posts - 110, comments - 101, trackbacks - 0, articles - 7
  BlogJava :: 首页 :: 新随笔 :: 联系 :: 聚合  :: 管理

一致性哈希算法与Java实现

Posted on 2012-10-10 11:32 云云 阅读(48822) 评论(5)  编辑  收藏
  一致性哈希算法是分布式系统中常用的算法。比如,一个分布式的存储系统,要将数据存储到具体的节点上,如果采用普通的hash方法,将数据映射到具体的节点上,如key%N,key是数据的key,N是机器节点数,如果有一个机器加入或退出这个集群,则所有的数据映射都无效了,如果是持久化存储则要做数据迁移,如果是分布式缓存,则其他缓存就失效了。

    因此,引入了一致性哈希算法:


 

把数据用hash函数(如MD5),映射到一个很大的空间里,如图所示。数据的存储时,先得到一个hash值,对应到这个环中的每个位置,如k1对应到了图中所示的位置,然后沿顺时针找到一个机器节点B,将k1存储到B这个节点中。

如果B节点宕机了,则B上的数据就会落到C节点上,如下图所示:


 

这样,只会影响C节点,对其他的节点A,D的数据不会造成影响。然而,这又会造成一个“雪崩”的情况,即C节点由于承担了B节点的数据,所以C节点的负载会变高,C节点很容易也宕机,这样依次下去,这样造成整个集群都挂了。

       为此,引入了“虚拟节点”的概念:即把想象在这个环上有很多“虚拟节点”,数据的存储是沿着环的顺时针方向找一个虚拟节点,每个虚拟节点都会关联到一个真实节点,如下图所使用:


图中的A1、A2、B1、B2、C1、C2、D1、D2都是虚拟节点,机器A负载存储A1、A2的数据,机器B负载存储B1、B2的数据,机器C负载存储C1、C2的数据。由于这些虚拟节点数量很多,均匀分布,因此不会造成“雪崩”现象。

 

Java实现:

  1. public class Shard<S> { // S类封装了机器节点的信息 ,如name、password、ip、port等   
  2.   
  3.     private TreeMap<Long, S> nodes; // 虚拟节点   
  4.     private List<S> shards; // 真实机器节点   
  5.     private final int NODE_NUM = 100// 每个机器节点关联的虚拟节点个数   
  6.   
  7.     public Shard(List<S> shards) {  
  8.         super();  
  9.         this.shards = shards;  
  10.         init();  
  11.     }  
  12.   
  13.     private void init() { // 初始化一致性hash环   
  14.         nodes = new TreeMap<Long, S>();  
  15.         for (int i = 0; i != shards.size(); ++i) { // 每个真实机器节点都需要关联虚拟节点   
  16.             final S shardInfo = shards.get(i);  
  17.   
  18.             for (int n = 0; n < NODE_NUM; n++)  
  19.                 // 一个真实机器节点关联NODE_NUM个虚拟节点   
  20.                 nodes.put(hash("SHARD-" + i + "-NODE-" + n), shardInfo);  
  21.   
  22.         }  
  23.     }  
  24.   
  25.     public S getShardInfo(String key) {  
  26.         SortedMap<Long, S> tail = nodes.tailMap(hash(key)); // 沿环的顺时针找到一个虚拟节点   
  27.         if (tail.size() == 0) {  
  28.             return nodes.get(nodes.firstKey());  
  29.         }  
  30.         return tail.get(tail.firstKey()); // 返回该虚拟节点对应的真实机器节点的信息   
  31.     }  
  32.   
  33.     /** 
  34.      *  MurMurHash算法,是非加密HASH算法,性能很高, 
  35.      *  比传统的CRC32,MD5,SHA-1(这两个算法都是加密HASH算法,复杂度本身就很高,带来的性能上的损害也不可避免) 
  36.      *  等HASH算法要快很多,而且据说这个算法的碰撞率很低. 
  37.      *  http://murmurhash.googlepages.com/ 
  38.      */  
  39.     private Long hash(String key) {  
  40.           
  41.         ByteBuffer buf = ByteBuffer.wrap(key.getBytes());  
  42.         int seed = 0x1234ABCD;  
  43.           
  44.         ByteOrder byteOrder = buf.order();  
  45.         buf.order(ByteOrder.LITTLE_ENDIAN);  
  46.   
  47.         long m = 0xc6a4a7935bd1e995L;  
  48.         int r = 47;  
  49.   
  50.         long h = seed ^ (buf.remaining() * m);  
  51.   
  52.         long k;  
  53.         while (buf.remaining() >= 8) {  
  54.             k = buf.getLong();  
  55.   
  56.             k *= m;  
  57.             k ^= k >>> r;  
  58.             k *= m;  
  59.   
  60.             h ^= k;  
  61.             h *= m;  
  62.         }  
  63.   
  64.         if (buf.remaining() > 0) {  
  65.             ByteBuffer finish = ByteBuffer.allocate(8).order(  
  66.                     ByteOrder.LITTLE_ENDIAN);  
  67.             // for big-endian version, do this first:   
  68.             // finish.position(8-buf.remaining());   
  69.             finish.put(buf).rewind();  
  70.             h ^= finish.getLong();  
  71.             h *= m;  
  72.         }  
  73.   
  74.         h ^= h >>> r;  
  75.         h *= m;  
  76.         h ^= h >>> r;  
  77.   
  78.         buf.order(byteOrder);  
  79.         return h;  
  80.     }  
  81.   
  82. }  

评论

# re: 一致性哈希算法与Java实现   回复  更多评论   

2014-05-22 12:25 by xdemo
绝不可能~

# re: 一致性哈希算法与Java实现   回复  更多评论   

2014-08-12 17:37 by nodexy
1楼高见?

# re: 一致性哈希算法与Java实现   回复  更多评论   

2015-01-15 20:37 by 沙漠绿树
我的qq是29561416

我看了网上清一色都是拿memcached来说一致性hash,增加虚拟节点解决数据均衡的问题。我有个疑问:
1.使用虚拟节点后,但是当我增加物理节点后,环中的虚拟节点是否要增加,如果把他应用在mysql上,数据迁移是否会很困难?

2.在使用虚拟节点时,比如5个物理节点,每个物理节点虚拟出1024个虚节点,按道理hash环有5120个节点,但是使用kemata哈希虚拟环时,有些节点key的哈希结果相同,导致hash环中少于5120个节点?

# re: 一致性哈希算法与Java实现   回复  更多评论   

2015-10-21 00:22 by 一个不起眼的攻城狮
我来解决楼上的问题,解决之前贤说两句:
楼上太强势,绝对不可能,这5个字震慑到我了,而且看你的提问,只能算是懂一点hash一致性算法,楼主的说法是正确的,也是非常有参考价值的。
问题答案如下:
1. 你所说的是hash一致性的数据迁移问题,这个是hash一致性的弱点,可以改进,但是需要自己开发相应的程序,不是不可能完成的而是可以完成的,只是复杂点;退一万步,任何技术都不是万能的,都有弊端,只是看你的业务需求最适于那种技术。
2. 你这个可以将hash的空间编程2的32次方,2的64次方都可以,不是只能用一种,要活学活用。另外,hash出来的key值相同少有发生,这是hash的特性决定的,也就是hash冲突,这个倒是个问题,解决方法是bloomfilter算法,有兴趣的可以自己去查。

# re: 一致性哈希算法与Java实现   回复  更多评论   

2016-07-25 12:04 by 三单联咖啡色
有一个问题,如果使用虚拟节点,某台机器每次宕机再恢复后都需要迁移数据。这样是否反而更麻烦了。

只有注册用户登录后才能发表评论。


网站导航: