Feeling

    三人行,必有我师焉

   ::  :: 新随笔 :: 联系 ::  :: 管理 ::
  185 随笔 :: 0 文章 :: 392 评论 :: 0 Trackbacks

传说中凤凰每隔500年要投入火中以求得新生。有一种恒星在其「临死亡」的剎那,将发生激烈的爆炸,如迴光返照般放出极耀眼的光芒。星球毁灭了自己,却也同时触发了新恒星的诞生。这就是超新星,天上的火凤凰。

在宇宙中,恒星的分类是按照它们的死亡的方式,一类象我们太阳这种,最终安静的成为白矮星,另一类是比太阳大8倍以上的恒星,它们的死亡是爆炸。恒星越大,寿命就急剧的缩短,质量差3倍,寿命就差750倍,也就是说,一个比我们的太阳大3倍的恒星,它的寿命就只有1300万年,所以,生命的进化是不可能托付给大恒星的。但是,宇宙的物质的丰富和流动,却全靠它们。

宇宙在过去有过一个非常单调的开端,只有氢元素和少量的氦元素,然而宇宙在成长,而成长的标志就是重元素的增加,这种增加使宇宙越来越丰富,宇宙的所有的奇迹,都是在有了完整的元素制造之后。而制造元素,就是把氢元素以不同的数目聚合,而要完成所有元素的聚合的场所,就是拥有巨大引力的大恒星。从丰富物质角度来说,大恒星是宇宙中的精品,它们不仅能生产所有的元素,而且由于恒星越大,寿命越短,因此周期也短,所以,恒星的巨无霸是宇宙制造元素效率最高的工厂。不过,宇宙中最大的恒星的质量极限是一百个太阳,如果再大,就会因为自身的核反应过猛而解体。

船底座海山二星(Eta Carinae)可能即将爆炸!但谁也不知道它会发生于何时?一年后,抑或百万年后?海山二星的质量约为太阳的100倍,拥有足够的能量以产生一次非凡的超新星爆炸。根据历史记载,大约150年前一次不平常的爆发,使得海山二星成为南半球夜空中最亮的几颗星之一。位在钥匙孔星云(KeyholeNebula)中的海山二星被认为是目前已知唯一一颗可发射自然激光的恒星。这一张在1996年经由复杂的影像处理后所得的影像,显示出这颗恒星周围云气的细微部分,其中包括两个清楚的圆形突出部分、一个炽热的中央区域,以及一些奇怪的辐射状条纹。
船底座海山二星(Eta Carinae)可能即将爆炸

引力制造元素,但也束缚元素,小恒星大约能制造出十来种元素,但这些元素最终不能在宇宙中流动。大恒星能制造更多的元素,一般超过太阳质量 8倍以上的恒星就能使聚变一往无前,其核心达到几十亿度的高温不断的创造不可思议的聚变,每次聚变所产生的能量都使恒星膨胀得更大一些,于是它就象洋葱一样形成令人吃惊的多层核聚变的巨大空间,这个空间可以达到一百亿公里,装下整个的太阳系。在聚变的深入的过程中,恒星变得越来越危险了,因为元素越重,聚变提供的能量越少,而巨大的恒星又必须靠不断释放的核能支撑。然而,当聚变到排列第26位的铁元素时,摇摇欲坠的恒星遭受到最致命的破坏──因为铁元素的结构极其稳定,它在聚变时不释放能量,于是,巨大而膨胀的恒星将会因核心失去支撑而倒塌。

因此而恒星粉碎性的爆炸,能量的狂飙扫荡天庭,这就是超新星爆发。此刻它的能量相当于正常恒星的一百亿倍,在这个超能量的瞬间,宇宙中所有的元素都被聚变出来了。象金银首饰这种重元素,就是在超新星的爆炸中诞生的,当我们佩戴它们时,要记住宇宙制造高档产品确实是代价很高,它需要报废一颗至少比太阳大8倍以上的恒星,才能使我们披金戴银。

超新星发生在一个恒星即将结束生命时,亦即在红巨星阶段,核心燃料快要消耗殆尽时,恒星会因为没有额外的燃料而自行崩溃。如果恒星的质量够大,恒星内部的内爆层会在接触核心时反弹,产生巨大的爆裂,爆炸所产生的震波会将恒星的所有物质射入太空中。

我们的太阳将会在50亿年后衰亡,因它内部提供予核融合的燃料终於消耗殆尽。到时太阳会变成一个主要由碳和氧组成、密度高而「寒冷」的白矮星。 另一方面,一颗比太阳更重的恒星的中心温度更高。这些巨大星体会在经过一次壮观的爆炸后灭亡,这过程称为「超新星爆炸」。爆炸释出的能量非常巨大,超新星爆炸的光度可能相当於1,000亿万颗恒星同时发出的光芒。

超新星的爆发是在约一秒钟之内完成的。由於高能辐射与爆炸拋射出来的恒星大气相互作用,使得超新星也可能有X射线等辐射。例如SN1987A在爆炸后100多天才被Ginga卫星所探测到它的X射线。而光学波段的突然增亮,首先是由膨胀大气引起的,后来则由Ni56等同位素的衰变提供能量,使得光度下降较为缓慢。图五中给出了典型的超新星光变曲线。超新星爆发的高速拋射物与周围介质相互作用形成的激波引发出电波辐射,而对星周尘埃的加热则可以产生红外辐射。但这些只有周围有稠密的星际物质的II型或Ib、Ic型超新星才能观测得到。

在不到一秒钟时间内释放出1051~1053erg的能量(相当於90个太阳在其一生所释放能量之总和)的天体,它的前身星是什么?产生如此巨大能量的机制是什么?这些是天文学家首先面临的问题。

首先我们来看看Ia型超新星。在它的光谱中缺少氢谱线,而且根据统计它在不同类型的星系中都有可能出现。据此天文学家提出了Ia型超新星是密近双星演化到晚期的终极结果的想法。设想有一密近双星系统,其两个成员星的质量均小於8M¤ ,其中质量大的那一个演化得比较快,在其核心燃烧完氢后,接著燃烧氦,而变成中心为碳和氧的白矮星。这时初始质量较小的那颗成员星的物质就被它吸积。假如物质转移速度小於每年10-8M¤ 的话,在白矮星周围形成氢壳,当它达到核融合点火的温度时,其表面就产生核融合点火爆发,这就是新星爆发的现象,其规模比超新星要小得多。

当转移速率在每年10-6M¤ ~10-8M¤ 之间的话,表面同样会产生核融合,而形成氦,氦形成碳,逐步使其碳核心质量增加,直到钱氏 (Chandrasekhar) 极限的1.4 M¤ 。其中心密度可达到3×109g/cm3,而且中心达到碳点火的温度。碳被点燃,并且融合过程从中心往外迅速传播,在不到一秒钟之内传到白矮星的最外层。其爆炸将产生1053erg的能量,而且爆炸规模巨大无比,以至於将这颗白矮星完全「炸飞」了。由於白矮星中的氢已经燃烧殆尽,所以它的光谱中没有氢线,同时因为它是一种「老年」的恒星,因此会出现在不同的星系之中。

II型的超新星则不同。它的光谱中以氢线为主,而且往往出现在螺旋星系的旋臂上,在那裡往往有恒星正在形成。一个目前被广泛接受的II型超新星爆炸的模型是:一个大质量的恒星(质量大过10M¤ ),在其最初的3000万年甚至更短的时间内,它的核心首先是氢融合为氦,然后氦变为碳和氧,碳变为氖和镁,氧和镁变为硅和硫,直到最终硅和硫融合为铁属元素。上述每种融合过程都释放出大量的能量,维持著恒星的「生命」,而且其核心变得愈来愈密,温度则愈来愈高,以致能够抵抗恒星引力的收缩。但到了核心变为铁心后,由於铁属元素的核束缚能最小,融合无法继续为恒星提供能量,反而要吸收能量。引力收缩就开始,中心的密度和温度继续增大,到 1010K和1010g/cm3时,电子就被压到原子核内而形成富含中子的同位素,而高能辐射又将原子核「撕」成a粒子。这两个过程都要吸收能量,使得重力塌缩变得更快。当中心密度超过2.7×1014g/cm3时,塌缩不能继续,产生反弹而引发超新星爆发。它将外层核融合的剩余物,包括最外层的氢向外拋,而留下一个核核心,也就是中子星。所以在光谱中有强的氢线,同时因为大质量恒星(寿命短;因此我们看到的都是不久前形成的)是和恒星形成区相关的,所以他们往往出现在螺旋星系的旋臂上。至於Ib和Ic型超新星,目前也认为是一种称为「沃夫─瑞叶星」 (Wolf-Rayet stars; W-R stars) 的大质量恒星演化到晚期的结果。由於W-R星有大规模的恒星风,质量流失很大,因此表层已失去了氢甚至氦,所以其光谱中没有氢线(或甚至於氦线)。

超新星1987A(1987年发现的第一个超新星)是近代爆炸的超新星中,最靠近地球的一个,位於169,000光年外(我们银河系的伴星系)的大麦哲伦星系。它也是自从克卜勒在1604年於银河系中观测到超新星以来最明亮的一个;同时是自1885年以来第一个肉眼看得见的超新星。那原来是一个蓝超巨星的位置,其质量约为太阳的20倍。天文学家相信这个星球先是膨胀成红超巨星,在吹开一部份的星球体后,经过收缩与再加热,成为一个蓝超巨星。之后,在短短不到一秒钟,整个星球的中心突然就崩垮了,一阵微中子将中心加热至100亿度。这个过程引爆出震波,将此星球炸散掉,并喷出大量的微中子到太空中。

直至1987年5月,国际紫外线探索号已在超新星的碎片中发现了许多化学元素,显示出这个始祖星球已经过了红巨星期,证实了原来的理论。到了7月,一个日本的人造卫星和德国的望远镜都侦测到从碎片中发射出来的X光线。自8月到11月,更有其他的研究团队侦测到高能的伽玛射线,这是在即将死去的星球中心出现核反应所产生的放射性元素,衰变时所放射出来的。此资料证实了大家所相信的理论,即超新星会产生组成地球大部分的重化学元素。

超新星1987A影像 
超新星1987A影像

哈伯太空望远镜先进巡天相机 (ACS) 所拍摄的超新星1987A影像,在其四周包围著一串如珍珠项链般的气体环,这些「珍珠」其实是超新星爆发所产生的冲击波,以超过每小时6千万公里的速度追撞上了“恒星在爆炸前数万年所喷出, 膨胀速度较慢的气体”。爆震波追上了这个环,由於碰撞作用,气体受到衝击,温度升高到了数百万至1千万度,因而发出了红外辐射。环中的尘埃是在星风中形成的,而不是在超新星爆发中形成的。光环直径约一光年,光环中央的长椭圆形黯淡星体就是超新星残骸,主要受超新星爆炸时所产生放射性元素鈦 44 衰变辐射加热而发光,未来数十年都还将持续发光。天文学家在 1996 年首次在 SN 1987A 的外圈发现一个亮点,现在则可看出数十个。天文学家推测,未来几年中还将陆续出现更多类似的光点,这些亮点的光会将周围照亮,天文学家届时将可推测超新星爆炸前是如何喷发物质至太空中。当震波逐渐往外移时,产生的紫外线和X射线辐射将加热更多周围过去所喷出的物质。就如同参与钱卓研究计画的科学家理查、麦克雷所说:「超新星1987A将会点亮它自己的过去」。

超新星的爆炸使物质摆脱了引力的束缚,但铁元素的核却坠入引力的深渊,巨大的塌方把电子都压进了质子,于是质子全变成了中子,而中子之间没有电磁力的排斥,原子核可以相互紧紧的挨在一起,这就形成了最致密的物质──中子星,它一立方厘米的质量能达到十亿吨,而它引力强大到让光都要成抛物线才能挣脱。把一个几百万公里直径的物体压缩成只有30公里的直径,就是中子星,而同时被压缩的还有磁场,这是一个匪夷所思的超高能核电站,它可以把表面附着的电子象高压水柱一样喷射出去,它们所具有强烈的方向性可以成为宇宙定位的灯塔。十几年前,人类寻访外星生命的一艘飞行器上所携带的人类的自我介绍,就是用多颗中子星为地球做定位。一些大的超新星爆炸之后,将会产生引力的奇迹──黑洞,巨大的引力把物质化为无形,因为连光都要被吸回它的表面,如果把地球压缩成一个核桃,就是黑洞,因为地球其实是一个强力和电磁力支撑的物体,如果把原子核都毁灭了,地球就将成为几厘米直径的浓缩引力的载体,黑洞的存在已经被证实。

超新星是宇宙中4种力配合的杰作,它们共同建造一个巨大的原子锅炉,然后以锅炉的崩溃所激发的能量完成所有元素的制造,并且在最后的瞬间把元素都彻底的抛洒出去,正因为有这种抛洒,物质才有可能演化,否则,就象有钱不去投资,再多的财富也将没有任何意义。恒星以自身的毁灭造就了宇宙中最伟大的新生。 在超新星的物质弥漫之后,引力将会再次把这些物质凝聚成天体,大的塌缩成恒星,小的形成行星,如果这颗恒星有较长的寿命,而它的周围有若干合适的行星围绕,那么这个长寿的核能和比较靠近它的行星上丰富的宇宙元素的光和热交流,就可能最终产生宇宙中最复杂的物质形态──生命。

宇宙中最丰富的十种元素
posted on 2007-04-05 13:07 三人行,必有我师焉 阅读(517) 评论(1)  编辑  收藏

评论

# re: 点亮自己过去的超新星 2007-06-22 16:00 sitinspring
宇宙与人 是我国诞生的很少几个对得起观众的科普作品之一。  回复  更多评论
  


只有注册用户登录后才能发表评论。


网站导航:
 
GitHub |  开源中国社区 |  maven仓库 |  文件格式转换