update1:添加了remove,removeAll()方法以及getSize()方法
update2:添加了keySet()方法用于迭代
update3:经过测试,StTable类在存储Integer类型key时,put的速度比HashMap快了接近3倍,而remove、get却比HashMap慢;而在存储String类型的key时,put比Hashmap慢,但是get、remove却快不少。
读ruby hacking guide,其中专门辟了一个章节介绍了st.c中的st_table,这个数据结构也就是类似java中的HashMap,基本原理是利用数组存储,数组的每一个元素是一个单向链表,链表中再存储具体的元素,如下图所示的结构
ruby中利用这个结构来存储对象变量、类方法、常量、全局变量等信息,因为在c ruby中,方法、变量都是用一个整型作为键值来存储在st_table中,因此这个数据结构对于以整性为键值的map类型来说速度非常不错(我没有测试内存的占用情况)。
源码如下:
//接口,用于定义hash函数
//HashFunction.java
public interface HashFunction<T> {
public int hash(T key);
}
链表元素类:
public class StTableEntry<T, V> {
protected int hash; //hash值
protected T key; //键
protected V value; //存储值
protected StTableEntry<T, V> next; //下一节点
public StTableEntry() {
}
public StTableEntry(int hash, T key, V value, StTableEntry<T, V> next) {
super();
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public int getHash() {
return hash;
}
public void setHash(int hash) {
this.hash = hash;
}
public T getKey() {
return key;
}
public void setKey(T key) {
this.key = key;
}
public StTableEntry<T, V> getNext() {
return next;
}
public void setNext(StTableEntry<T, V> next) {
this.next = next;
}
public V getValue() {
return value;
}
public void setValue(V value) {
this.value = value;
}
}
完整的StTable实现,没有实现remove,(update:添加了remove,removeAll()方法以及getSize()方法):
public final class StTable<T, V> {
private HashFunction<T> hashFunction;
private int num_bins;
int num_entries;
StTableEntry<T, V>[] bins;
public static int DEFAULT_SIZE = 11;
private static int DEFAULT_MAX_DENSITY = 5;
private static int DEFAULT_MIN_SIZE = 8;
private static long primes[] = { 8 + 3, 16 + 3, 32 + 5, 64 + 3, 128 + 3,
256 + 27, 512 + 9, 1024 + 9, 2048 + 5, 4096 + 3, 8192 + 27,
16384 + 43, 32768 + 3, 65536 + 45, 131072 + 29, 262144 + 3,
524288 + 21, 1048576 + 7, 2097152 + 17, 4194304 + 15, 8388608 + 9,
16777216 + 43, 33554432 + 35, 67108864 + 15, 134217728 + 29,
268435456 + 3, 536870912 + 11, 1073741824 + 85, 0 };
public StTable(HashFunction<T> hashFunction) {
this.hashFunction = hashFunction;
this.num_bins = DEFAULT_SIZE;
this.num_entries = 0;
this.bins = new StTableEntry[this.num_bins];
}
public StTable(HashFunction<T> hashFunction, int size) {
this.hashFunction = hashFunction;
if (size == 0)
throw new IllegalArgumentException(
"The size could not less than zero:" + size);
this.num_bins = size;
this.num_entries = 0;
this.bins = new StTableEntry[this.num_bins];
}
private long newSize(int size) {
for (int i = 0, newsize = DEFAULT_MIN_SIZE; i < primes.length; i++, newsize <<= 1) {
if (newsize > size)
return primes[i];
}
/* Ran out of polynomials */
return -1; /* should raise exception */
}
public V get(T key) {
int hash_val = doHash(key);
StTableEntry<T, V> entry = findEntry(hash_val, key);
if (entry == null)
return null;
else
return entry.getValue();
}
public V put(T key, V value) {
int hash_val = doHash(key);
StTableEntry<T, V> entry = findEntry(hash_val, key);
if (entry == null) {
// 未有键值,直接添加
addDirect(key, value);
return value;
} else {
V v = entry.value;
entry.value = value;
return v;
}
}
public V remove(T key) {
int hash_val = doHash(key);
int bin_pos = hash_val % this.num_bins;
StTableEntry<T, V> entry = this.bins[bin_pos];
// 记录前一节点,考虑修改采用双向链表也可
StTableEntry<T, V> prev = null;
if (entryNotEqual(entry, key, hash_val)) {
prev = entry;
entry = entry.next;
while (entryNotEqual(entry, key, hash_val)) {
prev = entry;
entry = entry.next;
}
}
if (entry == null)
return null;
else {
if (prev != null)
prev.next = entry.next; // 前一节点的next连接到下一节点
else
this.bins[bin_pos] = entry.next; // entry恰好是第一个节点,将数组元素设置为next
V v = entry.value;
entry = null; // gc友好
return v;
}
this.num_entries=0;
}
public void removeAll() {
for (int i = 0; i < this.bins.length; i++) {
StTableEntry<T, V> entry = this.bins[i];
this.bins[i] = null;
StTableEntry<T, V> temp = entry;
if (entry == null)
continue;
while (entry != null) {
entry = null;
this.num_entries--;
entry = temp.next;
temp = entry;
}
temp = null;
entry = null;
}
}
public int getSize() {
return this.num_entries;
}
public Set<T> keySet() {
Set<T> keys = new HashSet<T>(this.num_entries);
for (int i = 0; i < this.bins.length; i++) {
StTableEntry<T, V> entry = this.bins[i];
if (entry == null)
continue;
while (entry != null) {
keys.add(entry.key);
entry = entry.next;
}
}
return keys;
}
// hash函数,调用hashFunction的hash方法
private int doHash(T key) {
if (hashFunction.hash(key) < 0)
throw new IllegalArgumentException(
"hash value could not less than zero:"
+ hashFunction.hash(key));
return hashFunction.hash(key);
}
// 过于拥挤,重新分布
private void reHash() {
int new_size = (int) newSize(this.num_bins);
StTableEntry<T, V>[] new_bins = (StTableEntry<T, V>[]) new StTableEntry[new_size];
for (int i = 0; i < this.num_bins; i++) {
StTableEntry<T, V> entry = this.bins[i];
while (entry != null) {
StTableEntry<T, V> next = entry.next;
int hash_val = entry.hash % new_size;
entry.next = new_bins[hash_val];
new_bins[hash_val] = entry;
entry = next;
}
}
this.bins = null;// gc友好
this.num_bins = new_size;
this.bins = new_bins;
}
private void addDirect(T key, V value) {
int hash_val = doHash(key);
int bin_pos = hash_val % this.num_bins;
if ((this.num_entries / this.num_bins) > DEFAULT_MAX_DENSITY) {
reHash();
bin_pos = hash_val % this.num_bins;
}
StTableEntry<T, V> entry = new StTableEntry<T, V>();
entry.setHash(hash_val);
entry.setKey(key);
entry.setValue(value);
entry.setNext(this.bins[bin_pos]);
this.bins[bin_pos] = entry;
this.num_entries++;
}
private StTableEntry<T, V> findEntry(int hash_val, T key) {
int bin_pos = hash_val % this.num_bins;
StTableEntry<T, V> entry = this.bins[bin_pos];
if (entryNotEqual(entry, key, hash_val)) {
entry = entry.next;
while (entryNotEqual(entry, key, hash_val)) {
entry = entry.next;
}
}
return entry;
}
// 判断元素是否相同
private boolean entryNotEqual(StTableEntry<T, V> entry, T key, int hash_val) {
return entry != null
&& (entry.getHash() != hash_val || (!key.equals(entry.getKey())));
}
}
单元测试类就不列了,给一个与HashMap的简单性能对比,以整型为键,显然StTable快多了,对于字符串型,关键是HashFunction的定义,我直接调用String的hashCode方法,不知道有没有其他更好的方法让元素分布的更均匀些:
import java.util.HashMap;
import java.util.Map;
public class Benchmark {
public static void main(String args[]) {
long map_cost = testStringMap();
long table_cost = testStringTable();
if (map_cost <= table_cost)
System.out.println("map is faster than table ");
else
System.out.println("table is faster than map ");
map_cost = testIntegerMap();
table_cost = testIntegerTable();
if (map_cost <= table_cost)
System.out.println("map is faster than table ");
else
System.out.println("table is faster than map ");
}
public static long testIntegerMap() {
Map<Integer, Integer> map = new HashMap<Integer, Integer>();
long start = System.nanoTime();
for (int i = 0; i < 10000; i++)
map.put(i, i);
long result = 0;
for (int i = 0; i < 10000; i++)
result += map.get(i);
long end = System.nanoTime();
System.out.println("result:" + result);
System.out.println("map:" + (end - start));
return (end - start);
}
public static long testIntegerTable() {
HashFunction<Integer> intHash = new HashFunction<Integer>() {
public int hash(Integer key) {
return key;
}
};
StTable<Integer, Integer> table = new StTable<Integer, Integer>(intHash);
long start = System.nanoTime();
for (int i = 0; i < 10000; i++)
table.put(i, i);
long result = 0;
for (int i = 0; i < 10000; i++)
result += table.get(i);
long end = System.nanoTime();
System.out.println("result:" + result);
System.out.println("table:" + (end - start));
return (end - start);
}
public static long testStringMap() {
Map<String, String> map = new HashMap<String, String>();
long start = System.nanoTime();
for (int i = 0; i < 10000; i++)
map.put(String.valueOf(i), String.valueOf(i));
long result = 0;
for (int i = 0; i < 10000; i++)
result += Integer.parseInt(map.get(String.valueOf(i)));
long end = System.nanoTime();
System.out.println("result:" + result);
System.out.println("map:" + (end - start));
return (end - start);
}
public static long testStringTable() {
HashFunction<String> intHash = new HashFunction<String>() {
int i = 0;
public int hash(String key) {
int hashCode = key.hashCode();
return hashCode < 0 ? -hashCode : hashCode;
}
};
StTable<String, String> table = new StTable<String, String>(intHash);
long start = System.nanoTime();
for (int i = 0; i < 10000; i++)
table.put(String.valueOf(i), String.valueOf(i));
long result = 0;
for (int i = 0; i < 10000; i++)
result += Integer.parseInt(table.get(String.valueOf(i)));
long end = System.nanoTime();
System.out.println("result:" + result);
System.out.println("table:" + (end - start));
return (end - start);
}
}
结果为:
result:49995000
map:55501468
result:49995000
table:60999652
map is faster than table
result:49995000
map:44634444
result:49995000
table:26209477
table is faster than map
将get换成remove方法,结果也与上面的类似。