这一节的内容非常有趣,通过将序列作为interface,在此基础上进而提取出各种高阶操作(map,filter,accumulate,enumerate等),由此引出模块化设计的讨论。模块化设计带来复杂性的降低,同时可能引入性能上的损失,比如书中对sum-odd-squares过程的两种写法,原来的写法枚举列表元素的过程散落在累积、过滤、映射的过程中,主要一次循环就够了,而通过三个高阶过程来操作反而需要3次的遍历。
习题2.33,将map,append,length基本过程用累积操作重新定义,联系以往的实现通过观察和测试可以得出:
(define (map p sequence)
(accumulate (lambda(x y)
(cons (p x) y))
() sequence))
(define (append seq1 seq2)
(accumulate cons seq2 seq1))
(define (length sequence)
(accumulate (lambda(x y)
(+ 1 y))
0 sequence))
难点就在于累积的操作。
习题2.34,Horner规则求多项式,难点也是累积操作的定义:
(define (horner-eval x coefficient-sequence)
(accumulate (lambda(this-coeff higher-terms)
(+ this-coeff (* x higher-terms)))
0 coefficient-sequence))
只要记住lambda中的y其实是另一个递归的accumulate就比较容易完成了。
测试下:
> (horner-eval 2 (list 1 3 0 5 0 1))
79
习题2.35,利用map和accumulate重新定义count-leaves统计树的节点数目:
(define (count-leaves t)
(accumulate + 0 (map (lambda (x) (if (pair? x) (count-leaves x) 1)) t)))
map过程的参数op是过程
(lambda (x) (if (pair? x) (count-leaves x) 1))
当x是列表,递归调用count-leaves,否则返回个数1
习题2.36,列表的列表,因此map过程的第一个参数是一个过程作用于列表中的每个列表,当然是采用car将它们首项取出然后进行op操作,因此:
(define (accumulate-n op init seqs)
(if (null? (car seqs))
()
(cons (accumulate op init (map car seqs))
(accumulate-n op init (map cdr seqs)))))
习题2.37,list作为Lisp的基本结构可以演化出各式各样的复杂结构,比如此题就将列表作为矢量,矢量通过组合成为矩阵,3个解答就是矩阵的运算:
(define (dot-product v w)
(accumulate + 0 (map * v w)))
(define (matrix-*-vector m v)
(map (lambda (x) (dot-product x v)) m))
(define (transpose mat)
(accumulate-n cons () mat))
(define (matrix-*-matrix m n)
(let ((cols (transpose n)))
(map (lambda (x) (matrix-*-vector cols x)) m)))
知道矩阵运算的定义得出结果并不困难。
习题2.38,计算下结果:
> (fold-right / 1 (list 1 2 3))
1 1/2
;也就是3/2
> (fold-left / 1 (list 1 2 3))
1/6
> (fold-right list () (list 1 2 3))
(1 (2 (3 ())))
> (fold-left list () (list 1 2 3))
(((() 1) 2) 3)
如果想使这两个过程的结果相同,op需要满足交换率和结合率的条件。
习题2.39:
;2.39
(define (reverse-list sequence)
(fold-right (lambda(x y)(append y (list x))) () sequence))
(define (reverse-list2 sequence)
(fold-left (lambda(x y) (cons y x)) () sequence))