关于mapreduce程序运行在yarn上时内存的分配一直是一个让我蒙圈的事情,单独查任何一个资料都不能很好的理解透彻。于是,最近查了大量的资料,综合各种解释,终于理解到了一个比较清晰的程度,在这里将理解的东西做一个简单的记录,以备忘却。
首先,先将关于mapreduce和yarn关于内存分配的参数粘贴上:
yarn.scheduler.minimum-allocation-mb
yarn.scheduler.maximum-allocation-mb
yarn.nodemanager.resource.memory-mb
yarn.nodemanager.vmem-pmem-ratio
yarn.scheduler.increment-allocation-mb
mapreduce.map.memory.mb
mapreduce.reduce.memory.mb
mapreduce.map.java.opts
mapreduce.reduce.java.opts
个人认为,针对mapreduce任务,这些参数只有放在一起学习才能真正理解,如果单独考虑,理解不清晰。下面开始详细讲解。
一、理解参数yarn.nodemanager.resource.memory-mb,yarn.nodemanager.vmem-pmem-ratio
yarn.nodemanager.resource.memory-mb很简单,就是你的这台服务器节点上准备分给yarn的内存;
yarn.nodemanager.vmem-pmem-ratio网上解释都是"每使用1MB物理内存,最多可用的虚拟内存数,默认2.1",但是目前我还是不太理解其作用是什么,有知道的朋友希望能详细解释下。
二、理解参数yarn.scheduler.minimum-allocation-mb和yarn.scheduler.maximum-allocation-mb
都知道,在yarn上运行程序时每个task都是在独立的Container中运行的,单个Container可以申请的最小和最大内存的限制就是这两个参数,注意,并不是这两个参数决定单个Container申请内存的大小,而仅仅是限制的一个范围。
三、理解yarn的内存规整化因子和内存规整化算法
先不说和哪个参数有关,单纯理解这一概念。举例:
假如规整化因子b=512M,上述讲的参数yarn.scheduler.minimum-allocation-mb为1024,yarn.scheduler.maximum-allocation-mb为8096,然后我打算给单个map任务申请内存资源(mapreduce.map.memory.mb):
申请的资源为a=1000M时,实际得到的Container内存大小为1024M(小于yarn.scheduler.minimum-allocation-mb的话自动设置为yarn.scheduler.minimum-allocation-mb);
申请的资源为a=1500M时,实际得到的Container内存大小为1536M,计算公式为:ceiling(a/b)*b,即ceiling(a/b)=ceiling(1500/512)=3,3*512=1536。此处假如b=1024,则Container实际内存大小为2048M
也就是说Container实际内存大小最小为yarn.scheduler.minimum-allocation-mb值,然后增加时的最小增加量为规整化因子b,最大不超过yarn.scheduler.maximum-allocation-mb
四、理解mapreduce.map.memory.mb、mapreduce.reduce.memory.mb
"三"中提到的"打算给单个map任务申请内存资源"也就是a,其实就是指的"mapreduce.map.memory.mb"或"mapreduce.reduce.memory.mb",注意其值不要超过yarn.scheduler.maximum-allocation-mb
五、理解mapreduce.map.java.opts、mapreduce.reduce.java.opts
以map任务为例,Container其实就是在执行一个脚本文件,而脚本文件中,会执行一个 Java 的子进程,这个子进程就是真正的 Map Task,mapreduce.map.java.opts 其实就是启动 JVM 虚拟机时,传递给虚拟机的启动参数,而默认值 -Xmx200m 表示这个 Java 程序可以使用的最大堆内存数,一旦超过这个大小,JVM 就会抛出 Out of Memory 异常,并终止进程。而 mapreduce.map.memory.mb 设置的是 Container 的内存上限,这个参数由 NodeManager 读取并进行控制,当 Container 的内存大小超过了这个参数值,NodeManager 会负责 kill 掉 Container。在后面分析 yarn.nodemanager.vmem-pmem-ratio 这个参数的时候,会讲解 NodeManager 监控 Container 内存(包括虚拟内存和物理内存)及 kill 掉 Container 的过程。
也就是说,mapreduce.map.java.opts一定要小于mapreduce.map.memory.mb
mapreduce.reduce.java.opts同mapreduce.map.java.opts一样的道理。
六、理解规整化因子指的是哪个参数
"三"中提到的规整化因子也就是b,具体指的是哪个参数和yarn使用的调度器有关,一共有三种调度器:capacity scheduler(默认调度器)、fair scheduler和fifo scheduler
当使用capacity scheduler或者fifo scheduler时,规整化因子指的就是参数yarn.scheduler.minimum-allocation-mb,不能单独配置,即yarn.scheduler.increment-allocation-mb无作用;
当使用fair scheduler时,规整化因子指的是参数yarn.scheduler.increment-allocation-mb
至此,关于yarn和mapreduce的任务内存配置问题讲完了,这也是我目前理解的层次。
posted on 2017-08-30 21:05
xzc 阅读(303)
评论(0) 编辑 收藏 所属分类:
hadoop