本篇用代码示例结合JDk源码讲了Java8引入的工具接口Stream以及新Map接口提供的常用默认方法. 参考:http://winterbe.com/posts/2014/03/16/java-8-tutorial/ 1.Stream示例package com.mavsplus.java8.turtorial.streams;
import java.util.ArrayList;
import java.util.List;
import java.util.Optional;
import java.util.UUID;
/**
* java.util.Stream使用例子
*
* <pre>
* java.util.Stream表示了某一种元素的序列,在这些元素上可以进行各种操作。Stream操作可以是中间操作,也可以是完结操作。
* 完结操作会返回一个某种类型的值,而中间操作会返回流对象本身,并且你可以通过多次调用同一个流操作方法来将操作结果串起来。
* Stream是在一个源的基础上创建出来的,例如java.util.Collection中的list或者set(map不能作为Stream的源)。
* Stream操作往往可以通过顺序或者并行两种方式来执行。
* </pre>
*
* public interface Stream<T> extends BaseStream<T, Stream<T>> {
* <p>
* 可以看到Stream是一个接口,其是1.8引入
*
* <p>
* Java 8中的Collections类的功能已经有所增强,你可以之直接通过调用Collections.stream()或者Collection.
* parallelStream()方法来创建一个流对象
*
* @author landon
* @since 1.8.0_25
*/
public class StreamUtilExample {
private List<String> stringList = new ArrayList<>();
public StreamUtilExample() {
init();
}
private void init() {
initStringList();
}
/**
* 初始化字符串列表
*/
private void initStringList() {
stringList.add("zzz1");
stringList.add("aaa2");
stringList.add("bbb2");
stringList.add("fff1");
stringList.add("fff2");
stringList.add("aaa1");
stringList.add("bbb1");
stringList.add("zzz2");
}
/**
* Filter接受一个predicate接口类型的变量,并将所有流对象中的元素进行过滤。该操作是一个中间操作,
* 因此它允许我们在返回结果的基础上再进行其他的流操作
* (forEach)。ForEach接受一个function接口类型的变量,用来执行对每一个元素的操作
* 。ForEach是一个中止操作。它不返回流,所以我们不能再调用其他的流操作
*/
public void useStreamFilter() {
// stream()方法是Collection接口的一个默认方法
// Stream<T> filter(Predicate<? super T>
// predicate);filter方法参数是一个Predicate函数式接口并继续返回Stream接口
// void forEach(Consumer<? super T> action);foreach方法参数是一个Consumer函数式接口
// 解释:从字符串序列中过滤出以字符a开头的字符串并迭代打印输出
stringList.stream().filter((s) -> s.startsWith("a")).forEach(System.out::println);
}
/**
* Sorted是一个中间操作,能够返回一个排过序的流对象的视图。流对象中的元素会默认按照自然顺序进行排序,
* 除非你自己指定一个Comparator接口来改变排序规则.
*
* <p>
* 一定要记住,sorted只是创建一个流对象排序的视图,而不会改变原来集合中元素的顺序。原来string集合中的元素顺序是没有改变的
*/
public void useStreamSort() {
// Stream<T> sorted();返回Stream接口
// 另外还有一个 Stream<T> sorted(Comparator<? super T>
// comparator);带Comparator接口的参数
stringList.stream().sorted().filter((s) -> s.startsWith("a")).forEach(System.out::println);
// 输出原始集合元素,sorted只是创建排序视图,不影响原来集合顺序
stringList.stream().forEach(System.out::println);
}
/**
* map是一个对于流对象的中间操作,通过给定的方法,它能够把流对象中的每一个元素对应到另外一个对象上。
* 下面的例子就演示了如何把每个string都转换成大写的string.
* 不但如此,你还可以把每一种对象映射成为其他类型。对于带泛型结果的流对象,具体的类型还要由传递给map的泛型方法来决定。
*/
public void useStreamMap() {
// <R> Stream<R> map(Function<? super T, ? extends R> mapper);
// map方法参数为Function函数式接口(R_String,T_String).
// 解释:将集合元素转为大写(每个元素映射到大写)->降序排序->迭代输出
// 不影响原来集合
stringList.stream().map(String::toUpperCase).sorted((a, b) -> b.compareTo(a)).forEach(System.out::println);
}
/**
* 匹配操作有多种不同的类型,都是用来判断某一种规则是否与流对象相互吻合的。所有的匹配操作都是终结操作,只返回一个boolean类型的结果
*/
public void useStreamMatch() {
// boolean anyMatch(Predicate<? super T> predicate);参数为Predicate函数式接口
// 解释:集合中是否有任一元素匹配以'a'开头
boolean anyStartsWithA = stringList.stream().anyMatch((s) -> s.startsWith("a"));
System.out.println(anyStartsWithA);
// boolean allMatch(Predicate<? super T> predicate);
// 解释:集合中是否所有元素匹配以'a'开头
boolean allStartsWithA = stringList.stream().allMatch((s) -> s.startsWith("a"));
System.out.println(allStartsWithA);
// boolean noneMatch(Predicate<? super T> predicate);
// 解释:集合中是否没有元素匹配以'd'开头
boolean nonStartsWithD = stringList.stream().noneMatch((s) -> s.startsWith("d"));
System.out.println(nonStartsWithD);
}
/**
* Count是一个终结操作,它的作用是返回一个数值,用来标识当前流对象中包含的元素数量
*/
public void useStreamCount() {
// long count();
// 解释:返回集合中以'a'开头元素的数目
long startsWithACount = stringList.stream().filter((s) -> s.startsWith("a")).count();
System.out.println(startsWithACount);
System.out.println(stringList.stream().count());
}
/**
* 该操作是一个终结操作,它能够通过某一个方法,对元素进行削减操作。该操作的结果会放在一个Optional变量里返回。
*/
public void useStreamReduce() {
// Optional<T> reduce(BinaryOperator<T> accumulator);
// @FunctionalInterface public interface BinaryOperator<T> extends
// BiFunction<T,T,T> {
// @FunctionalInterface public interface BiFunction<T, U, R> { R apply(T
// t, U u);
Optional<String> reduced = stringList.stream().sorted().reduce((s1, s2) -> s1 + "#" + s2);
// 解释:集合元素排序后->reduce(削减 )->将元素以#连接->生成Optional对象(其get方法返回#拼接后的值)
reduced.ifPresent(System.out::println);
System.out.println(reduced.get());
}
/**
* 使用并行流
* <p>
* 流操作可以是顺序的,也可以是并行的。顺序操作通过单线程执行,而并行操作则通过多线程执行. 可使用并行流进行操作来提高运行效率
*/
public void useParallelStreams() {
// 初始化一个字符串集合
int max = 1000000;
List<String> values = new ArrayList<>();
for (int i = 0; i < max; i++) {
UUID uuid = UUID.randomUUID();
values.add(uuid.toString());
}
// 使用顺序流排序
long sequenceT0 = System.nanoTime();
values.stream().sorted();
long sequenceT1 = System.nanoTime();
// 输出:sequential sort took: 51921 ms.
System.out.format("sequential sort took: %d ms.", sequenceT1 - sequenceT0).println();
// 使用并行流排序
long parallelT0 = System.nanoTime();
// default Stream<E> parallelStream() {
// parallelStream为Collection接口的一个默认方法
values.parallelStream().sorted();
long parallelT1 = System.nanoTime();
// 输出:parallel sort took: 21432 ms.
System.out.format("parallel sort took: %d ms.", parallelT1 - parallelT0).println();
// 从输出可以看出:并行排序快了一倍多
}
public static void main(String[] args) {
StreamUtilExample example = new StreamUtilExample();
example.useStreamFilter();
example.useStreamMap();
example.useStreamMatch();
example.useStreamCount();
example.useStreamReduce();
example.useParallelStreams();
}
}
2.Map接口中新的默认方法示例package com.mavsplus.java8.turtorial.streams;
import java.util.HashMap;
import java.util.Map;
/**
* map是不支持流操作的。而更新后的map现在则支持多种实用的新方法,来完成常规的任务
*
* @author landon
* @since 1.8.0_25
*/
public class MapUtilExample {
private Map<Integer, String> map = new HashMap<>();
public MapUtilExample() {
initPut();
}
/**
* 使用更新后的map进行putIfAbsent
*/
private void initPut() {
// putIfAbsent为Map接口中新增的一个默认方法
/**
* <code>
default V putIfAbsent(K key, V value) {
V v = get(key);
if (v == null) {
v = put(key, value);
}
return v;
}
</code>
*/
// 如果map中有对应K映射的V且不为null则直接返回;否则执行put
for (int i = 0; i < 10; i++) {
map.putIfAbsent(i, "value" + i);
}
// 放入了一个null元素
map.putIfAbsent(10, null);
// 替换null
map.putIfAbsent(10, "value10");
// 因为K-10有映射且不为null则忽略V-value11
map.putIfAbsent(10, "value11");
}
/**
* 使用更新后的map进行for-each
*/
public void forEach() {
// default void forEach(BiConsumer<? super K, ? super V> action)
// Map接口中新增的默认方法
// @FunctionalInterface public interface BiConsumer<T, U> {void accept(T
// t, U u);
map.forEach((id, val) -> System.out.println(val));
}
/**
* 使用更新后的map进行compute——->重映射
*/
public void compute() {
// default V computeIfPresent(K key,BiFunction<? super K, ? super V, ?
// extends V> remappingFunction)
// Map接口中新增的默认方法
// @FunctionalInterface public interface BiFunction<T, U, R> {R apply(T
// t, U u);
// --> V apply(K k,V v)
// ifPresent会判断key对应的v是否是null,不会null才会compute->否则直接返回null
// 解释:将K-3映射的value->compute->"value3" + 3 = value33
map.computeIfPresent(3, (key, val) -> val + key);
System.out.println(map.get(3));
// 解释:这里将K-3映射的value进行重映射->null
// 该方法源码实现会判断如果newValue为null则会执行remove(key)方法,将移除key
map.computeIfPresent(9, (key, val) -> null);
// 从上面的解释中得到,输出为false,因为已经被移除了
System.out.println(map.containsKey(9));
// default V computeIfAbsent(K key,Function<? super K, ? extends V>
// mappingFunction)
// 解释:代码实现上看,如果K-15映射的值为null,即不存在或者为null,则执行映射->所以本例来看(没有15的key),该方法相当于插入一个新值
map.computeIfAbsent(15, (key) -> "val" + key);
System.out.println(map.containsKey(15));
// 因为K-4映射的值存在,所以直接返回,即不会重映射,所以输出依然会是value4
map.computeIfAbsent(4, key -> "bam");
System.out.println(map.get(4));
}
/**
* 使用更新后的map进行remove
*/
public void remove() {
// default boolean remove(Object key, Object value) {
// Map接口中新增的默认方法
// 其源码实现是
// 1.当前key对应的值和传入的参数不一致时则直接返回,移除失败(用的是Objects.equals方法)
// 2.当前key对应的值为null且!containsKey(key),移除失败(即当前map中根本不存在这个key_【因为有一种情况是有这个key但是key映射的值为null】)
// ->否则执行移除
/**
* <code>
* default boolean remove(Object key, Object value) {
Object curValue = get(key);
if (!Objects.equals(curValue, value) ||
(curValue == null && !containsKey(key))) {
return false;
}
remove(key);
return true;
}
* </code>
*/
map.remove(3, "value4");
System.out.println(map.get(3));
// key和v匹配时则移除成功
map.remove(3, "value33");
System.out.println(map.get(3));
}
/**
* getOrDefault是一个有用的方法
*/
public void getOrDefault() {
// default V getOrDefault(Object key, V defaultValue) {
// Map接口中新增的默认方法
/**
* <code>
* default V getOrDefault(Object key, V defaultValue) {
V v;
return (((v = get(key)) != null) || containsKey(key))
? v
: defaultValue;
}
* </code>
*/
// 源码实现:
// 1.如果对应的key有value且不为null,则直接返回value;如果为null且包含该key,则返回null(总之即必须要有该key)
// 2.如果没有该key,则用默认值
String retV = map.getOrDefault("20", "not found");
System.out.println(retV);
// 加入一个null
map.putIfAbsent(30, null);
// 输出null
System.out.println(map.get(30));
// 输出null
System.out.println(map.getOrDefault(30, "value30"));
}
/**
* 合并
*/
public void merge() {
// default V merge(K key, V value,BiFunction<? super V, ? super V, ?
// extends V> remappingFunction)
// @FunctionalInterface public interface BiFunction<T, U, R> { R apply(T
// t, U u);
// merge为Map接口新增的默认方法
/**
* <code>
default V merge(K key, V value,
BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
Objects.requireNonNull(remappingFunction);
Objects.requireNonNull(value);
V oldValue = get(key);
V newValue = (oldValue == null) ? value :
remappingFunction.apply(oldValue, value);
if(newValue == null) {
remove(key);
} else {
put(key, newValue);
}
return newValue;
}
* </code>
*/
// 其源码实现:
// 1.分别检查参数remappingFunction和value是否为null(调用Objects.requireNonNull).->为null则抛出空指针
// 2.判断oldValue是否为null,如果为null则将传入的newValue赋值;如果oldValue不为null则执行merge函数
// --->apply(oldValue, value)
// 3.判断newValue->如果为null则执行移除;否则执行插入
// k-9的值在执行compute方法的时候已经被移除了->所以oldValue为null->所以newValue为传入的参数value9->执行插入
// 所以这里输出为value9
String newValue1 = map.merge(9, "value9", (value, newValue) -> value.concat(newValue));
System.out.println(newValue1);
System.out.println(map.get(9));
// k-9的值现在已经为value9了,所以执行merge函数->"value9".concat("concat")->newValue为"value9concat"
// 执行插入,所以这里输出为value9concat
String newValue2 = map.merge(9, "concat", (value, newValue) -> value.concat(newValue));
System.out.println(newValue2);
System.out.println(map.get(9));
// k-8值存在为value8->执行merge函数->直接返回"NewMerge8"->newValue为"NewMerge8"
// 执行put->所以这里输出"NewMerge8"
map.merge(8, "merge", (value, newValue) -> "NewMerge8");
System.out.println(map.get(8));
}
public static void main(String[] args) {
MapUtilExample example = new MapUtilExample();
example.forEach();
example.compute();
example.remove();
example.getOrDefault();
example.merge();
}
}
posted on 2014-11-18 20:31
landon 阅读(24519)
评论(1) 编辑 收藏 所属分类:
Program