HashMap是Java新Collection Framework中用来代替HashTable的一个实现,HashMap和HashTable的区别是: HashMap是未经同步的,而且允许null值。HashTable继承Dictionary,而且使用了Enumeration,所以被建议不要使用。
HashMap的声明如下:
public class HashMap extends AbstractMap implements Map, Cloneable,Serializable
有关AbstractMap:http://blog.csdn.net/treeroot/archive/2004/09/20/110343.aspx
有关Map:http://blog.csdn.net/treeroot/archive/2004/09/20/110331.aspx
有关Cloneable:http://blog.csdn.net/treeroot/archive/2004/09/07/96936.aspx
这个类比较复杂,这里只是重点分析了几个方法,特别是后面涉及到很多内部类都没有解释
不过都比较简单。
static final int DEFAULT_INITIAL_CAPACITY = 16; 默认初始化大小
static final int MAXIMUM_CAPACITY = 1 << 30; 最大初始化大小
static final float DEFAULT_LOAD_FACTOR = 0.75f; 默认加载因子
transient Entry[] table; 一个Entry类型的数组,数组的长度为2的指数。
transient int size; 映射的个数
int threshold; 下一次扩容时的值
final float loadFactor; 加载因子
transient volatile int modCount; 修改次数
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +loadFactor);
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
this.loadFactor = loadFactor;
threshold = (int)(capacity * loadFactor);
table = new Entry[capacity];
init();
}
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
threshold = (int)(DEFAULT_INITIAL_CAPACITY);
注意:这里应该是一个失误! 应该是:threshold =(int)(DEFAULT_INITIAL_CAPACITY * loadFactor);
table = new Entry[DEFAULT_INITIAL_CAPACITY];
init();
}
public HashMap(Map m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
putAllForCreate(m);
}
void init() {}
static final Object NULL_KEY = new Object();
static Object maskNull(Object key){
return (key == null ? NULL_KEY : key);
}
static Object unmaskNull(Object key) {
return (key == NULL_KEY ? null : key);
}
static int hash(Object x) {
int h = x.hashCode();
h += ~(h << 9);
h ^= (h >>> 14);
h += (h << 4);
h ^= (h >>> 10);
return h;
}
在HashTable中没有这个方法,也就是说HashTable中是直接用对象的hashCode值,但是HashMap做了改进 用这个算法来获得哈希值。
static boolean eq(Object x, Object y) {
return x == y || x.equals(y);
}
static int indexFor(int h, int length) {
return h & (length-1);
}
根据哈希值和数组的长度来返回该hash值在数组中的位置,只是简单的与关系。
public int size() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
public Object get(Object key) {
Object k = maskNull(key);
int hash = hash(k);
int i = indexFor(hash, table.length);
Entry e = table[i];
while (true) {
if (e == null) return e;
if (e.hash == hash && eq(k, e.key)) return e.value;
e = e.next;
}
}
这个方法是获取数据的方法,首先获得哈希值,这里把null值掩饰了,并且hash值经过函数hash()修正。 然后计算该哈希值在数组中的索引值。如果该索引处的引用为null,表示HashMap中不存在这个映射。 否则的话遍历整个链表,这里找到了就返回,如果没有找到就遍历到链表末尾,返回null。这里的比较是这样的:e.hash==hash && eq(k,e.key) 也就是说如果hash不同就肯定认为不相等,eq就被短路了,只有在 hash相同的情况下才调用equals方法。现在我们该明白Object中说的如果两个对象equals返回true,他们的 hashCode应该相同的道理了吧。假如两个对象调用equals返回true,但是hashCode不一样,那么在HashMap 里就认为他们不相等。
public boolean containsKey(Object key) {
Object k = maskNull(key);
int hash = hash(k);
int i = indexFor(hash, table.length);
Entry e = table[i];
while (e != null) {
if (e.hash == hash && eq(k, e.key)) return true;
e = e.next;
}
return false;
}
这个方法比上面的简单,先找到哈希位置,再遍历整个链表,如果找到就返回true。
Entry getEntry(Object key) {
Object k = maskNull(key);
int hash = hash(k);
int i = indexFor(hash, table.length);
Entry e = table[i];
while (e != null && !(e.hash == hash && eq(k, e.key)))
e = e.next;
return e;
}
这个方法根据key值返回Entry节点,也是先获得索引位置,再遍历链表,如果没有找到返回的是null。
public Object put(Object key, Object value) {
Object k = maskNull(key);
int hash = hash(k);
int i = indexFor(hash, table.length);
for (Entry e = table[i]; e != null; e = e.next) {
if (e.hash == hash && eq(k, e.key)) {
Object oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(hash, k, value, i);
return null;
}
首先获得hash索引位置,如果该位置的引用为null,那么直接插入一个映射,返回null。如果此处的引用不是null,必须遍历链表,如果找到一个相同的key,那么就更新该value,同时返回原来的value值。如果遍历完了没有找到,说明该key值不存在,还是插入一个映射。如果hash值足够离散的话,也就是说该索引没有被使用的话,那么不不用遍历链表了。相反,如果hash值不离散,极端的说如果是常数的话,所有的映射都会在这一个链表上,效率会极其低下。这里举一个最简单的例子,写两
个不同的类作为key插入到HashMap中,效率会远远不同。
class Good{
int i;
public Good(int i){
this.i=i;
}
public boolean equals(Object o){
return (o instanceof Good) && (this.i==((Good)o).i)
}
public int hashCode(){
return i;
}
}
class Bad{
int i;
public Good(int i){
this.i=i;
}
public boolean equals(Object o){
return (o instanceof Good) && (this.i==((Good)o).i)
}
public int hashCode(){
return 0;
}
}
执行代码:
Map m1=new HashMap();
Map m2=new HashMap();
for(int i=0;i<100;i++){
m1.put(new Good(i),new Integer(i)); //这里效率非常高
}
for(int i=0;i<100;i++){
m2.put(new Bad(i),new Integer(i)); //这里几乎要崩溃
}
上面的是两个非常极端的例子,执行一下就知道差别有多大。
private void putForCreate(Object key, Object value) {
Object k = maskNull(key);
int hash = hash(k);
int i = indexFor(hash, table.length);
for (Entry e = table[i]; e != null; e = e.next) {
if (e.hash == hash && eq(k, e.key)) {
e.value = value;
return;
}
}
createEntry(hash, k, value, i);
}
void putAllForCreate(Map m) {
for (Iterator i = m.entrySet().iterator(); i.hasNext(); ) {
Map.Entry e = (Map.Entry) i.next();
putForCreate(e.getKey(), e.getValue());
}
}
上面的两个方法是被构造函数和clone方法调用的。
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (size < threshold || oldCapacity > newCapacity)
return;
Entry[] newTable = new Entry[newCapacity];
transfer(newTable);
table = newTable;
threshold = (int)(newCapacity * loadFactor);
}
这个方法在需要的时候重新分配空间,相当于ArrayList的ensureCapacity方法,不过这个更加复杂。
void transfer(Entry[] newTable) {
Entry[] src = table;
int newCapacity = newTable.length;
for (int j = 0; j < src.length; j++) {
Entry e = src[j];
if (e != null) {
src[j] = null;
do {
Entry next = e.next;
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
} while (e != null);
}
}
}
遍历原来的数组,如果该Entry不是null的话,说明有映射,然后遍历这个链表,把所有的映射插入到新的数组中,注意这里要从新计算索引位置。
public void putAll(Map t) {
int n = t.size();
if (n == 0)
return;
if (n >= threshold) {
n = (int)(n / loadFactor + 1);
if (n > MAXIMUM_CAPACITY)
n = MAXIMUM_CAPACITY;
int capacity = table.length;
while (capacity < n) capacity <<= 1;
resize(capacity);
}
for (Iterator i = t.entrySet().iterator(); i.hasNext(); ) {
Map.Entry e = (Map.Entry) i.next();
put(e.getKey(), e.getValue());
}
}
这个方法先确定是否需要扩大空间,然后循环调用put方法。
public Object remove(Object key) {
Entry e = removeEntryForKey(key);
return (e == null ? e : e.value);
}
Entry removeEntryForKey(Object key) {
Object k = maskNull(key);
int hash = hash(k);
int i = indexFor(hash, table.length);
Entry prev = table[i];
Entry e = prev;
while (e != null) { 如果e==null表示不存在
Entry next = e.next;
if (e.hash == hash && eq(k, e.key)) {
modCount++;
size--;
if (prev == e)
table[i] = next; 链表的第一个元素就是要删除的,这里最好加一句 e.next=null.
else
prev.next = next; 存在担不是链表的第一个元素, 这里最好加一句 e.next=null.
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}
return e; 这里其实就是return null;
}
这个方法其实也不复杂,也是遍历链表,这里建议加一句e.next=null,可以改为
if(prev==e)
table[i]=next;
else
prev.next=next;
e.next=null; 这一句是多加的,可以提高效率。
这里简单说明我的看法:
因为e是被删除的节点,删除它其实就是指向它的指针指向它的后面一个节点。所以e可以作为GC回收的对象。
可以e还有一个next指针指向我们的数据,如果e没有被回收。而且此时e.next指向的节点也变为没用的了,但是
却有一个它的引用(e.next),所以虽然e的下一个节点没用了,但是却不能作为GC回收的对象,除非e先被回收。
虽然不一定会引起很大的问题,但是至少会影响GC的回收效率。就像数据库中的外键引用一样,删除起来很麻烦呀。
Entry removeMapping(Object o) {
if (!(o instanceof Map.Entry))
return null;
Map.Entry entry = (Map.Entry)o;
Object k = maskNull(entry.getKey());
int hash = hash(k);
int i = indexFor(hash, table.length);
Entry prev = table[i];
Entry e = prev;
while (e != null) {
Entry next = e.next;
if (e.hash == hash && e.equals(entry)) {
modCount++;
size--;
if (prev == e)
table[i] = next;
else
prev.next = next;
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}
return e;
}
这个方法和上面的一样。
public void clear() {
modCount++;
Entry tab[] = table;
for (int i = 0; i < tab.length; i++)
tab[i] = null;
size = 0;
}
同样可以改进
public boolean containsValue(Object value) {
if (value == null)
return containsNullValue();
Entry tab[] = table;
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (value.equals(e.value)) return true;
return false;
}
private boolean containsNullValue() {
Entry tab[] = table;
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (e.value == null) return true;
return false;
}
public Object clone() {
HashMap result = null;
try {
result = (HashMap)super.clone();
}
catch (CloneNotSupportedException e) { // assert false; }
result.table = new Entry[table.length];
result.entrySet = null;
result.modCount = 0;
result.size = 0;
result.init();
result.putAllForCreate(this);
return result;
}
static class Entry implements Map.Entry {
final Object key;
Object value;
final int hash;
Entry next;
Entry(int h, Object k, Object v, Entry n) {
value = v;
next = n;
key = k;
hash = h;
}
public Object getKey() {
return unmaskNull(key);
}
public Object getValue() {
return value;
}
public Object setValue(Object newValue) {
Object oldValue = value;
value = newValue;
return oldValue;
}
public boolean equals(Object o) {
if (!(o instanceof Map.Entry)) return false;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2))) return true;
}
return false;
}
public int hashCode() {
return (key==NULL_KEY ? 0 : key.hashCode()) ^ (value==null ? 0 : value.hashCode());
}
public String toString() {
return getKey() + "=" + getValue();
}
void recordAccess(HashMap m) { }
void recordRemoval(HashMap m) { }
}
一个静态内部类
void addEntry(int hash, Object key, Object value, int bucketIndex) {
table[bucketIndex] = new Entry(hash, key, value, table[bucketIndex]);
if (size++ >= threshold)
resize(2 * table.length);
}
注意这个方法,插入连表的头。
可以写成这样更好理解:
Entry oldHead=table[bucketIndex];
Entry newHead = new Entry(hash,key,value,oldHead);
table[bucketIndex]=newHead;
void createEntry(int hash, Object key, Object value, int bucketIndex) {
table[bucketIndex] = new Entry(hash, key, value, table[bucketIndex]);
size++;
}
private abstract class HashIterator implements Iterator {
Entry next;
int expectedModCount;
int index;
Entry current;
HashIterator() {
expectedModCount = modCount;
Entry[] t = table;
int i = t.length;
Entry n = null;
if (size != 0) {
while (i > 0 && (n = t[--i]) == null) ;
}
next = n;
index = i;
}
public boolean hasNext() {
return next != null;
}
Entry nextEntry() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Entry e = next;
if (e == null)
throw new NoSuchElementException();
Entry n = e.next;
Entry[] t = table;
int i = index;
while (n == null && i > 0)
n = t[--i]; index = i;
next = n;
return current = e;
}
public void remove() {
if (current == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Object k = current.key;
current = null;
HashMap.this.removeEntryForKey(k);
expectedModCount = modCount;
}
}
private class ValueIterator extends HashIterator {
public Object next() {
return nextEntry().value;
}
}
private class KeyIterator extends HashIterator {
public Object next() {
return nextEntry().getKey();
}
}
private class EntryIterator extends HashIterator {
public Object next() {
return nextEntry();
}
}
Iterator newKeyIterator() {
return new KeyIterator();
}
Iterator newValueIterator() {
return new ValueIterator();
}
Iterator newEntryIterator() {
return new EntryIterator();
}
private transient Set entrySet = null;
public Set keySet() {
Set ks = keySet;
return (ks != null ? ks : (keySet = new KeySet()));
}
private class KeySet extends AbstractSet {
public Iterator iterator() {
return newKeyIterator();
}
public int size() {
return size;
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
return HashMap.this.removeEntryForKey(o) != null;
}
public void clear() {
HashMap.this.clear();
}
}
public Collection values() {
Collection vs = values; return (vs != null ? vs : (values = new Values()));
}
private class Values extends AbstractCollection {
public Iterator iterator() {
return newValueIterator();
}
public int size() {
return size;
}
public boolean contains(Object o) {
return containsValue(o);
}
public void clear() {
HashMap.this.clear();
}
}
public Set entrySet() {
Set es = entrySet;
return (es != null ? es : (entrySet = new EntrySet()));
}
private class EntrySet extends AbstractSet {
public Iterator iterator() {
return newEntryIterator();
}
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Entry candidate = getEntry(e.getKey());
return candidate != null && candidate.equals(e);
}
public boolean remove(Object o) {
return removeMapping(o) != null;
}
public int size() {
return size;
}
public void clear() {
HashMap.this.clear();
}
}
private void writeObject(java.io.ObjectOutputStream s) throws IOException {
s.defaultWriteObject();
s.writeInt(table.length);
s.writeInt(size);
for (Iterator i = entrySet().iterator(); i.hasNext(); ) {
Map.Entry e = (Map.Entry) i.next();
s.writeObject(e.getKey());
s.writeObject(e.getValue());
}
}
private static final long serialVersionUID = 362498820763181265L;
private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException {
s.defaultReadObject();
int numBuckets = s.readInt();
table = new Entry[numBuckets];
init();
size = s.readInt(); for (int i=0;
for (int i=0; i<size; i++) {
Object key = s.readObject();
Object value = s.readObject();
putForCreate(key, value);
}
}
int capacity() {
return table.length;
}
float loadFactor() {
return loadFactor;
}