习题2.17,直接利用list-ref和length过程
(define (last-pair items)
(list (list-ref items (- (length items) 1))))
习题2.18,采用迭代法
(define (reverse-list items)
(define (reverse-iter i k)
(if (null? i) k (reverse-iter (cdr i) (cons (car i) k))))
(reverse-iter items ()))
习题2.20,如果两个数的奇偶相同,那么他们的差模2等于0,根据这一点可以写出:
(define (same-parity a . b)
(define (same-parity-temp x y)
(cond ((null? y) y)
((= (remainder (- (car y) x) 2) 0)
(cons (car y) (same-parity-temp x (cdr y))))
(else
(same-parity-temp x (cdr y)))))
(cons a (same-parity-temp a b)))
利用了基本过程remainder取模
习题2.21,递归方式:
(define (square-list items)
(if (null? items)
items
(cons (square (car items)) (square-list (cdr items)))))
利用map过程:
(define (square-list items)
(map square items))
习题2.23,这与ruby中的each是一样的意思,将操作应用于集合的每个元素:
(define (for-each proc items)
(define (for-each-temp proc temp items)
(if (null? items)
#t
(for-each-temp proc (proc (car items)) (cdr items))))
(for-each-temp proc 0 items))
最后返回true
习题2.24,盒子图就不画了,麻烦,解释器输出:
Welcome to DrScheme, version 360.
Language: Standard (R5RS).
> (list 1 (list 2 (list 3 4)))
(1 (2 (3 4)))
树形状应当是这样
.
/\
/ \
1 .
/\
/ \
2 .
/\
/ \
3 4
习题2.25,
第一个list可以表示为(list 1 3 (list 5 7) 9)
因此取7的操作应当是:
(car (cdr (car (cdr (cdr (list 1 3 (list 5 7) 9))))))
第二个list表示为:(list (list 7))
因此取7操作为:
(car (car (list (list 7))))
第三个list可以表示为:
(list 1 (list 2 (list 3 (list 4 (list 5 (list 6 7))))))
因此取7的操作为:
(define x (list 1 (list 2 (list 3 (list 4 (list 5 (list 6 7)))))))
(car (cdr (car (cdr (car (cdr (car (cdr (car (cdr (car (cdr x))))))))))))
够恐怖!-_-
习题2.26,纯粹的动手题,就不说了
习题2.27,在reverse的基础上进行修改,同样采用迭代,比较难理解:
(define (deep-reverse x)
(define (reverse-iter rest result)
(cond ((null? rest) result)
((not (pair? (car rest)))
(reverse-iter (cdr rest)
(cons (car rest) result)))
(else
(reverse-iter (cdr rest)
(cons (deep-reverse (car rest)) result)))
))
(reverse-iter x ()))
习题2.28,递归,利用append过程就容易了:
(define (finge x)
(cond ((pair? x) (append (finge (car x)) (finge (cdr x))))
((null? x) ())
(else (list x))))
习题2.29,这一题很明显出来的二叉活动体也是个层次性的树状结构
1)很简单,利用car,cdr
(define (left-branch x)
(car x))
(define (right-branch x)
(car (cdr x)))
(define (branch-length b)
(car b))
(define (branch-structure b)
(car (cdr b)))
2)首先需要一个过程用于求解分支的总重量:
(define (branch-weight branch)
(let ((structure (branch-structure branch)))
(if (not (pair? structure))
structure
(total-weight structure))))
(define (total-weight mobile)
(+ (branch-weight (left-branch mobile))
(branch-weight (right-branch mobile))))
利用这个过程写出balanced?过程:
(define (torque branch)
(* (branch-length branch) (branch-weight branch)))
(define (balanced? mobile)
(= (torque (left-branch mobile))
(torque (right-branch mobile))))
3)选择函数和定义函数提供了一层抽象屏蔽,其他函数都是建立在这两个基础上,因此需要改变的仅仅是selector函数:
(define (right-branch mobile) (cdr mobile))
(define (branch-structure branch) (cdr branch))
习题2.30:
(define (square-tree tree)
(cond ((null? tree) tree)
((not (pair? tree)) (square tree))
(else
(cons (square-tree (car tree)) (square-tree (cdr tree))))))
(define (square-tree2 tree)
(map (lambda(x)
(if (pair? x)
(square-tree x)
(square x))) tree))
习题2.31,进一步抽象出map-tree,与map过程类似,将proc过程作用于树的每个节点:
(define (tree-map proc tree)
(cond ((null? tree) tree)
((not (pair? tree)) (proc tree))
(else
(cons (tree-map proc (car tree)) (tree-map proc (cdr tree))))))
(define (square-tree3 tree)
(tree-map square tree))
习题2.32,通过观察,rest总是cdr后的子集,比如对于(list 1 2 3),连续cdr出来的是:
(2 3)
(3)
()
其他的5个子集应该是car结果与这些子集组合的结果,因此:
(define (subsets s)
(if (null? s)
(list s)
(let ((rest (subsets (cdr s))))
(append rest (map (lambda(x) (cons (car s) x)) rest)))))