最近要做一个站内的全文检索功能,主要是针对clob字段的,于是去网上找了点lucene的资料,现在新版本的是2.0.0,网上的例子多是1.4.3的,有些方法已经废弃了,搞了n久终于把2.0.0的功能实现了,呵呵,下面把实现的代码贴出来,实现了索引的创建、检索和删除功能,并可以从检索结果去查询数据库~
// 创建索引
public void indexFiles() {
// 创建索引文件存放路径
File indexDir = new File("E:\\lucene_Learning\\lucene-2.0.0src\\src\\demo\\index");
try {
Date start = new Date();
// 创建分析器,主要用于从文本中抽取那些需要建立索引的内容,把不需要参与建索引的文本内容去掉.
// 比如去掉一些a the之类的常用词,还有决定是否大小写敏感.
StandardAnalyzer standardAnalyzer = new StandardAnalyzer();
// 参数true用于确定是否覆盖原有索引的
IndexWriter indexWriter = new IndexWriter(indexDir, standardAnalyzer, true);
indexWriter.setMergeFactor(100);
indexWriter.setMaxBufferedDocs(100);
// 只索引这个Field的前5000个字,默认为10000
indexWriter.setMaxFieldLength(5000);
// 从数据库取出所有纪录
List articleList = articleManager.getArticles(null);
for (int i = 0; i < articleList.size(); i++) {
Article article = (Article) articleList.get(i);
// 在Document方法是创建索引的具体代码
Document doc = Document(article);
indexWriter.addDocument(doc);
}
// Optimize的过程就是要减少剩下的Segment的数量,尽量让它们处于一个文件中.
indexWriter.optimize();
indexWriter.close();
Date end = new Date();
System.out.println("create index: " + (end.getTime() - start.getTime()) + " total milliseconds");
} catch (IOException e) {
System.out.println(" caught a " + e.getClass() + "\n with message: " + e.getMessage());
}
}
public static Document Document(Article article)
throws java.io.IOException {
Document doc = new Document();
// 为article表的主健创建索引,关于Field的几个参数下面有详细解释
Field fieldId = new Field("uid", article.getArticleId(), Field.Store.YES, Field.Index.UN_TOKENIZED, Field.TermVector.YES);
// 为detail字段创建索引,detail在DB中是clob字段,内容为html文本
String contentHtml = article.getDetail();
Reader read = new StringReader(contentHtml);
// 用HTMLParser把detail字段中的HTML分析成文本在索引
// HTMLParser这个类可以在lucene的demo中找到
HTMLParser htmlParser = new HTMLParser(read);
BufferedReader breader = new BufferedReader(htmlParser.getReader());
String htmlContent ="";
String tempContent = breader.readLine();
while (tempContent != null && tempContent.length() > 0) {
htmlContent = htmlContent + tempContent;
tempContent = breader.readLine();
}
Field fieldContents = new Field("content", htmlContent,
Field.Store.COMPRESS, Field.Index.TOKENIZED,Field.TermVector.YES);
// db中的每条纪录对应一个doc,每个字段对应一个field
doc.add(fieldId);
doc.add(fieldContents);
return doc;
} // 搜索文件,keyword是你在页面上输入的查找关键字,这里查找的是detail字段
public List searchFiles(String keyword){
String index = "E:\\lucene_Learning\\lucene-2.0.0src\\src\\demo\\index";
// hitsList用来保存db的纪录,这些纪录可以通过查询结果取到
List hitsList = new ArrayList();
try {
Date start = new Date();
IndexReader reader = IndexReader.open(index);
Searcher searcher = new IndexSearcher(reader);
Analyzer analyzer = new StandardAnalyzer();
QueryParser parser = new QueryParser("content", analyzer);
// 解析查询关键字,比如输入的是以空格等分开的多个查询关键字,这里解析后,可以多条件查询
Query query = parser.parse(keyword);
// hits用来保存查询结果,这里的hits相当于sql中的result
Hits hits = searcher.search(query);
for (int i = 0; i < hits.length(); i++) {
Document doc = hits.doc(i);
// 获得article表的主健
String id = doc.get("uid");
// 根据主健去db中取纪录,返回到hitsList中
try {
Article article = articleManager.getArticle(id);
} catch (ObjectRetrievalFailureException e) {
article = null;
}
// 如果没有找到该纪录,表示该纪录已经不存在,不必添加到hitsList中
if(article!=null) hitsList.add(article);
}
searcher.close();
reader.close();
Date end = new Date();
System.out.println("search files: " + (end.getTime() - start.getTime()) + " total milliseconds");
} catch (IOException e) {
System.out.println(" caught a " + e.getClass() + "\n with message: " + e.getMessage());
} catch (ParseException e) {
System.out.println(" caught a " + e.getClass() + "\n with message: " + e.getMessage());
}
return hitsList;
// 删除索引
public void deleteIndex(){
String index = "E:\\lucene_Learning\\lucene-2.0.0src\\src\\demo\\index";
try {
Date start = new Date();
IndexReader reader = IndexReader.open(index);
int numFiles = reader.numDocs();
for (int i = 0; i < numFiles; i++) {
// 这里的删除只是给文档做一个删除标记,你可以看到执行deleteDocument后会产生一个del后缀的文件,
// 用来记录这些标记过的文件
reader.deleteDocument(i);
}
reader.close();
Date end = new Date();
System.out.println("delete index: " + (end.getTime() - start.getTime()) + " total milliseconds");
} catch (IOException e) {
System.out.println(" caught a " + e.getClass() + "\n with message: " + e.getMessage());
}
} // 恢复已删除的索引
public void unDeleteIndex(){
String index = "E:\\lucene_Learning\\lucene-2.0.0src\\src\\demo\\index";
try {
IndexReader reader = IndexReader.open(index);
reader.undeleteAll();
reader.close();
} catch (IOException e) {
System.out.println(" caught a " + e.getClass() + "\n with message: " + e.getMessage());
}
} Field就像我们学过的数据库中的字段,简单的说,就是一个名值对。这个域有三种属性,分别是isStored - 是否被存储
isIndexed - 是否被索引
isTokenized - 是否分词这些属性的组合又构成了四种不同类型的Field,而且各有用途 Stored Indexed Tokenized
Keyword Y Y N
UnIndexed Y N N
UnStored N Y Y
Text: String Y Y Y
Text : Reader N Y Y
关于Field,2.0.0版本和1.4.3版本方法相比改动比较大,具体见下表 1.4.3版本中的下面方法都被Field(String name, String value, Store store, Index index, TermVector termVector)取代Keyword(String name, String value) // only version 1.4.3
存储、索引、不分词,用于URI(比如MSN聊天记录的日期域、比如MP3文件的文件全路径等等)
Field(String name, String value, Field.Store.YES, Field.Index.UN_TOKENIZED) // version 2.0.0UnIndexed(String name, String value) // only version 1.4.3
存储、不索引、不分词,比如文件的全路径
Field(String name, String value,Field.Store.YES, Field.Index.NO)// version 2.0.0UnStored(String name, String value) // only version 1.4.3
不存储、索引、分词,比如HTML的正文、Word的内容等等,这部分内容是要被索引的,但是由于具体内容通常很大,没有必要再进行存储,可以到时候根据URI再来挖取。所以,这部分只分词、索引,而不存储。
Field(String name, String value,Field.Store.YES, Field.Index.TOKENIZED)// version 2.0.0Text(String name, String value) // only version 1.4.3
存储、索引、分词,比如文件的各种属性,比如MP3文件的歌手、专辑等等。Field.Store.YES, Field(String name, String value,Field.Index.TOKENIZED)// version 2.0.0Text(String name, Reader value) // only version 1.4.3 Field(String name, Reader reader) // version 2.0.0
不存储、索引、分词。
摘自:
http://hi.baidu.com/nju918http://hi.baidu.com/nju918/blog/item/3970aaec40ad5c2763d09f0a.html