我们谈一下实际的场景吧。我们在开发中,有如下场景

a) 关闭空闲连接。服务器中,有很多客户端的连接,空闲一段时间之后需要关闭之。
b) 缓存。缓存中的对象,超过了空闲时间,需要从缓存中移出。
c) 任务超时处理。在网络协议滑动窗口请求应答式交互时,处理超时未响应的请求。

一种笨笨的办法就是,使用一个后台线程,遍历所有对象,挨个检查。这种笨笨的办法简单好用,但是对象数量过多时,可能存在性能问题,检查间隔时间不好设置,间隔时间过大,影响精确度,多小则存在效率问题。而且做不到按超时的时间顺序处理。

这场景,使用DelayQueue最适合了。

DelayQueue 是java.util.concurrent中提供的一个很有意思的类。很巧妙,非常棒!但是java doc和Java SE 5.0的source中都没有提供Sample。我最初在阅读ScheduledThreadPoolExecutor源码时,发现DelayQueue 的妙用。随后在实际工作中,应用在session超时管理,网络应答通讯协议的请求超时处理。

本文将会对DelayQueue做一个介绍,然后列举应用场景。并且提供一个Delayed接口的实现和Sample代码。

DelayQueue是一个BlockingQueue,其特化的参数是Delayed。(不了解BlockingQueue的同学,先去了解BlockingQueue再看本文)
Delayed扩展了Comparable接口,比较的基准为延时的时间值,Delayed接口的实现类getDelay的返回值应为固定值(final)。DelayQueue内部是使用PriorityQueue实现的。

DelayQueue = BlockingQueue + PriorityQueue + Delayed

DelayQueue的关键元素BlockingQueue、PriorityQueue、Delayed。可以这么说,DelayQueue是一个使用优先队列(PriorityQueue)实现的BlockingQueue,优先队列的比较基准值是时间。

他们的基本定义如下
public interface Comparable<T> {
    
public int compareTo(T o);
}

public interface Delayed extends Comparable<Delayed> {
    
long getDelay(TimeUnit unit);
}

public class DelayQueue<extends Delayed> implements BlockingQueue<E> { 
    
private final PriorityQueue<E> q = new PriorityQueue<E>();
}

DelayQueue内部的实现使用了一个优先队列。当调用DelayQueue的offer方法时,把Delayed对象加入到优先队列q中。如下:
public boolean offer(E e) {
    
final ReentrantLock lock = this.lock;
    lock.lock();
    
try {
        E first 
= q.peek();
        q.offer(e);
        
if (first == null || e.compareTo(first) < 0)
            available.signalAll();
        
return true;
    } 
finally {
        lock.unlock();
    }
}

DelayQueue的take方法,把优先队列q的first拿出来(peek),如果没有达到延时阀值,则进行await处理。如下:
public E take() throws InterruptedException {
    
final ReentrantLock lock = this.lock;
    lock.lockInterruptibly();
    
try {
        
for (;;) {
            E first 
= q.peek();
            
if (first == null) {
                available.await();
            } 
else {
                
long delay =  first.getDelay(TimeUnit.NANOSECONDS);
                
if (delay > 0) {
                    
long tl = available.awaitNanos(delay);
                } 
else {
                    E x 
= q.poll();
                    
assert x != null;
                    
if (q.size() != 0)
                        available.signalAll(); 
// wake up other takers
                    return x;

                }
            }
        }
    } 
finally {
        lock.unlock();
    }
}

-------------------

以下是Sample,是一个缓存的简单实现。共包括三个类Pair、DelayItem、Cache。如下:

public class Pair<K, V> {
    
public K first;

    
public V second;
    
    
public Pair() {}
    
    
public Pair(K first, V second) {
        
this.first = first;
        
this.second = second;
    }
}

--------------
以下是Delayed的实现
import java.util.concurrent.Delayed;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;

public class DelayItem<T> implements Delayed {
    
/** Base of nanosecond timings, to avoid wrapping */
    
private static final long NANO_ORIGIN = System.nanoTime();

    
/**
     * Returns nanosecond time offset by origin
     
*/
    
final static long now() {
        
return System.nanoTime() - NANO_ORIGIN;
    }

    
/**
     * Sequence number to break scheduling ties, and in turn to guarantee FIFO order among tied
     * entries.
     
*/
    
private static final AtomicLong sequencer = new AtomicLong(0);

    
/** Sequence number to break ties FIFO */
    
private final long sequenceNumber;

    
/** The time the task is enabled to execute in nanoTime units */
    
private final long time;

    
private final T item;

    
public DelayItem(T submit, long timeout) {
        
this.time = now() + timeout;
        
this.item = submit;
        
this.sequenceNumber = sequencer.getAndIncrement();
    }

    
public T getItem() {
        
return this.item;
    }

    
public long getDelay(TimeUnit unit) {
        
long d = unit.convert(time - now(), TimeUnit.NANOSECONDS);
        
return d;
    }

    
public int compareTo(Delayed other) {
        
if (other == this// compare zero ONLY if same object
            return 0;
        
if (other instanceof DelayItem) {
            DelayItem x 
= (DelayItem) other;
            
long diff = time - x.time;
            
if (diff < 0)
                
return -1;
            
else if (diff > 0)
                
return 1;
            
else if (sequenceNumber < x.sequenceNumber)
                
return -1;
            
else
                
return 1;
        }
        
long d = (getDelay(TimeUnit.NANOSECONDS) - other.getDelay(TimeUnit.NANOSECONDS));
        
return (d == 0? 0 : ((d < 0? -1 : 1);
    }
}



以下是Cache的实现,包括了put和get方法,还包括了可执行的main函数。
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.DelayQueue;
import java.util.concurrent.TimeUnit;
import java.util.logging.Level;
import java.util.logging.Logger;

public class Cache<K, V> {
    
private static final Logger LOG = Logger.getLogger(Cache.class.getName());

    
private ConcurrentMap<K, V> cacheObjMap = new ConcurrentHashMap<K, V>();

    
private DelayQueue<DelayItem<Pair<K, V>>> q = new DelayQueue<DelayItem<Pair<K, V>>>();

    
private Thread daemonThread;

    
public Cache() {

        Runnable daemonTask 
= new Runnable() {
            
public void run() {
                daemonCheck();
            }
        };

        daemonThread 
= new Thread(daemonTask);
        daemonThread.setDaemon(
true);
        daemonThread.setName(
"Cache Daemon");
        daemonThread.start();
    }

    
private void daemonCheck() {

        
if (LOG.isLoggable(Level.INFO))
            LOG.info(
"cache service started.");

        
for (;;) {
            
try {
                DelayItem
<Pair<K, V>> delayItem = q.take();
                
if (delayItem != null) {
                    
// 超时对象处理
                    Pair<K, V> pair = delayItem.getItem();
                    cacheObjMap.remove(pair.first, pair.second); 
// compare and remove
                }
            } 
catch (InterruptedException e) {
                
if (LOG.isLoggable(Level.SEVERE))
                    LOG.log(Level.SEVERE, e.getMessage(), e);
                
break;
            }
        }

        
if (LOG.isLoggable(Level.INFO))
            LOG.info(
"cache service stopped.");
    }

    
// 添加缓存对象
    public void put(K key, V value, long time, TimeUnit unit) {
        V oldValue 
= cacheObjMap.put(key, value);
        
if (oldValue != null)
            q.remove(key);

        
long nanoTime = TimeUnit.NANOSECONDS.convert(time, unit);
        q.put(
new DelayItem<Pair<K, V>>(new Pair<K, V>(key, value), nanoTime));
    }

    
public V get(K key) {
        
return cacheObjMap.get(key);
    }

    
// 测试入口函数
    public static void main(String[] args) throws Exception {
        Cache
<Integer, String> cache = new Cache<Integer, String>();
        cache.put(
1"aaaa"3, TimeUnit.SECONDS);

        Thread.sleep(
1000 * 2);
        {
            String str 
= cache.get(1);
            System.out.println(str);
        }

        Thread.sleep(
1000 * 2);
        {
            String str 
= cache.get(1);
            System.out.println(str);
        }
    }
}

运行Sample,main函数执行的结果是输出两行,第一行为aaa,第二行为null。
posted on 2007-04-27 20:04 温少的日志 阅读(2009) 评论(2)  编辑  收藏
Comments
  • # re: 精巧好用的DelayQueue
    温少的日志
    Posted @ 2007-04-29 22:52
    原来文章中有DelayItem的,昨天加入一些内容时,不小心把DelayItem部分的代码删除了。现已经补上,请看正文。  回复  更多评论   
  • # re: 精巧好用的DelayQueue
    chun
    Posted @ 2012-03-11 14:24
    Cache Demo 有个小小的Bug。设置为 daemon 的 Thread无法停止。
    我加了一个变量 threadRunning = true; while(threadRunning)  回复  更多评论   

只有注册用户登录后才能发表评论。


网站导航: