TASK_PROGRAM.ON_DUTY,  
  12.   DWA.ETL_TASK_LOG.PRGNAME,  
  13.   DWA.HDP_JOB_MAP.job_id,  --天网任务的job数  
  14.   sum(DWA.HDP_JOB_STAT.JOB_TOTAL_MAPS) JOB_TOTAL_MAPS,  
  15.   sum(DWA.HDP_JOB_STAT.JOB_TOTAL_REDUCES) JOB_TOTAL_REDUCES,  
  16.   sum(DWA.HDP_JOB_STAT.TOTAL_TIME) TOTAL_TIME,  
  17.   sum(DWA.HDP_JOB_STAT.HDFS_BYTES_READ) HDFS_BYTES_READ,  
  18.   sum(DWA.HDP_JOB_STAT.HDFS_BYTES_WRITTEN) HDFS_BYTES_WRITTEN,  
  19.   sum(DWA.HDP_JOB_STAT.TOTAL_MAP_TIME) TOTAL_MAP_TIME,  
  20.   sum(DWA.HDP_JOB_STAT.TOTAL_REDUCE_TIME) TOTAL_REDUCE_TIME,  
  21.   sum(DWA.HDP_JOB_STAT.MAP_INPUT_RECORDS) MAP_INPUT_RECORDS,  
  22.   sum(DWA.HDP_JOB_STAT.MAP_INPUT_BYTES) MAP_INPUT_BYTES,  
  23.   sum(DWA.HDP_JOB_STAT.MAP_OUTPUT_RECORDS) MAP_OUTPUT_RECORDS, --new  
  24.   sum(DWA.HDP_JOB_STAT.REDUCE_INPUT_RECORDS) REDUCE_INPUT_RECORDS,  
  25.   sum(DWA.HDP_JOB_STAT.REDUCE_OUTPUT_RECORDS) REDUCE_OUTPUT_RECORDS, --new  
  26.   trunc((DWA.ETL_TASK_LOG.edate-DWA.ETL_TASK_LOG.sdate)*24*60) time  
  27. FROM  
  28.   DWA.HDP_JOB_MAP,  
  29.   DWA.ETL_TASK_PROGRAM,  
  30.   DWA.ETL_TASK_LOG,  
  31.   DWA.HDP_JOB_STAT,  
  32.   DWA.ETL_TASK_BASELINE  
  33. WHERE  
  34.   ( DWA.HDP_JOB_STAT.JOB_ID=DWA.HDP_JOB_MAP.JOB_ID  )  
  35.   AND  ( DWA.HDP_JOB_MAP.ID=DWA.ETL_TASK_LOG.ID  )  
  36.   AND  ( DWA.ETL_TASK_LOG.ID=DWA.ETL_TASK_PROGRAM.ID  )  
  37.   AND  ( DWA.ETL_TASK_PROGRAM.BASELINE_ID=DWA.ETL_TASK_BASELINE.ID  )  
  38.   AND    
  39.   (  
  40.    ( ( DWA.HDP_JOB_STAT.GMTDATE ) = trunc(sysdate)  )  
  41.    AND  
  42.    ( ( DWA.HDP_JOB_MAP.GMTDATE ) = trunc(sysdate)  )  
  43.    AND  
  44.    ( ( DWA.ETL_TASK_LOG.GMTDATE ) = trunc(sysdate)  )  
  45.    AND  
  46.    DWA.ETL_TASK_PROGRAM.priority  in('xx','xxx')  
  47.   --##统计的时候输入自己的业务基线id  
  48.   )  
  49. GROUP BY  
  50.   DWA.ETL_TASK_BASELINE.name,  
  51.   DWA.HDP_JOB_MAP.ID,   
  52.   DWA.ETL_TASK_PROGRAM.BIZ_SORTID,   
  53.   DWA.ETL_TASK_PROGRAM.ON_DUTY,   
  54.   DWA.ETL_TASK_LOG.PRGNAME,  
  55.   DWA.HDP_JOB_MAP.job_id,  
  56.   (DWA.ETL_TASK_LOG.edate-DWA.ETL_TASK_LOG.sdate)*24*60  
  57.   )  
  58. order by MAP_INPUT_RECORDS desc ,job_id;  
  59.    
  60. select * from gv_job_mapinput   
  61. where id exists (  
  62.     select id from   
  63.     (select id,prgname,count(job_id) cnt from gv_job_mapinput group by id,prgname)  
  64.     where cnt =1   
  65. )  
  66. order by MAP_INPUT_BYTES desc;  

7. 多个任务只有一个共同的父任务

  1. drop table gvora_view_relation;  
  2. create table gvora_view_relation as   
  3. select a.id,a.viewname,a.on_duty,a.sourceid,a.priority,a.parentid,  
  1.     b.viewname parentviewname,b.on_duty pon_duty,b.sourceid psourceid,b.priority p_priority   
  2. from(  
  3.     select a.id,b.viewname,b.on_duty,b.sourceid,b.priority,a.parentid from   
  4.     dwa.etl_task_relation a,  
  5.     dwa.etl_task_program b  
  6.     where a.id=b.id  
  7. ) a,  
  8. dwa.etl_task_program b  
  9. where a.parentid=b.id;  
  10.   
  11. select a.id as 天网id,a.viewname as 显示名称,rudu,chudu   
  12. from(  
  13.     select id,viewname,count(1) rudu from gvora_view_relation  
  14.     where priority  in('xx','xxx')  
  15.     --##统计的时候输入自己的业务基线id  
  16.     group by id,viewname  
  17. ) a,  
  18. (  
  19.     select parentid,parentviewname,count(1) chudu from gvora_view_relation  
  20.     where priority  in('xx','xxx')  
  21.      --##统计的时候输入自己的业务基线id  
  22.     group by parentid,parentviewname  
  23. ) b  
  24. where a.id=b.parentid  
  25. order by rudu +chudu desc;  
posted on 2015-08-06 17:36 xzc 阅读(686) 评论(0)  编辑  收藏 所属分类: hadoop

只有注册用户登录后才能发表评论。


网站导航: