庄周梦蝶

生活、程序、未来
   :: 首页 ::  ::  :: 聚合  :: 管理

C#实现二叉查找树

Posted on 2007-04-02 17:29 dennis 阅读(1604) 评论(1)  编辑  收藏 所属分类: C#历程数据结构与算法

二叉查找树(binary search tree)

1)概念:对于树中的每个节点n,其左子节点中保存的所有数值都小于n保存的数值,右子节点保存的数值都大于n保存的数值。

2)二叉查找树可以实现更为优越的查找性能,主要实现方式有数组和链表结构,相比较而言,链表实现更为容易,因为数组实现删除和添加功能需要移动数组元素(如填补删除空位等)


今天下午在打印问题搞定后用C#实现了一下,比java版本比较有趣的使用C#的delegate来代替遍历二叉树时的visit方法,这样一来可以在遍历时对节点进行你所想要的任何操作。我们知道C#的delegate是类型化的函数指针,而C++的函数指针可以模仿动态语言的闭包或者匿名函数。这里也有这样的味道。

代码如下,只实现了整数型的,节点定义:
  public  class BSTIntNode
    {
        
public int value;
        
public BSTIntNode left;
        
public BSTIntNode right;

        
public BSTIntNode(int value, BSTIntNode left, BSTIntNode right)
        {
            
this.value = value;
            
this.left = left;
            
this.right = right;
        }

        
public BSTIntNode(int value)
        {
            
this.value = value;
            
this.left = null;
            
this.right = null;
        }
    }

然后定义一个Delegate,作为遍历时的访问方法:

 public delegate void Visit(BSTIntNode node);

然后就是二叉树的实现,删除算法只实现了复制删除法:

public class BSTIntTree
    {
        
protected BSTIntNode root;
      
        
public Visit visit;

        
public BSTIntTree()
        {
            
this.root = null;
        }

        
private BSTIntNode Search(BSTIntNode node, int el)
        {
            
while (node != null)
            {
                
if (el == node.value)
                    
return node;
                
else if (el < node.value)
                    node 
= node.left;
                
else
                    node 
= node.right;
            }
            
return null;
        }

        
//查找
        public BSTIntNode Search(int el)
        {
            
return Search(root, el);
        }

        
//广度优先遍历,利用队列实现,至上而下,至左而右
        public void BreadthFirst()
        {
            BSTIntNode p 
= root;
            Queue queue 
= new ListQueue();
            
if (p != null)
            {
                queue.Enqueue(p);
                
while (!queue.IsEmpty())
                {
                    p 
= (BSTIntNode)queue.Dequeue();
                    visit(p);
                    
if (p.left != null)
                        queue.Enqueue(p.left);
                    
if (p.right != null)
                        queue.Enqueue(p.right);
                }
            }
        }

        
//深度优先遍历,递归实现线序,中序和后序

        
//先序
        protected void PreOrder(BSTIntNode p)
        {
            
if (p != null)
            {
                visit(p);
                PreOrder(p.left);
                PreOrder(p.right);
            }
        }

        
public void PreOrder()
        {
            PreOrder(root);
        }
        
//中序
        protected void InOrder(BSTIntNode p)
        {
            
if (p != null)
            {
                InOrder(p.left);
                visit(p);
                InOrder(p.right);
            }
        }

        
public void InOrder()
        {
            InOrder(root);
        }

        
//后序
        protected void PostOrder(BSTIntNode p)
        {
            
if (p != null)
            {
                PostOrder(p.left);
                PostOrder(p.right);
                visit(p);
            }
        }

        
public void PostOrder()
        {
            PostOrder(root);
        }

        
//插入节点操作
        public void Insert(int el)
        {
            BSTIntNode p 
= root, prev = null;

            
//查找节点位置
            while (p != null)
            {
                prev 
= p;
                
if (p.value < el)
                    p 
= p.right;
                
else
                    p 
= p.left;
            }

            
if (root == null)  //空树
                root = new BSTIntNode(el);
            
else if (prev.value < el)   //大于节点,插入右子树
                prev.right = new BSTIntNode(el);
            
else
                prev.left 
= new BSTIntNode(el);
        }

        
//复制删除法的实现,归并删除法可能改变树的高度
        public void Delete(int el)
        {
            BSTIntNode node, p 
= root, prev = null;

            
//查找节点位置
            while (p != null&&p.value!=el)
            {
                prev 
= p;
                
if (p.value < el)
                    p 
= p.right;
                
else
                    p 
= p.left;
            }
            node 
= p;
            
if (p != null && p.value == el)
            {
                
if (node.right == null)
                    node 
= node.left;
                
else if (node.left == null)
                    node 
= node.right;
                
else
                {
                    BSTIntNode temp 
= node.left;
                    BSTIntNode previous 
= node;
                    
while (temp.right != null)  //查找左字节数的最右子节点
                    {
                        previous 
= temp;
                        temp 
= temp.right;
                    }
                    node.value 
= temp.value;
                    
if (previous == node)
                        previous.left 
= temp.left;
                    
else
                        previous.right 
= temp.left;
                }
                
if (p == root)
                    root 
= node;
                
else if (prev.left == p)
                    prev.left 
= node;
                
else
                    prev.right 
= node;
            }
            
else if (root != null)
            {
                Console.WriteLine(
"没有找到节点:{0}", el);
            }
            
else
                Console.WriteLine(
"树为空!");
        }

    }

注意,在树中我们维持了一个Visit的delegate,看看使用方法:

 public static void Main(string[] args)
        {
           BSTIntTree tree
=new BSTIntTree();
           
int []num={10,20,6,12,23,15,8};
           
for (int i = 0; i < num.Length; i++)
               tree.Insert(num[i]);
           
//添加遍历处理函数,可以有多个 
           tree.visit += new Visit(printNode);
          
           Console.WriteLine(
"广度优先遍历");
           tree.BreadthFirst();
           Console.WriteLine(
"先序");
           tree.PreOrder();
           Console.WriteLine(
"中序");
           tree.InOrder();
           Console.WriteLine(
"后序");
           tree.PostOrder();

           tree.Delete(
8);
           tree.Delete(
15);
           Console.WriteLine(
"删除后广度优先遍历");
           tree.BreadthFirst();

        }
        
public static void printNode(BSTIntNode node)
        {
            Console.WriteLine(
"访问节点:{0}", node.value);
        }

可以看到,C#的delegate机制非常有趣,如果在java中恐怕需要用inner class来实现了。



评论

# re: C#实现二叉查找树  回复  更多评论   

2011-09-18 08:41 by tb
很好啊

只有注册用户登录后才能发表评论。


网站导航: