posts - 0, comments - 77, trackbacks - 0, articles - 356
  BlogJava :: 首页 :: 新随笔 :: 联系 :: 聚合  :: 管理

gif图片处理源码

Posted on 2007-01-16 08:34 semovy 阅读(804) 评论(0)  编辑  收藏 所属分类: JAVA应用

包括四个类AnimatedGifEncoder.java ,GifDecoder.java , LZWEncoder.java , NeuQuant.java

//AnimatedGifEncoder.java

    package ip.gif.neuquantAnimation;
    
    import java.awt.*;
    import java.awt.image.BufferedImage;
    import java.awt.image.DataBufferByte;
    import java.io.BufferedOutputStream;
    import java.io.FileOutputStream;
    import java.io.IOException;
    import java.io.OutputStream;
   
   /**
    * Class AnimatedGifEncoder - Encodes a GIF file consisting of one or
    * more frames.
    * <pre>
    * Example:
    *    AnimatedGifEncoder e = new AnimatedGifEncoder();
    *    e.start(outputFileName);
    *    e.setDelay(1000);   // 1 frame per sec
    *    e.addFrame(image1);
    *    e.addFrame(image2);
    *    e.finish();
    * </pre>
    * No copyright asserted on the source code of this class.  May be used
    * for any purpose, however, refer to the Unisys LZW patent for restrictions
    * on use of the associated LZWEncoder class.  Please forward any corrections
    * to kweiner@fmsware.com.
    *
    * @author Kevin Weiner, FM Software
    * @version 1.03 November 2003
    *
    */
   
   public class AnimatedGifEncoder {
   
       protected int width; // image size
       protected int height;
       protected Color transparent = null; // transparent color if given
       protected int transIndex; // transparent index in color table
       protected int repeat = -1; // no repeat
       protected int delay = 0; // frame delay (hundredths)
       protected boolean started = false; // ready to output frames
       protected OutputStream out;
       protected BufferedImage image; // current frame
       protected byte[] pixels; // BGR byte array from frame
       protected byte[] indexedPixels; // converted frame indexed to palette
       protected int colorDepth; // number of bit planes
       protected byte[] colorTab; // RGB palette
       protected boolean[] usedEntry = new boolean[256]; // active palette entries
       protected int palSize = 7; // color table size (bits-1)
       protected int dispose = -1; // disposal code (-1 = use default)
       protected boolean closeStream = false; // close stream when finished
       protected boolean firstFrame = true;
       protected boolean sizeSet = false; // if false, get size from first frame
       protected int sample = 40; // default sample interval for quantizer
   
       /**
        * Sets the delay time between each frame, or changes it
        * for subsequent frames (applies to last frame added).
        *
        * @param ms int delay time in milliseconds
        */
       public void setDelay(int ms) {
           delay = Math.round(ms / 10.0f);
       }
       
       /**
        * Sets the GIF frame disposal code for the last added frame
        * and any subsequent frames.  Default is 0 if no transparent
        * color has been set, otherwise 2.
        * @param code int disposal code.
        */
       public void setDispose(int code) {
           if (code >= 0) {
               dispose = code;
           }
       }
       
       /**
        * Sets the number of times the set of GIF frames
        * should be played.  Default is 1; 0 means play
        * indefinitely.  Must be invoked before the first
        * image is added.
        *
        * @param iter int number of iterations.
        */
       public void setRepeat(int iter) {
           if (iter >= 0) {
               repeat = iter;
           }
       }
       
       /**
        * Sets the transparent color for the last added frame
        * and any subsequent frames.
        * Since all colors are subject to modification
        * in the quantization process, the color in the final
        * palette for each frame closest to the given color
        * becomes the transparent color for that frame.
        * May be set to null to indicate no transparent color.
       *
       * @param c Color to be treated as transparent on display.
       */
      public void setTransparent(Color c) {
          transparent = c;
      }
      
      /**
       * Adds next GIF frame.  The frame is not written immediately, but is
       * actually deferred until the next frame is received so that timing
       * data can be inserted.  Invoking <code>finish()</code> flushes all
       * frames.  If <code>setSize</code> was not invoked, the size of the
       * first image is used for all subsequent frames.
       *
       * @param im BufferedImage containing frame to write.
       * @return true if successful.
       */
      public boolean addFrame(BufferedImage im) {
          if ((im == null) || !started) {
              return false;
          }
          boolean ok = true;
          try {
              addImage(im);
          } catch (IOException e) {
              ok = false;
          }
  
          return ok;
      }
  
      private void addImage(BufferedImage im) throws IOException {
          if (!sizeSet) {
              // use first frame's size
              setSize(im.getWidth(), im.getHeight());
          }
          image = im;
          long time = System.currentTimeMillis();
          getImagePixels(); // convert to correct format if necessary
          //System.out.println("getImagePixels took:"+
          //        (System.currentTimeMillis()-time)+" ms");
          time = System.currentTimeMillis();
          analyzePixels(this); // build color table & map pixels
          System.out.println("analyzePixels took:" +
                  (System.currentTimeMillis() - time) + " ms");
          time = System.currentTimeMillis();
          if (firstFrame) {
              writeLSD(); // logical screen descriptior
              writePalette(); // global color table
              if (repeat >= 0) {
                  // use NS app extension to indicate reps
                  writeNetscapeExt();
              }
          }
          writeGraphicCtrlExt(); // write graphic control extension
          writeImageDesc(); // image descriptor
          if (!firstFrame) {
              writePalette(); // local color table
          }
          writePixels(); // encode and write pixel data
          firstFrame = false;
          System.out.println("writing out data took:" +
                  (System.currentTimeMillis() - time) + " ms");
      }
  
      /**
       * Flushes any pending data and closes output file.
       * If writing to an OutputStream, the stream is not
       * closed.
       */
      public boolean finish() {
          if (!started) return false;
          boolean ok = true;
          started = false;
          try {
              out.write(0x3b); // gif trailer
              out.flush();
              if (closeStream) {
                  out.close();
              }
          } catch (IOException e) {
              ok = false;
          }
  
          // reset for subsequent use
          transIndex = 0;
          out = null;
          image = null;
          pixels = null;
          indexedPixels = null;
          colorTab = null;
          closeStream = false;
          firstFrame = true;
  
          return ok;
      }
      
      /**
       * Sets frame rate in frames per second.  Equivalent to
       * <code>setDelay(1000/fps)</code>.
       *
       * @param fps float frame rate (frames per second)
       */
      public void setFrameRate(float fps) {
          if (fps != 0f) {
              delay = Math.round(100f / fps);
          }
      }
      
      /**
       * Sets quality of color quantization (conversion of images
       * to the maximum 256 colors allowed by the GIF specification).
       * Lower values (minimum = 1) produce better colors, but slow
       * processing significantly.  10 is the default, and produces
       * good color mapping at reasonable speeds.  Values greater
       * than 20 do not yield significant improvements in speed.
       *
       * @param quality int greater than 0.
       */
      public void setQuality(int quality) {
          if (quality < 1) quality = 1;
          sample = quality;
      }
      
      /**
       * Sets the GIF frame size.  The default size is the
       * size of the first frame added if this method is
       * not invoked.
       *
       * @param w int frame width.
       * @param h int frame width.
       */
      public void setSize(int w, int h) {
          if (started && !firstFrame) return;
          width = w;
          height = h;
          if (width < 1) width = 320;
          if (height < 1) height = 240;
          sizeSet = true;
      }
      
      /**
       * Initiates GIF file creation on the given stream.  The stream
       * is not closed automatically.
       *
       * @param os OutputStream on which GIF images are written.
       * @return false if initial write failed.
       */
      public boolean start(OutputStream os) {
          if (os == null) return false;
          boolean ok = true;
          closeStream = false;
          out = os;
          try {
              writeString("GIF89a"); // header
          } catch (IOException e) {
              ok = false;
          }
          return started = ok;
      }
      
      /**
       * Initiates writing of a GIF file with the specified name.
       *
       * @param file String containing output file name.
       * @return false if open or initial write failed.
       */
      public boolean start(String file) {
          boolean ok = true;
          try {
              out = new BufferedOutputStream(new FileOutputStream(file));
              ok = start(out);
              closeStream = true;
          } catch (IOException e) {
              ok = false;
          }
          return started = ok;
      }
      
      /**
       * Analyzes image colors and creates color map.
       * @param animatedGifEncoder
       */
      private static final void analyzePixels(AnimatedGifEncoder
              animatedGifEncoder) {
          int len = animatedGifEncoder.pixels.length;
          int nPix = len / 3;
          animatedGifEncoder.indexedPixels = new byte[nPix];
          NeuQuant nq = new NeuQuant(animatedGifEncoder.pixels,
                  len, animatedGifEncoder.sample);
          // initialize quantizer
      
          animatedGifEncoder.colorTab = nq.process(); // create reduced palette
  
          // convert map from BGR to RGB
          byte temp = 0;
          for (int i = 0; i < animatedGifEncoder.colorTab.length; i += 3) {
              temp = animatedGifEncoder.colorTab[i];
              animatedGifEncoder.colorTab[i] = animatedGifEncoder.colorTab[i + 2];
              animatedGifEncoder.colorTab[i + 2] = temp;
              animatedGifEncoder.usedEntry[i / 3] = false;
          }
          // map image pixels to new palette
          int k = 0;
          int index = 0;
          for (int i = 0; i < nPix; i++) {
               index =
                  nq.map(animatedGifEncoder.pixels[k++] & 0xff,
                         animatedGifEncoder.pixels[k++] & 0xff,
                         animatedGifEncoder.pixels[k++] & 0xff);
              animatedGifEncoder.usedEntry[index] = true;
              animatedGifEncoder.indexedPixels[i] = (byte) index;
          }
          animatedGifEncoder.pixels = null;
          animatedGifEncoder.colorDepth = 8;
          animatedGifEncoder.palSize = 7;
          // get closest match to transparent color if specified
          if (animatedGifEncoder.transparent != null) {
              animatedGifEncoder.transIndex = findClosest(animatedGifEncoder.colorTab, animatedGifEncoder.usedEntry, animatedGifEncoder.transparent);
          }
      }
      
      /**
       * Returns index of palette color closest to c
       * This is using square error and a search, for each
       * color.
       * It is not efficient.
       * todo: optimize this search
       *
       */
      private final static int findClosest(byte[] colorTab1,
                                boolean[] usedEntry1,
                                Color c) {
          if (colorTab1 == null) return -1;
          int r = c.getRed();
          int g = c.getGreen();
          int b = c.getBlue();
          int minpos = 0;
          int dmin = 256 * 256 * 256;
          int len = colorTab1.length;
          int dr,dg,db,d,index;
          for (int i = 0; i < len;) {
               dr = r - (colorTab1[i++] & 0xff);
               dg = g - (colorTab1[i++] & 0xff);
               db = b - (colorTab1[i] & 0xff);
               d = dr * dr + dg * dg + db * db;
               index = i / 3;
              if (usedEntry1[index] && (d < dmin)) {
                  dmin = d;
                  minpos = index;
              }
              i++;
          }
          return minpos;
      }
      
      /**
       * Extracts image pixels into byte array "pixels"
       */
      private final void getImagePixels() {
          int w = image.getWidth();
          int h = image.getHeight();
          int type = image.getType();
          if ((w != width)
              || (h != height)
              || (type != BufferedImage.TYPE_3BYTE_BGR)) {
              // create new image with right size/format
              BufferedImage temp =
                  new BufferedImage(width, height, BufferedImage.TYPE_3BYTE_BGR);
              Graphics2D g = temp.createGraphics();
              g.drawImage(image, 0, 0, null);
              image = temp;
          }
          pixels = ((DataBufferByte) image.getRaster().getDataBuffer()).getData();
      }
      
      /**
       * Writes Graphic Control Extension
       */
      private final void writeGraphicCtrlExt() throws IOException {
          out.write(0x21); // extension introducer
          out.write(0xf9); // GCE label
          out.write(4); // data block size
          int transp, disp;
          if (transparent == null) {
              transp = 0;
              disp = 0; // dispose = no action
          } else {
              transp = 1;
              disp = 2; // force clear if using transparent color
          }
          if (dispose >= 0) {
              disp = dispose & 7; // user override
          }
          disp <<= 2;
  
          // packed fields
          out.write(0 | // 1:3 reserved
                 disp | // 4:6 disposal
                    0 | // 7   user input - 0 = none
               transp); // 8   transparency flag
  
          writeShort(delay); // delay x 1/100 sec
          out.write(transIndex); // transparent color index
          out.write(0); // block terminator
      }
      
      /**
       * Writes Image Descriptor
       */
      protected void writeImageDesc() throws IOException {
          out.write(0x2c); // image separator
          writeShort(0); // image position x,y = 0,0
          writeShort(0);
          writeShort(width); // image size
          writeShort(height);
          // packed fields
          if (firstFrame) {
              // no LCT  - GCT is used for first (or only) frame
              out.write(0);
          } else {
              // specify normal LCT
              out.write(0x80 | // 1 local color table  1=yes
                           0 | // 2 interlace - 0=no
                           0 | // 3 sorted - 0=no
                           0 | // 4-5 reserved
                     palSize); // 6-8 size of color table
          }
      }
      
      /**
       * Writes Logical Screen Descriptor
       */
      protected void writeLSD() throws IOException {
          // logical screen size
          writeShort(width);
          writeShort(height);
          // packed fields
          out.write((0x80 | // 1   : global color table flag = 1 (gct used)
                     0x70 | // 2-4 : color resolution = 7
                     0x00 | // 5   : gct sort flag = 0
                 palSize)); // 6-8 : gct size
  
          out.write(0); // background color index
          out.write(0); // pixel aspect ratio - assume 1:1
      }
      
      /**
       * Writes Netscape application extension to define
       * repeat count.
       */
      protected void writeNetscapeExt() throws IOException {
          out.write(0x21); // extension introducer
          out.write(0xff); // app extension label
          out.write(11); // block size
          writeString("NETSCAPE" + "2.0"); // app id + auth code
          out.write(3); // sub-block size
          out.write(1); // loop sub-block id
          writeShort(repeat); // loop count (extra iterations, 0=repeat forever)
          out.write(0); // block terminator
      }
      
      /**
       * Writes color table
       */
      protected void writePalette() throws IOException {
          out.write(colorTab, 0, colorTab.length);
          int n = (3 * 256) - colorTab.length;
          for (int i = 0; i < n; i++) {
              out.write(0);
          }
      }
      
      /**
       * Encodes and writes pixel data
       */
      protected void writePixels() throws IOException {
          LZWEncoder encoder =
              new LZWEncoder(width, height, indexedPixels, colorDepth);
          encoder.encode(out);
      }
      
      /**
       *    Write 16-bit value to output stream, LSB first
       */
      protected void writeShort(int value) throws IOException {
          out.write(value & 0xff);
          out.write((value >> 8) & 0xff);
      }
      
      /**
       * Writes string to output stream
       */
      protected void writeString(String s) throws IOException {
          for (int i = 0; i < s.length(); i++) {
              out.write((byte) s.charAt(i));
          }
      }
  }
 

//GifDecoder.java

    package ip.gif.neuquantAnimation;
    
    import java.net.*;
    import java.io.*;
    import java.util.*;
    import java.awt.*;
    import java.awt.image.*;
    
    /**
    * Class GifDecoder - Decodes a GIF file into one or more frames.
    * <br><pre>
    * Example:
    *    GifDecoder d = new GifDecoder();
    *    d.read("sample.gif");
    *    int n = d.getFrameCount();
    *    for (int i = 0; i < n; i++) {
    *       BufferedImage frame = d.getFrame(i);  // frame i
    *       int t = d.getDelay(i);  // display duration of frame in milliseconds
    *       // do something with frame
    *    }
    * </pre>
    * No copyright asserted on the source code of this class.  May be used for
    * any purpose, however, refer to the Unisys LZW patent for any additional
    * restrictions.  Please forward any corrections to kweiner@fmsware.com.
    *
    * @author Kevin Weiner, FM Software; LZW decoder adapted from John Cristy's ImageMagick.
    * @version 1.03 November 2003
    *
    */
   
   public class GifDecoder {
   
       /**
        * File read status: No errors.
        */
       public static final int STATUS_OK = 0;
   
       /**
        * File read status: Error decoding file (may be partially decoded)
        */
       public static final int STATUS_FORMAT_ERROR = 1;
   
       /**
        * File read status: Unable to open source.
        */
       public static final int STATUS_OPEN_ERROR = 2;
   
       protected BufferedInputStream in;
       protected int status;
   
       protected int width; // full image width
       protected int height; // full image height
       protected boolean gctFlag; // global color table used
       protected int gctSize; // size of global color table
       protected int loopCount = 1; // iterations; 0 = repeat forever
   
       protected int[] gct; // global color table
       protected int[] lct; // local color table
       protected int[] act; // active color table
   
       protected int bgIndex; // background color index
       protected int bgColor; // background color
       protected int lastBgColor; // previous bg color
       protected int pixelAspect; // pixel aspect ratio
   
       protected boolean lctFlag; // local color table flag
       protected boolean interlace; // interlace flag
       protected int lctSize; // local color table size
   
       protected int ix, iy, iw, ih; // current image rectangle
       protected Rectangle lastRect; // last image rect
       protected BufferedImage image; // current frame
       protected BufferedImage lastImage; // previous frame
   
       protected byte[] block = new byte[256]; // current data block
       protected int blockSize = 0; // block size
   
       // last graphic control extension info
       protected int dispose = 0;
       // 0=no action; 1=leave in place; 2=restore to bg; 3=restore to prev
       protected int lastDispose = 0;
       protected boolean transparency = false; // use transparent color
       protected int delay = 0; // delay in milliseconds
       protected int transIndex; // transparent color index
   
       protected static final int MaxStackSize = 4096;
       // max decoder pixel stack size
   
       // LZW decoder working arrays
       protected short[] prefix;
       protected byte[] suffix;
       protected byte[] pixelStack;
       protected byte[] pixels;
   
       protected ArrayList frames; // frames read from current file
       protected int frameCount;
   
       static class GifFrame {
           public GifFrame(BufferedImage im, int del) {
              image = im;
              delay = del;
          }
          public BufferedImage image;
          public int delay;
      }
  
      /**
       * Gets display duration for specified frame.
       *
       * @param n int index of frame
       * @return delay in milliseconds
       */
      public int getDelay(int n) {
          //
          delay = -1;
          if ((n >= 0) && (n < frameCount)) {
              delay = ((GifFrame) frames.get(n)).delay;
          }
          return delay;
      }
  
      /**
       * Gets the number of frames read from file.
       * @return frame count
       */
      public int getFrameCount() {
          return frameCount;
      }
  
      /**
       * Gets the first (or only) image read.
       *
       * @return BufferedImage containing first frame, or null if none.
       */
      public BufferedImage getImage() {
          return getFrame(0);
      }
  
      /**
       * Gets the "Netscape" iteration count, if any.
       * A count of 0 means repeat indefinitiely.
       *
       * @return iteration count if one was specified, else 1.
       */
      public int getLoopCount() {
          return loopCount;
      }
  
      /**
       * Creates new frame image from current data (and previous
       * frames as specified by their disposition codes).
       */
      protected void setPixels() {
          // expose destination image's pixels as int array
          int[] dest =
              ((DataBufferInt) image.getRaster().getDataBuffer()).getData();
  
          // fill in starting image contents based on last image's dispose code
          if (lastDispose > 0) {
              if (lastDispose == 3) {
                  // use image before last
                  int n = frameCount - 2;
                  if (n > 0) {
                      lastImage = getFrame(n - 1);
                  } else {
                      lastImage = null;
                  }
              }
  
              if (lastImage != null) {
                  int[] prev =
                      ((DataBufferInt) lastImage.getRaster().getDataBuffer()).getData();
                  System.arraycopy(prev, 0, dest, 0, width * height);
                  // copy pixels
  
                  if (lastDispose == 2) {
                      // fill last image rect area with background color
                      Graphics2D g = image.createGraphics();
                      Color c = null;
                      if (transparency) {
                          c = new Color(0, 0, 0, 0);  // assume background is transparent
                      } else {
                          c = new Color(lastBgColor); // use given background color
                      }
                      g.setColor(c);
                      g.setComposite(AlphaComposite.Src); // replace area
                      g.fill(lastRect);
                      g.dispose();
                  }
              }
          }
  
          // copy each source line to the appropriate place in the destination
          int pass = 1;
          int inc = 8;
          int iline = 0;
          for (int i = 0; i < ih; i++) {
              int line = i;
              if (interlace) {
                  if (iline >= ih) {
                      pass++;
                      switch (pass) {
                          case 2 :
                              iline = 4;
                              break;
                          case 3 :
                              iline = 2;
                              inc = 4;
                              break;
                          case 4 :
                              iline = 1;
                              inc = 2;
                      }
                  }
                  line = iline;
                  iline += inc;
              }
              line += iy;
              if (line < height) {
                  int k = line * width;
                  int dx = k + ix; // start of line in dest
                  int dlim = dx + iw; // end of dest line
                  if ((k + width) < dlim) {
                      dlim = k + width; // past dest edge
                  }
                  int sx = i * iw; // start of line in source
                  while (dx < dlim) {
                      // map color and insert in destination
                      int index = ((int) pixels[sx++]) & 0xff;
                      int c = act[index];
                      if (c != 0) {
                          dest[dx] = c;
                      }
                      dx++;
                  }
              }
          }
      }
  
      /**
       * Gets the image contents of frame n.
       *
       * @return BufferedImage representation of frame, or null if n is invalid.
       */
      public BufferedImage getFrame(int n) {
          BufferedImage im = null;
         if ((n >= 0) && (n < frameCount)) {
              im = ((GifFrame) frames.get(n)).image;
          }
          return im;
      }
  
      /**
       * Gets image size.
       *
       * @return GIF image dimensions
      */
      public Dimension getFrameSize() {
          return new Dimension(width, height);
      }
  
      /**
       * Reads GIF image from stream
       *
       * @param BufferedInputStream containing GIF file.
       * @return read status code (0 = no errors)
       */
      public int read(BufferedInputStream is) {
          init();
          if (is != null) {
              in = is;
              readHeader();
              if (!err()) {
                  readContents();
                  if (frameCount < 0) {
                      status = STATUS_FORMAT_ERROR;
                  }
              }
          } else {
              status = STATUS_OPEN_ERROR;
          }
          try {
              is.close();
          } catch (IOException e) {
         }
          return status;
      }
  
      /**
       * Reads GIF image from stream
       *
       * @param InputStream containing GIF file.
       * @return read status code (0 = no errors)
       */
      public int read(InputStream is) {
          init();
          if (is != null) {
              if (!(is instanceof BufferedInputStream))
                  is = new BufferedInputStream(is);
              in = (BufferedInputStream) is;
              readHeader();
              if (!err()) {
                  readContents();
                  if (frameCount < 0) {
                      status = STATUS_FORMAT_ERROR;
                  }
              }
          } else {
              status = STATUS_OPEN_ERROR;
          }
          try {
              is.close();
          } catch (IOException e) {
          }
          return status;
      }
  
      /**
       * Reads GIF file from specified file/URL source  
       * (URL assumed if name contains ":/" or "file:")
       *
       * @param name String containing source
       * @return read status code (0 = no errors)
       */
      public int read(String name) {
          status = STATUS_OK;
          try {
              name = name.trim().toLowerCase();
              if ((name.indexOf("file:") >= 0) ||
                  (name.indexOf(":/") > 0)) {
                  URL url = new URL(name);
                  in = new BufferedInputStream(url.openStream());
              } else {
                 in = new BufferedInputStream(new FileInputStream(name));
              }
              status = read(in);
         } catch (IOException e) {
              status = STATUS_OPEN_ERROR;
          }
  
          return status;
      }
  
      /**
       * Decodes LZW image data into pixel array.
       * Adapted from John Cristy's ImageMagick.
       */
      protected void decodeImageData() {
          int NullCode = -1;
          int npix = iw * ih;
          int available, 
              clear,
              code_mask,
              code_size,
              end_of_information,
              in_code,
              old_code,
              bits,
              code,
              count,
              i,
              datum,
              data_size,
              first,
              top,
              bi,
              pi;
  
          if ((pixels == null) || (pixels.length < npix)) {
              pixels = new byte[npix]; // allocate new pixel array
          }
         if (prefix == null) prefix = new short[MaxStackSize];
          if (suffix == null) suffix = new byte[MaxStackSize];
          if (pixelStack == null) pixelStack = new byte[MaxStackSize + 1];
  
          //  Initialize GIF data stream decoder.
  
          data_size = read();
          clear = 1 << data_size;
          end_of_information = clear + 1;
         available = clear + 2;
          old_code = NullCode;
          code_size = data_size + 1;
          code_mask = (1 << code_size) - 1;
          for (code = 0; code < clear; code++) {
              prefix[code] = 0;
              suffix[code] = (byte) code;
          }
  
          //  Decode GIF pixel stream.
  
          datum = bits = count = first = top = pi = bi = 0;
  
          for (i = 0; i < npix;) {
              if (top == 0) {
                  if (bits < code_size) {
                      //  Load bytes until there are enough bits for a code.
                      if (count == 0) {
                          // Read a new data block.
                          count = readBlock();
                          if (count <= 0)
                              break;
                         bi = 0;
                      }
                      datum += (((int) block[bi]) & 0xff) << bits;
                      bits += 8;
                      bi++;
                      count--;
                      continue;
                  }
  
                  //  Get the next code.
  
                  code = datum & code_mask;
                  datum >>= code_size;
                  bits -= code_size;
  
                  //  Interpret the code
  
                  if ((code > available) || (code == end_of_information))
                      break;
                  if (code == clear) {
                      //  Reset decoder.
                      code_size = data_size + 1;
                      code_mask = (1 << code_size) - 1;
                      available = clear + 2;
                      old_code = NullCode;
                      continue;
                  }
                  if (old_code == NullCode) {
                      pixelStack[top++] = suffix[code];
                      old_code = code;
                      first = code;
                      continue;
                  }
                  in_code = code;
                  if (code == available) {
                      pixelStack[top++] = (byte) first;
                      code = old_code;
                  }
                  while (code > clear) {
                      pixelStack[top++] = suffix[code];
                      code = prefix[code];
                  }
                  first = ((int) suffix[code]) & 0xff;
  
                  //  Add a new string to the string table,
  
                  if (available >= MaxStackSize)
                      break;
                  pixelStack[top++] = (byte) first;
                  prefix[available] = (short) old_code;
                  suffix[available] = (byte) first;
                  available++;
                  if (((available & code_mask) == 0)
                      && (available < MaxStackSize)) {
                     code_size++;
                      code_mask += available;
                  }
                  old_code = in_code;
              }
  
              //  Pop a pixel off the pixel stack.
  
              top--;
              pixels[pi++] = pixelStack[top];
              i++;
          }
  
          for (i = pi; i < npix; i++) {
             pixels[i] = 0; // clear missing pixels
          }
  
      }
  
      /**
       * Returns true if an error was encountered during reading/decoding
       */
      protected boolean err() {
          return status != STATUS_OK;
      }
  
      /**
       * Initializes or re-initializes reader
       */
      protected void init() {
          status = STATUS_OK;
          frameCount = 0;
         frames = new ArrayList();
          gct = null;
          lct = null;
      }
  
      /**
       * Reads a single byte from the input stream.
       */
      protected int read() {
          int curByte = 0;
          try {
              curByte = in.read();
          } catch (IOException e) {
              status = STATUS_FORMAT_ERROR;
          }
          return curByte;
      }
  
      /**
       * Reads next variable length block from input.
       *
       * @return number of bytes stored in "buffer"
       */
      protected int readBlock() {
          blockSize = read();
          int n = 0;
          if (blockSize > 0) {
              try {
                  int count = 0;
                  while (n < blockSize) {
                      count = in.read(block, n, blockSize - n);
                      if (count == -1) 
                          break;
                      n += count;
                  }
              } catch (IOException e) {
              }
  
              if (n < blockSize) {
                 status = STATUS_FORMAT_ERROR;
              }
          }
          return n;
      }
  
      /**
       * Reads color table as 256 RGB integer values
       *
       * @param ncolors int number of colors to read
       * @return int array containing 256 colors (packed ARGB with full alpha)
       */
      protected int[] readColorTable(int ncolors) {
          int nbytes = 3 * ncolors;
          int[] tab = null;
          byte[] c = new byte[nbytes];
          int n = 0;
          try {
              n = in.read(c);
          } catch (IOException e) {
          }
          if (n < nbytes) {
              status = STATUS_FORMAT_ERROR;
          } else {
              tab = new int[256]; // max size to avoid bounds checks
              int i = 0;
              int j = 0;
              while (i < ncolors) {
                  int r = ((int) c[j++]) & 0xff;
                  int g = ((int) c[j++]) & 0xff;
                  int b = ((int) c[j++]) & 0xff;
                  tab[i++] = 0xff000000 | (r << 16) | (g << 8) | b;
              }
          }
          return tab;
      }
  
      /**
       * Main file parser.  Reads GIF content blocks.
       */
      protected void readContents() {
          // read GIF file content blocks
          boolean done = false;
          while (!(done || err())) {
              int code = read();
              switch (code) {
  
                  case 0x2C : // image separator
                      readImage();
                      break;
  
                  case 0x21 : // extension
                      code = read();
                      switch (code) {
                          case 0xf9 : // graphics control extension
                              readGraphicControlExt();
                              break;
  
                          case 0xff : // application extension
                              readBlock();
                              String app = "";
                              for (int i = 0; i < 11; i++) {
                                  app += (char) block[i];
                              }
                              if (app.equals("NETSCAPE2.0")) {
                                  readNetscapeExt();
                              }
                              else
                                  skip(); // don't care
                              break;
  
                          default : // uninteresting extension
                              skip();
                      }
                      break;
  
                  case 0x3b : // terminator
                      done = true;
                      break;
  
                  case 0x00 : // bad byte, but keep going and see what happens
                      break;
  
                  default :
                      status = STATUS_FORMAT_ERROR;
              }
         }
      }
  
      /**
       * Reads Graphics Control Extension values
      */
     protected void readGraphicControlExt() {
         read(); // block size
          int packed = read(); // packed fields
          dispose = (packed & 0x1c) >> 2; // disposal method
          if (dispose == 0) {
              dispose = 1; // elect to keep old image if discretionary
          }
          transparency = (packed & 1) != 0;
          delay = readShort() * 10; // delay in milliseconds
          transIndex = read(); // transparent color index
          read(); // block terminator
      }
  
      /**
       * Reads GIF file header information.
       */
      protected void readHeader() {
          String id = "";
          for (int i = 0; i < 6; i++) {
              id += (char) read();
          }
          if (!id.startsWith("GIF")) {
              status = STATUS_FORMAT_ERROR;
              return;
          }
  
          readLSD();
          if (gctFlag && !err()) {
              gct = readColorTable(gctSize);
              bgColor = gct[bgIndex];
          }
      }
  
      /**
       * Reads next frame image
      */
      protected void readImage() {
          ix = readShort(); // (sub)image position & size
          iy = readShort();
          iw = readShort();
          ih = readShort();
  
          int packed = read();
          lctFlag = (packed & 0x80) != 0; // 1 - local color table flag
          interlace = (packed & 0x40) != 0; // 2 - interlace flag
          // 3 - sort flag
          // 4-5 - reserved
          lctSize = 2 << (packed & 7); // 6-8 - local color table size
  
          if (lctFlag) {
              lct = readColorTable(lctSize); // read table
              act = lct; // make local table active
          } else {
              act = gct; // make global table active
              if (bgIndex == transIndex)
                  bgColor = 0;
          }
          int save = 0;
          if (transparency) {
              save = act[transIndex];
              act[transIndex] = 0; // set transparent color if specified
          }
  
          if (act == null) {
              status = STATUS_FORMAT_ERROR; // no color table defined
          }
  
          if (err()) return;
  
          decodeImageData(); // decode pixel data
          skip();
  
          if (err()) return;
  
          frameCount++;
  
          // create new image to receive frame data
          image =
              new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB_PRE);
  
          setPixels(); // transfer pixel data to image
  
          frames.add(new GifFrame(image, delay)); // add image to frame list
  
          if (transparency) {
              act[transIndex] = save;
          }
          resetFrame();
  
      }
  
      /**
       * Reads Logical Screen Descriptor
       */
      protected void readLSD() {
  
          // logical screen size
         width = readShort();
         height = readShort();
  
          // packed fields
          int packed = read();
          gctFlag = (packed & 0x80) != 0; // 1   : global color table flag
          // 2-4 : color resolution
          // 5   : gct sort flag
          gctSize = 2 << (packed & 7); // 6-8 : gct size
  
          bgIndex = read(); // background color index
          pixelAspect = read(); // pixel aspect ratio
      }
  
      /**
       * Reads Netscape extenstion to obtain iteration count
       */
      protected void readNetscapeExt() {
          do {
              readBlock();
              if (block[0] == 1) {
                  // loop count sub-block
                  int b1 = ((int) block[1]) & 0xff;
                  int b2 = ((int) block[2]) & 0xff;
                  loopCount = (b2 << 8) | b1;
              }
          } while ((blockSize > 0) && !err());
      }
  
      /**
       * Reads next 16-bit value, LSB first
       */
      protected int readShort() {
          // read 16-bit value, LSB first
          return read() | (read() << 8);
      }
  
      /**
       * Resets frame state for reading next image.
       */
      protected void resetFrame() {
          lastDispose = dispose;
          lastRect = new Rectangle(ix, iy, iw, ih);
          lastImage = image;
          lastBgColor = bgColor;
          int dispose = 0;
          boolean transparency = false;
          int delay = 0;
          lct = null;
      }
  
      /**
       * Skips variable length blocks up to and including
       * next zero length block.
       */
      protected void skip() {
          do {
              readBlock();
          } while ((blockSize > 0) && !err());
      }
  }

//LZWEncoder.java

    package ip.gif.neuquantAnimation;
    
    import java.io.OutputStream;
    import java.io.IOException;
    
    //==============================================================================
    //  Adapted from Jef Poskanzer's Java port by way of J. M. G. Elliott.
    //  K Weiner 12/00
    
   class LZWEncoder {
   
       private static final int EOF = -1;
   
       private int imgW, imgH;
       private byte[] pixAry;
       private int initCodeSize;
       private int remaining;
       private int curPixel;
   
       // GIFCOMPR.C       - GIF Image compression routines
       //
       // Lempel-Ziv compression based on 'compress'.  GIF modifications by
       // David Rowley (mgardi@watdcsu.waterloo.edu)
   
       // General DEFINEs
   
       static final int BITS = 12;
   
       static final int HSIZE = 5003; // 80% occupancy
   
       // GIF Image compression - modified 'compress'
       //
       // Based on: compress.c - File compression ala IEEE Computer, June 1984.
       //
       // By Authors:  Spencer W. Thomas      (decvax!harpo!utah-cs!utah-gr!thomas)
       //              Jim McKie              (decvax!mcvax!jim)
       //              Steve Davies           (decvax!vax135!petsd!peora!srd)
       //              Ken Turkowski          (decvax!decwrl!turtlevax!ken)
       //              James A. Woods         (decvax!ihnp4!ames!jaw)
       //              Joe Orost              (decvax!vax135!petsd!joe)
   
       int n_bits; // number of bits/code
       int maxbits = BITS; // user settable max # bits/code
       int maxcode; // maximum code, given n_bits
       int maxmaxcode = 1 << BITS; // should NEVER generate this code
   
       int[] htab = new int[HSIZE];
       int[] codetab = new int[HSIZE];
   
       int hsize = HSIZE; // for dynamic table sizing
   
       int free_ent = 0; // first unused entry
   
       // block compression parameters -- after all codes are used up,
       // and compression rate changes, start over.
      boolean clear_flg = false;
   
       // Algorithm:  use open addressing double hashing (no chaining) on the
       // prefix code / next character combination.  We do a variant of Knuth's
       // algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
       // secondary probe.  Here, the modular division first probe is gives way
       // to a faster exclusive-or manipulation.  Also do block compression with
       // an adaptive reset, whereby the code table is cleared when the compression
       // ratio decreases, but after the table fills.  The variable-length output
       // codes are re-sized at this point, and a special CLEAR code is generated
       // for the decompressor.  Late addition:  construct the table according to
       // file size for noticeable speed improvement on small files.  Please direct
       // questions about this implementation to ames!jaw.
   
       int g_init_bits;
   
       int ClearCode;
       int EOFCode;
   
       // output
       //
       // Output the given code.
       // Inputs:
       //      code:   A n_bits-bit integer.  If == -1, then EOF.  This assumes
       //              that n_bits =< wordsize - 1.
       // Outputs:
       //      Outputs code to the file.
       // Assumptions:
       //      Chars are 8 bits long.
       // Algorithm:
       //      Maintain a BITS character long buffer (so that 8 codes will
       // fit in it exactly).  Use the VAX insv instruction to insert each
       // code in turn.  When the buffer fills up empty it and start over.
   
       int cur_accum = 0;
       int cur_bits = 0;
   
       int masks[] =
           {
               0x0000,
               0x0001,
               0x0003,
               0x0007,
               0x000F,
              0x001F,
              0x003F,
              0x007F,
              0x00FF,
              0x01FF,
              0x03FF,
              0x07FF,
              0x0FFF,
              0x1FFF,
              0x3FFF,
              0x7FFF,
              0xFFFF };
  
      // Number of characters so far in this 'packet'
      int a_count;
  
      // Define the storage for the packet accumulator
      byte[] accum = new byte[256];
  
      //----------------------------------------------------------------------------
      LZWEncoder(int width, int height, byte[] pixels, int color_depth) {
          imgW = width;
          imgH = height;
          pixAry = pixels;
          initCodeSize = Math.max(2, color_depth);
      }
      
      // Add a character to the end of the current packet, and if it is 254
      // characters, flush the packet to disk.
      void char_out(byte c, OutputStream outs) throws IOException {
          accum[a_count++] = c;
          if (a_count >= 254)
              flush_char(outs);
      }
      
      // Clear out the hash table
  
      // table clear for block compress
      void cl_block(OutputStream outs) throws IOException {
          cl_hash(hsize);
          free_ent = ClearCode + 2;
          clear_flg = true;
  
          output(ClearCode, outs);
      }
      
      // reset code table
      void cl_hash(int hsize) {
          for (int i = 0; i < hsize; ++i)
              htab[i] = -1;
      }
      
      void compress(int init_bits, OutputStream outs) throws IOException {
          int fcode;
          int i /* = 0 */;
          int c;
          int ent;
          int disp;
          int hsize_reg;
          int hshift;
  
          // Set up the globals:  g_init_bits - initial number of bits
          g_init_bits = init_bits;
  
          // Set up the necessary values
          clear_flg = false;
          n_bits = g_init_bits;
          maxcode = MAXCODE(n_bits);
  
          ClearCode = 1 << (init_bits - 1);
          EOFCode = ClearCode + 1;
          free_ent = ClearCode + 2;
  
          a_count = 0; // clear packet
  
          ent = nextPixel();
  
          hshift = 0;
          for (fcode = hsize; fcode < 65536; fcode *= 2)
              ++hshift;
          hshift = 8 - hshift; // set hash code range bound
  
          hsize_reg = hsize;
          cl_hash(hsize_reg); // clear hash table
  
          output(ClearCode, outs);
  
          outer_loop : while ((c = nextPixel()) != EOF) {
              fcode = (c << maxbits) + ent;
              i = (c << hshift) ^ ent; // xor hashing
  
              if (htab[i] == fcode) {
                  ent = codetab[i];
                  continue;
              } else if (htab[i] >= 0) // non-empty slot
                  {
                  disp = hsize_reg - i; // secondary hash (after G. Knott)
                  if (i == 0)
                      disp = 1;
                  do {
                      if ((i -= disp) < 0)
                          i += hsize_reg;
  
                      if (htab[i] == fcode) {
                          ent = codetab[i];
                          continue outer_loop;
                      }
                  } while (htab[i] >= 0);
              }
              output(ent, outs);
              ent = c;
              if (free_ent < maxmaxcode) {
                  codetab[i] = free_ent++; // code -> hashtable
                  htab[i] = fcode;
              } else
                  cl_block(outs);
          }
          // Put out the final code.
          output(ent, outs);
          output(EOFCode, outs);
      }
      
      //----------------------------------------------------------------------------
      void encode(OutputStream os) throws IOException {
          os.write(initCodeSize); // write "initial code size" byte
  
          remaining = imgW * imgH; // reset navigation variables
          curPixel = 0;
  
          compress(initCodeSize + 1, os); // compress and write the pixel data
  
          os.write(0); // write block terminator
      }
      
      // Flush the packet to disk, and reset the accumulator
      void flush_char(OutputStream outs) throws IOException {
          if (a_count > 0) {
              outs.write(a_count);
              outs.write(accum, 0, a_count);
              a_count = 0;
          }
      }
      
      final int MAXCODE(int n_bits) {
          return (1 << n_bits) - 1;
      }
      
      //----------------------------------------------------------------------------
      // Return the next pixel from the image
      //----------------------------------------------------------------------------
      private int nextPixel() {
          if (remaining == 0)
              return EOF;
  
          --remaining;
  
          byte pix = pixAry[curPixel++];
  
          return pix & 0xff;
      }
      
      void output(int code, OutputStream outs) throws IOException {
          cur_accum &= masks[cur_bits];
  
          if (cur_bits > 0)
              cur_accum |= (code << cur_bits);
          else
              cur_accum = code;
  
          cur_bits += n_bits;
  
          while (cur_bits >= 8) {
              char_out((byte) (cur_accum & 0xff), outs);
              cur_accum >>= 8;
              cur_bits -= 8;
          }
  
          // If the next entry is going to be too big for the code size,
          // then increase it, if possible.
          if (free_ent > maxcode || clear_flg) {
              if (clear_flg) {
                  maxcode = MAXCODE(n_bits = g_init_bits);
                  clear_flg = false;
              } else {
                ++n_bits;
                  if (n_bits == maxbits)
                      maxcode = maxmaxcode;
                  else
                      maxcode = MAXCODE(n_bits);
              }
          }
  
          if (code == EOFCode) {
              // At EOF, write the rest of the buffer.
              while (cur_bits > 0) {
                  char_out((byte) (cur_accum & 0xff), outs);
                  cur_accum >>= 8;
                  cur_bits -= 8;
              }
  
              flush_char(outs);
          }
      }
  }


//NeuQuant.java

    package ip.gif.neuquantAnimation;
    
    /* NeuQuant Neural-Net Quantization Algorithm
     * ------------------------------------------
     *
     * Copyright (c) 1994 Anthony Dekker
     *
     * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
     * See "Kohonen neural networks for optimal colour quantization"
    * in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
    * for a discussion of the algorithm.
    *
    * Any party obtaining a copy of these files from the author, directly or
    * indirectly, is granted, free of charge, a full and unrestricted irrevocable,
    * world-wide, paid up, royalty-free, nonexclusive right and license to deal
    * in this software and documentation files (the "Software"), including without
    * limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
    * and/or sell copies of the Software, and to permit persons who receive
    * copies from any such party to do so, with the only requirement being
    * that this copyright notice remain intact.
    */
   
   // Ported to Java 12/00 K Weiner
   
   public class NeuQuant {
   
       protected static final int netsize = 256; /* number of colours used */
   
       /* four primes near 500 - assume no image has a length so large */
       /* that it is divisible by all four primes */
       protected static final int prime1 = 499;
       protected static final int prime2 = 491;
       protected static final int prime3 = 487;
       protected static final int prime4 = 503;
   
       protected static final int minpicturebytes = (3 * prime4);
       /* minimum size for input image */
   
       /* Program Skeleton
          ----------------
          [select samplefac in range 1..30]
          [read image from input file]
          pic = (unsigned char*) malloc(3*width*height);
          initnet(pic,3*width*height,samplefac);
          learn();
          unbiasnet();
          [write output image header, using writecolourmap(f)]
          inxbuild();
          write output image using inxsearch(b,g,r)      */
   
       /* Network Definitions
          ------------------- */
   
       protected static final int maxnetpos = (netsize - 1);
       protected static final int netbiasshift = 4; /* bias for colour values */
       protected static final int ncycles = 100; /* no. of learning cycles */
   
       /* defs for freq and bias */
       protected static final int intbiasshift = 16; /* bias for fractions */
       protected static final int intbias = (((int) 1) << intbiasshift);
       protected static final int gammashift = 10; /* gamma = 1024 */
       protected static final int gamma = (((int) 1) << gammashift);
       protected static final int betashift = 10;
       protected static final int beta = (intbias >> betashift); /* beta = 1/1024 */
       protected static final int betagamma =
           (intbias << (gammashift - betashift));
   
       /* defs for decreasing radius factor */
       protected static final int initrad = (netsize >> 3); /* for 256 cols, radius starts */
       protected static final int radiusbiasshift = 6; /* at 32.0 biased by 6 bits */
       protected static final int radiusbias = (((int) 1) << radiusbiasshift);
       protected static final int initradius = (initrad * radiusbias); /* and decreases by a */
       protected static final int radiusdec = 30; /* factor of 1/30 each cycle */
   
       /* defs for decreasing alpha factor */
       protected static final int alphabiasshift = 10; /* alpha starts at 1.0 */
       protected static final int initalpha = (((int) 1) << alphabiasshift);
   
       protected int alphadec; /* biased by 10 bits */
   
       /* radbias and alpharadbias used for radpower calculation */
       protected static final int radbiasshift = 8;
       protected static final int radbias = (((int) 1) << radbiasshift);
       protected static final int alpharadbshift = (alphabiasshift + radbiasshift);
       protected static final int alpharadbias = (((int) 1) << alpharadbshift);
   
       /* Types and Global Variables
       -------------------------- */
   
       protected byte[] thepicture; /* the input image itself */
       protected int lengthcount; /* lengthcount = H*W*3 */
   
       protected int samplefac; /* sampling factor 1..30 */
   
       //   typedef int pixel[4];                /* BGRc */
       protected int[][] network; /* the network itself - [netsize][4] */
   
       protected int[] netindex = new int[256];
       /* for network lookup - really 256 */
  
      protected int[] bias = new int[netsize];
      /* bias and freq arrays for learning */
      protected int[] freq = new int[netsize];
      protected int[] radpower = new int[initrad];
      /* radpower for precomputation */
  
      /* Initialise network in range (0,0,0) to (255,255,255) and set parameters
         ----------------------------------------------------------------------- */
      public NeuQuant(byte[] thepic, int len, int sample) {
  
          int i;
          int[] p;
  
          thepicture = thepic;
          lengthcount = len;
          samplefac = sample;
  
          network = new int[netsize][];
          for (i = 0; i < netsize; i++) {
              network[i] = new int[4];
              p = network[i];
              p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
              freq[i] = intbias / netsize; /* 1/netsize */
              bias[i] = 0;
          }
      }
      
      public byte[] colorMap() {
          byte[] map = new byte[3 * netsize];
          int[] index = new int[netsize];
          for (int i = 0; i < netsize; i++)
              index[network[i][3]] = i;
          int k = 0;
          for (int i = 0; i < netsize; i++) {
              int j = index[i];
              map[k++] = (byte) (network[j][0]);
              map[k++] = (byte) (network[j][1]);
              map[k++] = (byte) (network[j][2]);
          }
          return map;
      }
      
      /* Insertion sort of network and building of netindex[0..255] (to do after unbias)
         ------------------------------------------------------------------------------- */
      public void inxbuild() {
  
          int i, j, smallpos, smallval;
          int[] p;
          int[] q;
          int previouscol, startpos;
  
          previouscol = 0;
          startpos = 0;
          for (i = 0; i < netsize; i++) {
              p = network[i];
              smallpos = i;
              smallval = p[1]; /* index on g */
              /* find smallest in i..netsize-1 */
              for (j = i + 1; j < netsize; j++) {
                  q = network[j];
                  if (q[1] < smallval) { /* index on g */
                      smallpos = j;
                      smallval = q[1]; /* index on g */
                  }
             }
              q = network[smallpos];
              /* swap p (i) and q (smallpos) entries */
              if (i != smallpos) {
                  j = q[0];
                  q[0] = p[0];
                  p[0] = j;
                  j = q[1];
                  q[1] = p[1];
                  p[1] = j;
                  j = q[2];
                  q[2] = p[2];
                  p[2] = j;
                  j = q[3];
                  q[3] = p[3];
                  p[3] = j;
              }
              /* smallval entry is now in position i */
              if (smallval != previouscol) {
                  netindex[previouscol] = (startpos + i) >> 1;
                  for (j = previouscol + 1; j < smallval; j++)
                      netindex[j] = i;
                  previouscol = smallval;
                  startpos = i;
              }
          }
          netindex[previouscol] = (startpos + maxnetpos) >> 1;
          for (j = previouscol + 1; j < 256; j++)
              netindex[j] = maxnetpos; /* really 256 */
      }
      
      /* Main Learning Loop
         ------------------ */
      public void learn() {
  
          int i, j, b, g, r;
          int radius, rad, alpha, step, delta, samplepixels;
          byte[] p;
          int pix, lim;
  
          if (lengthcount < minpicturebytes)
              samplefac = 1;
          alphadec = 30 + ((samplefac - 1) / 3);
          p = thepicture;
          pix = 0;
          lim = lengthcount;
          samplepixels = lengthcount / (3 * samplefac);
          delta = samplepixels / ncycles;
          alpha = initalpha;
          radius = initradius;
  
          rad = radius >> radiusbiasshift;
          if (rad <= 1)
              rad = 0;
          for (i = 0; i < rad; i++)
              radpower[i] =
                  alpha * (((rad * rad - i * i) * radbias) / (rad * rad));
  
          //fprintf(stderr,"beginning 1D learning: initial radius=%d\n", rad);
  
          if (lengthcount < minpicturebytes)
              step = 3;
          else if ((lengthcount % prime1) != 0)
              step = 3 * prime1;
          else {
              if ((lengthcount % prime2) != 0)
                  step = 3 * prime2;
              else {
                  if ((lengthcount % prime3) != 0)
                      step = 3 * prime3;
                  else
                      step = 3 * prime4;
              }
          }
  
          i = 0;
          while (i < samplepixels) {
              b = (p[pix + 0] & 0xff) << netbiasshift;
              g = (p[pix + 1] & 0xff) << netbiasshift;
              r = (p[pix + 2] & 0xff) << netbiasshift;
              j = contest(b, g, r);
  
              altersingle(alpha, j, b, g, r);
              if (rad != 0)
                  alterneigh(rad, j, b, g, r); /* alter neighbours */
  
              pix += step;
              if (pix >= lim)
                  pix -= lengthcount;
  
              i++;
              if (delta == 0)
                  delta = 1;
              if (i % delta == 0) {
                  alpha -= alpha / alphadec;
                  radius -= radius / radiusdec;
                  rad = radius >> radiusbiasshift;
                  if (rad <= 1)
                      rad = 0;
                  for (j = 0; j < rad; j++)
                      radpower[j] =
                          alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
              }
          }
          //fprintf(stderr,"finished 1D learning: final alpha=%f !\n",((float)alpha)/initalpha);
      }
      
      /* Search for BGR values 0..255 (after net is unbiased) and return colour index
         ---------------------------------------------------------------------------- */
      public int map(int b, int g, int r) {
  
          int i, j, dist, a, bestd;
          int[] p;
          int best;
  
          bestd = 1000; /* biggest possible dist is 256*3 */
          best = -1;
          i = netindex[g]; /* index on g */
          j = i - 1; /* start at netindex[g] and work outwards */
  
          while ((i < netsize) || (j >= 0)) {
              if (i < netsize) {
                  p = network[i];
                  dist = p[1] - g; /* inx key */
                  if (dist >= bestd)
                      i = netsize; /* stop iter */
                  else {
                      i++;
                      if (dist < 0)
                          dist = -dist;
                      a = p[0] - b;
                      if (a < 0)
                          a = -a;
                      dist += a;
                      if (dist < bestd) {
                          a = p[2] - r;
                          if (a < 0)
                              a = -a;
                          dist += a;
                          if (dist < bestd) {
                              bestd = dist;
                              best = p[3];
                          }
                      }
                  }
              }
              if (j >= 0) {
                  p = network[j];
                  dist = g - p[1]; /* inx key - reverse dif */
                  if (dist >= bestd)
                      j = -1; /* stop iter */
                  else {
                      j--;
                      if (dist < 0)
                          dist = -dist;
                      a = p[0] - b;
                      if (a < 0)
                          a = -a;
                      dist += a;
                      if (dist < bestd) {
                          a = p[2] - r;
                          if (a < 0)
                              a = -a;
                          dist += a;
                          if (dist < bestd) {
                              bestd = dist;
                              best = p[3];
                          }
                      }
                  }
              }
          }
          return (best);
      }
      public byte[] process() {
          learn();
          unbiasnet();
          inxbuild();
          return colorMap();
      }
      
      /* Unbias network to give byte values 0..255 and record position i to prepare for sort
         ----------------------------------------------------------------------------------- */
      public void unbiasnet() {
  
          int i, j;
  
          for (i = 0; i < netsize; i++) {
              network[i][0] >>= netbiasshift;
              network[i][1] >>= netbiasshift;
              network[i][2] >>= netbiasshift;
              network[i][3] = i; /* record colour no */
          }
      }
      
      /* Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|]
         --------------------------------------------------------------------------------- */
      protected void alterneigh(int rad, int i, int b, int g, int r) {
  
          int j, k, lo, hi, a, m;
          int[] p;
  
          lo = i - rad;
          if (lo < -1)
              lo = -1;
          hi = i + rad;
          if (hi > netsize)
              hi = netsize;
  
          j = i + 1;
          k = i - 1;
          m = 1;
          while ((j < hi) || (k > lo)) {
              a = radpower[m++];
              if (j < hi) {
                  p = network[j++];
                  try {
                      p[0] -= (a * (p[0] - b)) / alpharadbias;
                      p[1] -= (a * (p[1] - g)) / alpharadbias;
                      p[2] -= (a * (p[2] - r)) / alpharadbias;
                  } catch (Exception e) {
                  } // prevents 1.3 miscompilation
              }
              if (k > lo) {
                  p = network[k--];
                  try {
                      p[0] -= (a * (p[0] - b)) / alpharadbias;
                      p[1] -= (a * (p[1] - g)) / alpharadbias;
                      p[2] -= (a * (p[2] - r)) / alpharadbias;
                  } catch (Exception e) {
                  }
              }
          }
      }
      
      /* Move neuron i towards biased (b,g,r) by factor alpha
         ---------------------------------------------------- */
      protected void altersingle(int alpha, int i, int b, int g, int r) {
  
          /* alter hit neuron */
          int[] n = network[i];
          n[0] -= (alpha * (n[0] - b)) / initalpha;
          n[1] -= (alpha * (n[1] - g)) / initalpha;
          n[2] -= (alpha * (n[2] - r)) / initalpha;
      }
      
      /* Search for biased BGR values
         ---------------------------- */
      protected int contest(int b, int g, int r) {
  
          /* finds closest neuron (min dist) and updates freq */
          /* finds best neuron (min dist-bias) and returns position */
          /* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
          /* bias[i] = gamma*((1/netsize)-freq[i]) */
  
          int i, dist, a, biasdist, betafreq;
          int bestpos, bestbiaspos, bestd, bestbiasd;
          int[] n;
  
          bestd = ~(((int) 1) << 31);
          bestbiasd = bestd;
          bestpos = -1;
          bestbiaspos = bestpos;
  
          for (i = 0; i < netsize; i++) {
              n = network[i];
              dist = n[0] - b;
              if (dist < 0)
                  dist = -dist;
              a = n[1] - g;
              if (a < 0)
                  a = -a;
              dist += a;
              a = n[2] - r;
              if (a < 0)
                  a = -a;
              dist += a;
              if (dist < bestd) {
                  bestd = dist;
                  bestpos = i;
              }
              biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));
              if (biasdist < bestbiasd) {
                  bestbiasd = biasdist;
                  bestbiaspos = i;
              }
              betafreq = (freq[i] >> betashift);
              freq[i] -= betafreq;
              bias[i] += (betafreq << gammashift);
          }
          freq[bestpos] += beta;
          bias[bestpos] -= betagamma;
          return (bestbiaspos);
      }
  }


只有注册用户登录后才能发表评论。


网站导航: