无为

无为则可为,无为则至深!

  BlogJava :: 首页 :: 联系 :: 聚合  :: 管理
  190 Posts :: 291 Stories :: 258 Comments :: 0 Trackbacks
  • Survey & Tutorial Papers

    • Data Clustering: A review ,
      Anil K. Jain and M. N. Murthy and P. J. Flynn. Pattern Recognition and Image Processing Lab, Department of Computer Science And Engineering, Michigan State University.
      [PDF]
    • Tutorial: Clustering Techniques for Large Data Sets: From the Past to the Future. ,
      A. Hinneburg and D. Keim. Tutorial Notes for ACM SIGKDD int. conf. on Knowledge Discovery and Data Mining, 1999",
      [PDF]
    • Clustering Algorithms for Spatial Databases: A Survey ,
      Erica Kolatch, Dept. of Computer Science, University of Maryland, College Park.
      [PDF]
  • BIRCH

    • BIRCH: An Efficient Data Clustering Method for Very Large Databases ,
      T. Zhang, R. Ramakrishnan and M. Livny, In Proc. of ACM SIGMOD International Conferance on Management of Data, 1996.
      [PDF]
    • BIRCH: A New Data Clustering Algorithm and Its Applications,
      T. Zhang, R. Ramakrishnan and M. Livny, Kluwer Academic Publishers, Boston.
      [PDF][Source Code] [local copy of the code]
  • CURE

    • CURE: An efficient algorithm for clustering large databases , ,
      S. Guha, R. Rastogi and K. Shim, n Proceedings of ACM SIGMOD International Conference on Management of Data, pages 73--84, New York, 1998. ACM.
      [ Short version(PDF)] [ long version (PS)] [Source Code (provided by Eui-Hong (Sam) Han, Dept. of Comp. Science & Eng. Univ. of Minnesota; han@cs.umn.edu)]
  • CLARANS

    • Efficient and Effective Clustering Methods for Spatial Data Mining, ,
      R. T. Ng and J. Han, 20th International Conference on Very Large Data Bases, September 12--15, 1994, Santiago, Chile proceeding.
      [ PDF]
  • DBSCAN

    • A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, ,
      Ester M., Kriegel H.-P., Sander J., Xu X., Proc. 2nd Int. Conf.on Knowledge Discovery and Data Mining (KDD′96), Portland, OR, 1996, pp. 226-231
      [ PDF]
  • ScaleKM and ScaleEM

    • Scaling Clustering Algorithms to Large Databases ,
      P. S. Bradley and Usama M. Fayyad and Cory Reina, Knowledge Discovery and Data Mining, 1998.
      [PDF]
    • Scaling EM (Expectation-Maximization) Clustering to Large Databases,
      P. S. Bradley and Usama Fayyad and Cory Reina, Microsoft Research, Tech. Report MSR-TR-98-35.
      [PDF]
  • MAFIA

    • MAFIA: Efficient and scalable subspace clustering for very large data sets
      H. Nagesh S. Goil and A. Choudhary, Technical Report 9906-010, Northwestern University, June 1999.
      [PDF]
  • CHAMELEON

    • CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling.
      George Karypis and Eui-Hong (Sam) Han and Vipin Kumar. Computer Vol. 32, No. 8, 1999.
      [PDF]
  • ROCK

    • ROCK: a robust clustering algorithm for categorical attributes .
      S. Guha, R. Rastogi and K. Shim. In Proceedings of International Conference on Data Engineering, 1999.
      [PDF]
  • WaveCluster

    • WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases.
      Gholamhosein Sheikholeslami and Surojit Chatterjee and Aidong Zhang. Proc. 24th Int. Conf. Very Large Data Bases.
      [PDF]
  • STING

    • STING : A Statistical Information Grid Approach to Spatial Data Mining.
      Wei Wang and Jiong Yang and Richard R. Muntz. The {VLDB} Journal, 1997.
      [PDF]
    • STING+: An Approach to Active Spatial Data Mining.
      Wei Wang and Jiong Yang and Richard R. Muntz. ICDE, 1999.
      [PDF]
  • DENCLUE

    • An Efficient Approach to Clustering in Multimedia Databases with Noise.
      Hinneburg A., Keim D.A. Proc. 4rd Int. Conf. on Knowledge Discovery and Data Mining, New York, AAAI Press, 1998.
      [PDF]
  • OPTICS

    • OPTICS: Ordering Points To Identify the Clustering Structure, .
      nkerst M., Breunig M. M., Kriegel H.-P., Sander J. Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD′99), Philadelphia, PA, 1999, pp. 49-60.
      [PDF]
  • ENCLUS

   Source Code:(Top)
  - BIRCH
  - CLIQUE Link Inactive
  Demo:(Top)
  - Robust & Competitive Clustering Demo 1
  -
Clustering Demo 2 Currently Down
  



凡是有该标志的文章,都是该blog博主Caoer(草儿)原创,凡是索引、收藏
、转载请注明来处和原文作者。非常感谢。

posted on 2006-06-24 13:51 草儿 阅读(2136) 评论(6)  编辑  收藏 所属分类: BI and DM

Feedback

# re: 聚类论文资源和源代码[未登录] 2008-12-20 14:10 yf
你好,我想要“聚类论文资源和源代码”这部分内容,但是好像下载不了,麻烦你给我发一下行么?谢谢!sz-newsystem@163.com  回复  更多评论
  

# re: 聚类论文资源和源代码 2010-09-14 16:13 laiyue147
能给我发一份“聚类论文资源和源代码”吗?谢谢!
好像下载不了。
laiyue147@163.com  回复  更多评论
  

# re: 聚类论文资源和源代码 2011-03-29 09:23 liyuhan
您好!“聚类论文资源和源代码”我也下不了,麻烦能发给我一份吗?十分感谢!601220397@qq.com  回复  更多评论
  

# re: 聚类论文资源和源代码 2011-04-11 17:08 qiutian
可以给我一份吗?做毕业设计,急啊!非常感谢!qiutian520yue@163.com  回复  更多评论
  

# re: 聚类论文资源和源代码[未登录] 2011-04-11 21:45 CC
继续求助于你的源代码,望能发一份源代码到我邮箱335682242@qq.com,不胜感激啊  回复  更多评论
  

# re: 聚类论文资源和源代码 2011-11-19 13:17 kingkejv
能给我一份吗,搞毕业设计用到,但没编出来
谢谢啦!
我的邮箱kingkejv@163.com  回复  更多评论
  


只有注册用户登录后才能发表评论。


网站导航:
博客园   IT新闻   Chat2DB   C++博客   博问