| 
			
	
	
		
				
						
								
										
										
										
												Survey & Tutorial Papers
										
												
														
																Data Clustering: A review , Anil K. Jain and M. N. Murthy and P. J. Flynn. Pattern Recognition and Image Processing Lab, Department of Computer Science And Engineering, Michigan State University.
 [PDF]
 
														
																Tutorial: Clustering Techniques for Large Data Sets: From the Past to the Future. , A. Hinneburg and D. Keim. Tutorial Notes for ACM SIGKDD int. conf. on Knowledge Discovery and Data Mining, 1999",
 [PDF]
 
														
																Clustering Algorithms for Spatial Databases: A Survey , Erica Kolatch, Dept. of Computer Science, University of Maryland, College Park.
 [PDF]
 
										
										
										
												BIRCH
										
												
														
																BIRCH: An Efficient Data Clustering Method for Very Large Databases , T. Zhang, R. Ramakrishnan and M. Livny, In Proc. of ACM SIGMOD International Conferance on Management of Data, 1996.
 [PDF]
 
														
																BIRCH: A New Data Clustering Algorithm and Its Applications, T. Zhang, R. Ramakrishnan and M. Livny, Kluwer Academic Publishers, Boston.
 [PDF][Source Code] [local copy of the code]
										
										
										
												CURE
										
												
														
																CURE: An efficient algorithm for clustering large databases , , S. Guha, R. Rastogi and K. Shim, n Proceedings of ACM SIGMOD International Conference on Management of Data, pages 73--84, New York, 1998. ACM.
 [ Short version(PDF)] [ long version (PS)] [Source Code (provided by Eui-Hong (Sam) Han, Dept. of Comp. Science & Eng. Univ. of Minnesota; han@cs.umn.edu)]
 
										
										
										
												CLARANS
										
												
														
																Efficient and Effective Clustering Methods for Spatial Data Mining, , R. T. Ng and J. Han, 20th International Conference on Very Large Data Bases, September 12--15, 1994, Santiago, Chile proceeding.
 [ PDF]
 
										
										
										
												DBSCAN
										
												
														
																A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, , Ester M., Kriegel H.-P., Sander J., Xu X., Proc. 2nd Int. Conf.on Knowledge Discovery and Data Mining (KDD′96), Portland, OR, 1996, pp. 226-231
 [ PDF]
 
										
										
										
												ScaleKM and ScaleEM
										
												
														
																Scaling Clustering Algorithms to Large Databases , P. S. Bradley and Usama M. Fayyad and Cory Reina, Knowledge Discovery and Data Mining, 1998.
 [PDF]
 
														
																Scaling EM (Expectation-Maximization) Clustering to Large Databases, P. S. Bradley and Usama Fayyad and Cory Reina, Microsoft Research, Tech. Report MSR-TR-98-35.
 [PDF]
										
										
										
												MAFIA 
										
												
														MAFIA: Efficient and scalable subspace clustering for very large data sets H. Nagesh S. Goil and A. Choudhary, Technical Report 9906-010, Northwestern University, June 1999.
 [PDF]
										
										
										
												CHAMELEON 
										
												
														CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling. George Karypis and Eui-Hong (Sam) Han and Vipin Kumar. Computer Vol. 32, No. 8, 1999.
 [PDF]
										
										
										
												ROCK 
										
												
														ROCK: a robust clustering algorithm for categorical attributes . S. Guha, R. Rastogi and K. Shim. In Proceedings of International Conference on Data Engineering, 1999.
 [PDF]
										
										
										
												WaveCluster
										
												
														WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases. Gholamhosein Sheikholeslami and Surojit Chatterjee and Aidong Zhang. Proc. 24th Int. Conf. Very Large Data Bases.
 [PDF]
										
										
										
												STING
										
												
														STING : A Statistical Information Grid Approach to Spatial Data Mining. Wei Wang and Jiong Yang and Richard R. Muntz. The {VLDB} Journal, 1997.
 [PDF]
														STING+: An Approach to Active Spatial Data Mining. Wei Wang and Jiong Yang and Richard R. Muntz. ICDE, 1999.
 [PDF]
										
										
										
												DENCLUE
										
												
														An Efficient Approach to Clustering in Multimedia Databases with Noise. Hinneburg A., Keim D.A. Proc. 4rd Int. Conf. on Knowledge Discovery and Data Mining, New York, AAAI Press, 1998.
 [PDF]
										
										
										
												OPTICS
										
												
														OPTICS: Ordering Points To Identify the Clustering Structure, . nkerst M., Breunig M. M., Kriegel H.-P., Sander J. Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD′99), Philadelphia, PA, 1999, pp. 49-60.
 [PDF]
										
										
										
												ENCLUS 
										 
				
						   Source Code:(Top)- BIRCH
 - CLIQUE Link Inactive
 Demo:(Top)
 - Robust & Competitive Clustering Demo 1
 - Clustering Demo 2 Currently Down
 凡是有该标志的文章,都是该blog博主Caoer(草儿)原创,凡是索引、收藏 
、转载请注明来处和原文作者。非常感谢。
	   |