8种排序之间的关系:

1, 直接插入排序
(1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排
好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数
也是排好顺序的。如此反复循环,直到全部排好顺序。
(2)实例

(3)用java实现
03 |
public class insertSort { |
05 |
inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; |
07 |
for(int i=1;i<a.length;i++){ |
10 |
for(;j>=0&&temp<a[j];j--){ |
15 |
for(int i=0;i<a.length;i++) |
16 |
System.out.println(a[i]); |
2, 希尔排序(最小增量排序)
(1)基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。
(2)实例:

(3)用java实现
01 |
public class shellSort { |
03 |
int a[]={1,54,6,3,78,34,12,45,56,100}; |
10 |
for(int i=x+d;i<a.length;i+=d){ |
13 |
for(;j>=0&&temp<a[j];j-=d){ |
22 |
for(int i=0;i<a.length;i++) |
23 |
System.out.println(a[i]); |
3.简单选择排序
(1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
(2)实例:
(3)用java实现
01 |
public class selectSort { |
03 |
int a[]={1,54,6,3,78,34,12,45}; |
05 |
for(int i=0;i<a.length;i++){ |
19 |
for(int i=0;i<a.length;i++) |
20 |
System.out.println(a[i]); |
4, 堆排序
(1)基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
(2)实例:
初始序列:46,79,56,38,40,84
建堆:
交换,从堆中踢出最大数


依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。
(3)用java实现
01 |
import java.util.Arrays; |
03 |
public class HeapSort { |
04 |
int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; |
08 |
public void heapSort(int[] a){ |
09 |
System.out.println("开始排序"); |
10 |
int arrayLength=a.length; |
12 |
for(int i=0;i<arrayLength-1;i++){ |
15 |
buildMaxHeap(a,arrayLength-1-i); |
17 |
swap(a,0,arrayLength-1-i); |
18 |
System.out.println(Arrays.toString(a)); |
22 |
private void swap(int[] data, int i, int j) { |
29 |
private void buildMaxHeap(int[] data, int lastIndex) { |
32 |
for(int i=(lastIndex-1)/2;i>=0;i--){ |
36 |
while(k*2+1<=lastIndex){ |
38 |
int biggerIndex=2*k+1; |
40 |
if(biggerIndex<lastIndex){ |
42 |
if(data[biggerIndex]<data[biggerIndex+1]){ |
48 |
if(data[k]<data[biggerIndex]){ |
50 |
swap(data,k,biggerIndex); |
56 |
}<p align="left"> <span> </span>}</p> |
57 |
<p align="left"> }</p> |
58 |
<p align="left"> <span style="background-color:white;">}</span></p> |
5.冒泡排序
(1)基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
(2)实例:
(3)用java实现
01 |
public class bubbleSort { |
03 |
int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; |
05 |
for(int i=0;i<a.length-1;i++){ |
06 |
for(int j=0;j<a.length-1-i;j++){ |
14 |
for(int i=0;i<a.length;i++) |
15 |
System.out.println(a[i]); |
6.快速排序
(1)基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
(2)实例:

(3)用java实现
01 |
public class quickSort { |
02 |
int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; |
05 |
for(int i=0;i<a.length;i++) |
06 |
System.out.println(a[i]); |
08 |
public int getMiddle(int[] list, int low, int high) { |
11 |
while (low < high && list[high] >= tmp) { |
15 |
list[low] = list[high]; |
16 |
while (low < high && list[low] <= tmp) { |
19 |
list[high] = list[low]; |
24 |
public void _quickSort(int[] list, int low, int high) { |
26 |
int middle = getMiddle(list, low, high); |
27 |
_quickSort(list, low, middle - 1); |
28 |
_quickSort(list, middle + 1, high); |
31 |
public void quick(int[] a2) { |
33 |
_quickSort(a2, 0, a2.length - 1); |
7、归并排序
(1)基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
(2)实例:

(3)用java实现
01 |
import java.util.Arrays; |
03 |
public class mergingSort { |
04 |
int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; |
07 |
for(int i=0;i<a.length;i++) |
08 |
System.out.println(a[i]); |
10 |
public void sort(int[] data, int left, int right) { |
14 |
int center=(left+right)/2; |
16 |
sort(data,left,center); |
18 |
sort(data,center+1,right); |
20 |
merge(data,left,center,right); |
24 |
public void merge(int[] data, int left, int center, int right) { |
26 |
int [] tmpArr=new int[data.length]; |
31 |
while(left<=center&&mid<=right){ |
34 |
if(data[left]<=data[mid]){ |
35 |
tmpArr[third++]=data[left++]; |
37 |
tmpArr[third++]=data[mid++]; |
42 |
tmpArr[third++]=data[mid++]; |
45 |
tmpArr[third++]=data[left++]; |
49 |
data[tmp]=tmpArr[tmp++]; |
51 |
System.out.println(Arrays.toString(data)); |
8、基数排序
(1)基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
(2)实例:
(3)用java实现
01 |
import java.util.ArrayList; |
02 |
import java.util.List; |
04 |
public class radixSort { |
05 |
int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,101,56,17,18,23,34,15,35,25,53,51}; |
08 |
for(int i=0;i<a.length;i++) |
09 |
System.out.println(a[i]); |
11 |
public void sort(int[] array){ |
15 |
for(int i=1;i<array.length;i++){ |
29 |
List<ArrayList> queue=new ArrayList<ArrayList>(); |
30 |
for(int i=0;i<10;i++){ |
31 |
ArrayList<Integer> queue1=new ArrayList<Integer>(); |
36 |
for(int i=0;i<time;i++){ |
39 |
for(int j=0;j<array.length;j++){ |
41 |
int x=array[j]%(int)Math.pow(10, i+1)/(int)Math.pow(10, i); |
42 |
ArrayList<Integer> queue2=queue.get(x); |
48 |
for(int k=0;k<10;k++){ |
49 |
while(queue.get(k).size()>0){ |
50 |
ArrayList<Integer> queue3=queue.get(k); |
51 |
array[count]=queue3.get(0); |