飞艳小屋

程序--人生--哲学___________________欢迎艳儿的加入

BlogJava 首页 新随笔 联系 聚合 管理
  52 Posts :: 175 Stories :: 107 Comments :: 0 Trackbacks

有人可能担心自己既没有学过计算机原理,也没有学过操作系统原理,更不懂汇编语言,对C语言也一知半解,能写操作系统吗?答案是没问题。我将带大家一步一步完成自己的操作系统。当然如果学一学上述内容再好不过。
      开始还是补充一下基本知识:
什么是保护模式


自从1969年推出第一个微处理器以来,Intel处理器就在不断地更新换代,从8086、8088、80286,到80386、80486、奔腾、奔腾Ⅱ、奔腾4等,其体系结构也在不断变化。80386以后,提供了一些新的功能,弥补了8086的一些缺陷。这其中包括内存保护、多任务及使用640KB以上的内存等,并仍然保持和8086家族的兼容性。也就是说80386仍然具备了8086和80286的所有功能,但是在功能上有了很大的增强。早期的处理器是工作在实模式之下的,80286以后引入了保护模式,而在80386以后保护模式又进行了很大的改进。在80386中,保护模式为程序员提供了更好的保护,提供了更多的内存。事实上,保护模式的目的不是为了保护程序,而是要保护程序以外的所有程序(包括操作系统)。

简言之,保护模式是处理器的一种最自然的模式。在这种模式下,处理器的所有指令及体系结构的所有特色都是可用的,并且能够达到最高的性能。

保护模式和实模式


从表面上看,保护模式和实模式并没有太大的区别,二者都使用了内存段、中断和设备驱动来处理硬件,但二者有很多不同之处。我们知道,在实模式中内存被划分成段,每个段的大小为64KB,而这样的段地址可以用16位来表示。内存段的处理是通过和段寄存器相关联的内部机制来处理的,这些段寄存器(CS、DS、SS和ES)的内容形成了物理地址的一部分。具体来说,最终的物理地址是由16位的段地址和16位的段内偏移地址组成的。用公式表示为:

物理地址=左移4位的段地址+偏移地址。

在保护模式下,段是通过一系列被称之为“描述符表”的表所定义的。段寄存器存储的是指向这些表的指针。用于定义内存段的表有两种:全局描述符表(GDT)和局部描述符表(LDT)。GDT是一个段描述符数组,其中包含所有应用程序都可以使用的基本描述符。在实模式中,段长是固定的(为64KB),而在保护模式中,段长是可变的,其最大可达4GB。LDT也是段描述符的一个数组。与GDT不同,LDT是一个段,其中存放的是局部的、不需要全局共享的段描述符。每一个操作系统都必须定义一个GDT,而每一个正在运行的任务都会有一个相应的LDT。每一个描述符的长度是8个字节,格式如图3所示。当段寄存器被加载的时候,段基地址就会从相应的表入口获得。描述符的内容会被存储在一个程序员不可见的影像寄存器(shadow register)之中,以便下一次同一个段可以使用该信息而不用每次都到表中提取。物理地址由16位或者32位的偏移加上影像寄存器中的基址组成。实模式和保护模式的不同可以从图1和图2中很清楚地看出来。

此外,还有一个中断描述符表(IDT)。这些中断描述符会告诉处理器到那里可以找到中断处理程序。和实模式一样,每一个中断都有一个入口,但是这些入口的格式却完全不同。因为在切换到保护模式的过程中没有使用到IDT,所以在此就不多做介绍了。

进入保护模式


80386有4个32位控制寄存器,名字分别为CR0、CR1、CR2和CR3。CR1是保留在未来处理器中使用的,在80386中没有定义。CR0包含系统的控制标志,用于控制处理器的操作模式和状态。CR2和CR3是用于控制分页机制的。在此,我们关注的是CR0寄存器的PE位控制,它负责实模式和保护模式之间的切换。当PE=1时,说明处理器运行于保护模式之下,其采用的段机制和前面所述的相应内容对应。如果PE=0,那么处理器就工作在实模式之下。

切换到保护模式,实际就是把PE位置为1。为了把系统切换到保护模式,还要做一些其它的事情。程序必须要对系统的段寄存器和控制寄存器进行初始化。把PE位置1后,还要执行跳转指令。过程简述如下:

1.创建GDT表;

2.通过置PE位为1进入保护模式;

3.执行跳转以清除在实模式下读取的任何指令。 



首先要明确处理器(也就是CPU)控制着计算机。对PC而言,启动的时候,CPU都处在实模式状态,相当于只是一个Intel 8086处理器。也就是说,即使你现在拥有一个奔腾处理器,它的功能也只能是8086级别。从这一点上来讲,可以使用一些软件把处理器转换到著名的保护模式。只有这样,我们才可以充分利用处理器的强大功能。

编写操作系统开始是对BIOS控制,取出存储在ROM里的程序。BIOS是用来执行POST(Power On Self Test,自检)的。自检是检查计算机的完整性(比如外设是否工作正常、键盘是否连接等)。这一切完成以后,你就会听到PC喇叭发出一声清脆的响声。如果一切正常,BIOS就会选择一个启动设备,并且读取该设备的第一扇区(即启动扇区),然后控制过程就会转移到指定位置。启动设备可能是一个软盘、光盘、硬盘,或者其它所选择的设备。在此我们把软盘作为启动设备。如果我们已经在软盘的启动扇区里写了一些代码,这时它就被执行。因此,我们的目的很明确,就是往软盘的启动扇区写一些程序。

首先使用8086汇编来写一个小程序,然后将其拷贝至软盘的启动扇区。为了实现拷贝,要写一个C程序。最后,使用软盘启动计算机。


需要的工具


● as86:这是一个汇编程序,它负责把写的代码转换成目标文件。

● ld86:这是一个连接器,as86产生的目标代码由它来转换成真正的机器语言。机器语言是8086能够解读的形式。

● GCC:著名的C编程器。因为我们需要写一个C程序将自己的OS转移到软盘中。

● 一张空软盘:它用于存储编写的操作系统,也是启动设备。

● 一台装有Linux的计算机:这台机器可以很旧,386、486都可以。

在大部分标准Linux发行版中都会带有as86和ld86。在我使用的Red Hat 7.3中就包含有这两个工具,并且在默认的情况下,它已经安装在机器里。如果使用的Linux没有这两个工具,可以从网上下载(http://www.cix.co.uk/~mayday/),这两个工具都包含在一个名为bin86的软件包中。此外,有关的文档也可以在网上获得(www.linux.org/docs/ldp/howto/Assembly-HOWTO/as86.html)。


开始工作


使用一个你喜欢的编辑器输入以下内容:

entry start
start:
mov ax,#0xb800
mov es,ax
seg es
mov [0],#0x41
seg es
mov [1],#0x1f
loop1: jmp loop1



这是as86可以读懂的一段汇编程序。第一个句子指明了程序的入口点,声明整个过程从start处开始。第二行指明了start的位置,说明整个程序要从start处开始执行。0xb800是显存的开始地址。#表明其后是一个立即数。执行语句:

mov ax,#oxb800



ax寄存器的值就变为0xb800,这就是显存的地址。下面再将这个值移至es寄存器,es是附加段寄存器。请记住8086有一个分段的体系结构。它的各段寄存器为代码段、数据段、堆栈段和附加段,对应的寄存器名称分别为cs、ds、ss和es。事实上,我们把显存地址送入了附加段,因此,任何送入附加段的东西都会被送到显存中。

要在屏幕上显示字符,就需要向显存中写两个字节。前一个是所要显示字符的ASCⅡ值,第二个字节表示该字符的属性。属性包括字符的前景色、背景色及是否闪烁等等。seg es指明下一个将要执行的指令是指向es段的。所以,我们把值0x41(在ASCⅡ中表示的字符是A)送到显存的第一个字节中。接下来要把字符的属性送到下一个字节当中。在此输入的是0x1f,该属性指的是在蓝色背景下显示白色的字符。因此,如果执行这个程序,就可以在屏幕上得到显示在蓝底上的一个白色的A。接着是一个循环。因为在执行完显示字符的任务后,要么让程序结束,要么使用一个循环使其永远运行下去。把该文件命名为boot.s,然后存盘。

此处显存的概念说得不是很清楚,有必要进一步解释一下。假设屏幕由80列×25行组成,那么第一行就需要160字节,其中一个字节用于表示字符,另外一个字节用于表示字符的属性。如果要在第三行显示某一字符的话,就要跳过显存的第0和1字节(它们是用于显示第1列的),第2和3字节(它们是用于显示第2列的),然后把需要显示字符的ASCⅡ码值入第4字节,把字符的属性写入第5字节。


把程序写至启动扇区


下面写一个C程序,把我的操作系统写入软盘第一扇区。程序内容如下:

#i nclude /* unistd.h 需要这个文件 */
#i nclude /* 包含有read和write函数 */
#i nclude
int main()
{
char boot_buf[512];
int floppy_desc, file_desc;
file_desc = open("./boot", O_RDONLY);
read(file_desc, boot_buf, 510);
close(file_desc);
boot_buf[510] = 0x55;
boot_buf[511] = 0xaa;
floppy_desc = open("/dev/fd0", O_RDWR);
lseek(floppy_desc, 0, SEEK_CUR);
write(floppy_desc, boot_buf, 512);
close(floppy_desc);
}



首先,以只读模式打开boot文件,然后在打开文件时把文件描述符复制到file_desc变量中。从文件中读取510个字符,或者读取直到文件结束。在本例中由于文件很小,所以是读取至文件结束。然后关闭文件。

最后4行代码打开软盘驱动设备(一般来说是/dev/fd0)。使用lseek找到文件开始处,然后从缓冲中向软盘写512个字节。

在read、write、open和lseek的帮助页中,可以看到与函数所有有关的参数及其使用方法。程序中有两行比较难懂:

boot_buf[510] = 0x55;
boot_buf[511] = 0xaa;



该信息是用于BIOS的,如果它识别出该设备是一个可启动的设备,那么在第510和511的位置,该值就应该是0x55和0xaa。程序会把文件boot读至名为boot_buf的缓冲中。它要求改变第510和第511字节,然后把boot_buf写至软盘之上。如果执行代码,软盘上的前512字节就包含了启动代码。最后,把文件存为write.c。


编译运行


使用下面的命令把文件变为可执行文件:

as86 boot.s -o boot.o
ld86 -d boot.o -o boot
cc write.c -o write



首先将boot.s文件编译成目标文件boot.o,然后将该文件连接成最终的boot文件。最后C程序编译成可执行的write文件。

插入一个空白软盘,运行以下程序:

./write



重新启动电脑,进行BIOS的界面设置,并且把软盘设为第一个启动的设备。然后插入软盘,电脑从软盘上启动。

启动完成后,在屏幕上可以看到一个字母A(蓝底白字),启动速度很快,几乎是在瞬间完成。这就意味着系统已经从我们制作的软盘上启动了,并且执行了刚才写入启动扇区的程序。现在,它正处在一个无限循环的状态。所以,如果想进入Linux,必需拿掉软盘,并且重启机器。

至此,这个操作系统就算完成了,虽然它没有实现什么功能,但是它已经可以启动机器了。

作者:伊梅 本文选自:开放系统世界——赛迪网 2002年11月01日

上一期,我讲述了如何在软盘的启动扇区写一些代码,然后再从软盘启动的过程。制作好一个启动扇区,在切换到保护模式之前,我们还应该知道如何使用BIOS中断。BIOS中断是一些由BIOS提供的、为了使操作系统的创建更容易的低级程序。在本文中,我们将学习处理BIOS的中断。


为什么要用BIOS


BIOS会把启动扇区拷贝至RAM中,并且执行这些代码。除此之外,BIOS还要做很多其它的事情。当一个操作系统刚开始启动时,系统中并没有显卡驱动、软盘驱动等任何驱动程序。因此,启动扇区中不可能包含任何一个驱动程序,我们要采取其它的途径。这个时候,BIOS就可以帮助我们了。BIOS中包含有各种可以使用的程序,包括检测安装的设备、控制打印机、计算内存大小等用于各种目的的程序。这些程序就是所说的BIOS中断。


如何调用BIOS中断


在一般的程序设计语言中,函数的调用是一件非常容易的事情。比如在C语言中,如果有一个名为display的程序,它带有两个参数,其中参数noofchar表示显示的字符数,参数attr表示显示字符的属性。那么要调用它,只需给出程序的名称即可。对于中断的调用,我们使用的是汇编语言中的int指令。

比如,在C语言中要显示一些东西时,使用的指令如下所示:

display(nofchar,attr);



而使用BIOS时,要实现相同功能使用的指令如下:

int 0x10




如何传递参数


在调用BIOS中断之前,我们需要先往寄存器中送一些特定的值。假设要使用BIOS的中断13h,该中断的功能是把数据从软盘传送至内存之中。在调用该中断之前,要先指定拷贝数据的段地址,指定驱动器号、磁道号、扇区号,以及要传送的扇区数等等。然后,就要往相应的寄存器送入相应的值。在进行下面的步骤前,读者有必要对这一点有比较明确地认识。

此外,一个比较重要的事实是同一个中断往往可以实现各种不同的功能。中断所实现的确切功能取决于所选择的功能号,功能号一般都存在ah寄存器之中。比如中断13h可以用于读磁盘、写磁盘等功能,如果把3送入ah寄存器中,那么中断选择的功能就是写磁盘;如果把2送入ah寄存器中,选择的功能则是读磁盘等。


我们要做的事情


这次我们的源代码由两个汇编语言程序和一个C程序组成。第一个汇编文件是引导扇区的代码。在引导扇区中,我们写的代码是要把软盘中第二扇区拷贝至内存段的0x500处(地址是0x5000,即偏移地址为0)。这时我们需要使用BIOS的中断13h。这时启动扇区的代码就会把控制权转移至0x500处。在第二个汇编文件中,代码会使用BIOS中断10h在屏幕上显示一个信息。C程序实现的功能则是把可执行的文件1拷贝至启动扇区,把可执行的文件2拷贝至软盘的第二扇区。


启动扇区代码


使用中断13h,启动扇区把软盘第二扇区里的内容加载至内存的0x5000处(段地址为0x500)。下面的代码是用于实现这一目的的代码,将其保存至文件sbect.s中。

LOC1=0x500
entry start
start:
mov ax,#LOC1
mov es,ax
mov bx,#0
mov dl,#0
mov dh,#0
mov ch,#0
mov cl,#2
mov al,#1
mov ah,#2
int 0x13
jmpi 0,#LOC1



上面代码第一行类似于一个宏。接下去的两行则是把值0x500加载至es寄存器中,这是软盘上第二扇区代码将拷贝到的地方(第一扇区是启动扇区)。这时,把段内的偏移设为0。

接下来把驱动器号送入dl寄存器中,其中磁头号送入dl寄存器中,磁道号送入ch寄存器中,扇区号送入cl寄存器中,扇区数送入al寄存器之中。我们想要实现的功能是把扇区2、磁道号为0、驱动器号为0的内容送至段地址0x500处。所有这些参数都和1.44MB的软盘相对应。

把2送入ah寄存器中,是选择了由中断13h提供的相应功能,即实现从软驱转移数据的功能。

最后调用中断13h,并且转至偏移为0的段地址0x500处。


第二个扇区的代码


第二个扇区中的代码如下所示(把这些代码保存至文件sbect2.s之中):

entry start
start:
mov ah,#0x03
xor bh,bh
int 0x10

mov cx,#26
mov bx,#0x0007
mov bp,#mymsg
mov ax,#0x1301
int 0x10

loop1: jmp loop1
mymsg:
.byte 13,10
.ascii “Operating System is Loading......”



上面代码将被加载至段地址为0x500处,并且被执行。在这段代码中,使用了中断10h来获取目前的光标位置,然后显示信息。

从第3行到第5行用于得到目前光标的位置,在此中断10h选用的是功能3。然后,清除了bh寄存器的内容,并把字符串送至ch寄存器中。在bx中,我们送入了页码及显示的属性。此处,我们想要在黑背景上显示白色的字符。然后,把要显示字符的地址送到bp之中,信息由两个字节组成,其值分别为13的10,它们分别对应回车和LF(换行)的ASCⅡ值。接下来是一个由29个字符组成的串;在下面实现的功能是输出字符串然后移动光标;最后是调用中断,然后进入循环。


C程序代码


C程序的源代码如下所示,将其存储为write.c文件。

#i nclude /* unistd.h needs this */
#i nclude /* contains read/write */
#i nclude
int main()
{
char boot_buf[512];
int floppy_desc, file_desc;
file_desc = open(“./bsect”, O_RDONLY);
read(file_desc, boot_buf, 510);
close(file_desc);
boot_buf[510] = 0x55;
boot_buf[511] = 0xaa;
floppy_desc = open(“/dev/fd0”, O_RDWR);
lseek(floppy_desc, 0, SEEK_SET);
write(floppy_desc, boot_buf, 512);
file_desc = open(“./sect2”, O_RDONLY);
read(file_desc, boot_buf, 512);
close(file_desc);
lseek(floppy_desc, 512, SEEK_SET);
write(floppy_desc, boot_buf, 512);
close(floppy_desc);
}



在上一期中,我曾经介绍过如何操作能启动的软盘。现在这一个过程稍微有点不同,首先把由bsect.s编译出来的可执行文件bsect拷贝至软盘的启动扇区。然后再把由sect2.s产生的可执行文件sect2拷贝至软盘的第二个扇区。

把上述文件置于同一目录之下,然后分别对其进行编译,方法如下所示:

as86 bsect.s -o bsect.o
ld86 -d bsect.o -o bsect



对sect2.s文件重复以上的操作,得出可执行文件sect2。编译write.c,插入软盘后执行write文件,命令如下所示:

cc write.c -o write
./write




下一步我们要做的事情


从软盘启动以后,可以看到显示出来的字符串。这是使用了BIOS中断来完成的。下一期要做的事情是在这个操作系统中实现实模式向保护模式的转换。

在上两期中(自己动手写操作系统1,2),我向大家讲述了如何使用Linux提供的开发工具在软盘的启动扇区写一些代码,以及如何调用BIOS的问题。现在,这个操作系统已经越来越接近当年Linus Torvalds的那个具有“历史意义”的Linux内核了。因此,要马上把这个系统切换到保护模式之下。


什么是保护模式


自从1969年推出第一个微处理器以来,Intel处理器就在不断地更新换代,从8086、8088、80286,到80386、80486、奔腾、奔腾Ⅱ、奔腾4等,其体系结构也在不断变化。80386以后,提供了一些新的功能,弥补了8086的一些缺陷。这其中包括内存保护、多任务及使用640KB以上的内存等,并仍然保持和8086家族的兼容性。也就是说80386仍然具备了8086和80286的所有功能,但是在功能上有了很大的增强。早期的处理器是工作在实模式之下的,80286以后引入了保护模式,而在80386以后保护模式又进行了很大的改进。在80386中,保护模式为程序员提供了更好的保护,提供了更多的内存。事实上,保护模式的目的不是为了保护程序,而是要保护程序以外的所有程序(包括操作系统)。

简言之,保护模式是处理器的一种最自然的模式。在这种模式下,处理器的所有指令及体系结构的所有特色都是可用的,并且能够达到最高的性能。


保护模式和实模式


从表面上看,保护模式和实模式并没有太大的区别,二者都使用了内存段、中断和设备驱动来处理硬件,但二者有很多不同之处。我们知道,在实模式中内存被划分成段,每个段的大小为64KB,而这样的段地址可以用16位来表示。内存段的处理是通过和段寄存器相关联的内部机制来处理的,这些段寄存器(CS、DS、SS和ES)的内容形成了物理地址的一部分。具体来说,最终的物理地址是由16位的段地址和16位的段内偏移地址组成的。用公式表示为:

物理地址=左移4位的段地址+偏移地址。

在保护模式下,段是通过一系列被称之为“描述符表”的表所定义的。段寄存器存储的是指向这些表的指针。用于定义内存段的表有两种:全局描述符表(GDT)和局部描述符表(LDT)。GDT是一个段描述符数组,其中包含所有应用程序都可以使用的基本描述符。在实模式中,段长是固定的(为64KB),而在保护模式中,段长是可变的,其最大可达4GB。LDT也是段描述符的一个数组。与GDT不同,LDT是一个段,其中存放的是局部的、不需要全局共享的段描述符。每一个操作系统都必须定义一个GDT,而每一个正在运行的任务都会有一个相应的LDT。每一个描述符的长度是8个字节,格式如图3所示。当段寄存器被加载的时候,段基地址就会从相应的表入口获得。描述符的内容会被存储在一个程序员不可见的影像寄存器(shadow register)之中,以便下一次同一个段可以使用该信息而不用每次都到表中提取。物理地址由16位或者32位的偏移加上影像寄存器中的基址组成。实模式和保护模式的不同可以从图1和图2中很清楚地看出来。

此外,还有一个中断描述符表(IDT)。这些中断描述符会告诉处理器到那里可以找到中断处理程序。和实模式一样,每一个中断都有一个入口,但是这些入口的格式却完全不同。因为在切换到保护模式的过程中没有使用到IDT,所以在此就不多做介绍了。


进入保护模式


80386有4个32位控制寄存器,名字分别为CR0、CR1、CR2和CR3。CR1是保留在未来处理器中使用的,在80386中没有定义。CR0包含系统的控制标志,用于控制处理器的操作模式和状态。CR2和CR3是用于控制分页机制的。在此,我们关注的是CR0寄存器的PE位控制,它负责实模式和保护模式之间的切换。当PE=1时,说明处理器运行于保护模式之下,其采用的段机制和前面所述的相应内容对应。如果PE=0,那么处理器就工作在实模式之下。

切换到保护模式,实际就是把PE位置为1。为了把系统切换到保护模式,还要做一些其它的事情。程序必须要对系统的段寄存器和控制寄存器进行初始化。把PE位置1后,还要执行跳转指令。过程简述如下:

1.创建GDT表;

2.通过置PE位为1进入保护模式;

3.执行跳转以清除在实模式下读取的任何指令。

下面使用代码来实现这个切换过程。


需要的东西


◆ 一张空白软盘

◆ NASM编译器

下面是整个程序的源代码:

org 0x07c00; 起始地址是0000:7c00
jmp short begin_boot ; 跳过其它的数据,跳转到引导程序的开始处
bootmesg db "Our OS boot sector loading ......"
pm_mesg db "Switching to protected mode ...."
dw 512 ; 每一扇区的字节数
db 1 ; 每一簇的扇区数
dw 1 ; 保留的扇区号
db 2
dw 0x00e0
dw 0x0b40
db 0x0f0
dw 9
dw 18
dw 2 ; 读写扇区号
dw 0 ; 隐藏扇区号
print_mesg :
mov ah,0x13 ; 使用中断10h的功能13,在屏幕上写一个字符串
mov al,0x00 ; 决定调用函数后光标所处的位置
mov bx,0x0007 ; 设置显示属性
mov cx,0x20 ; 在此字符串长度为32
mov dx,0x0000 ; 光标的起始行和列
int 0x10 ; 调用BIOS的中断10h
ret ; 返回调用程序
get_key :
mov ah,0x00
int 0x16 ; Get_key使用中断16h的功能0,读取下一个字符
ret
clrscr :
mov ax,0x0600 ; 使用中断10h的功能6,实现卷屏,如果al=0则清屏
mov cx,0x0000 ; 清屏
mov dx,0x174f ; 卷屏至23,79
mov bh,0 ; 使用颜色0来填充
int 0x10 ; 调用10h中断
ret
begin_boot :
call clrscr ; 先清屏
mov bp,bootmesg ; 提供串地址
call print_mesg ; 输出信息
call get_key ; 等待用户按下任一键
bits 16
call clrscr ; 清屏
mov ax,0xb800 ; 使gs指向显示内存
mov gs,ax ; 在实模式下显示一个棕色的A
mov word [gs:0],0x641 ; 显示
call get_key ; 调用Get_key等待用户按下任一键
mov bp,pm_mesg ; 设置串指针
call print_mesg ; 调用print_mesg子程序
call get_key ; 等待按键
call clrscr ; 清屏
cli ; 关中断
lgdt[gdtr] ; 加载GDT
mov eax,cr0
or al,0x01 ; 设置保护模式位
mov cr0,eax ; 将更改后的字送至控制寄存器中
jmp codesel:go_pm
bits 32
go_pm :
mov ax,datasel
mov ds,ax ; 初始化ds和es,使其指向数据段
mov es,ax
mov ax,videosel ; 初始化gs,使其指向显示内存
mov gs,ax
mov word [gs:0],0x741 ; 在保护模式下显示一个白色的字符A
spin : jmp spin ; 循环
bits 16
gdtr :
dw gdt_end-gdt-1 ; gdt的长度
dd gdt ; gdt的物理地址
gdt
nullsel equ $-gdt ; $指向当前位置,所以nullsel = 0h
gdt0 ; 空描述符
dd 0
dd 0 ; 所有的段描述符都是64位的
codesel equ $-gdt ; 这是8h也就是gdt的第二个描述符
code_gdt
dw 0x0ffff ; 段描述符的界限是4Gb
dw 0x0000
db 0x00
db 0x09a
db 0x0cf
db 0x00
datasel equ $-gdt
data_gdt
dw 0x0ffff
dw 0x0000
db 0x00
db 0x092
db 0x0cf
db 0x00
videosel equ $-gdt
dw 3999
dw 0x8000 ; 基址是0xb8000
db 0x0b
db 0x92
db 0x00
db 0x00
gdt_end
times 510-($-$$) db 0
dw 0x0aa55



把上面的代码存在一个名为abc.asm的文件之中,使用命令nasm abc.asm,将得出一个名为abc的文件。然后插入软盘,输入命令:dd if=abc of=/dev/fd0。该命令将把文件abc写入到软盘的第一扇区之中。然后重新启动系统,就会看到如下的信息:

*Our os booting................
* A (棕色)
* Switching to protected mode....
* A (白色)




对代码的解释


上面给出了所有的代码,下面我对上述代码做一些解释。

◆ 使用的函数

下面是代码中一些函数的说明:

print_mesg 该子程序使用了BIOS中断10h的功能13h,即向屏幕写一字符串。属性控制是通过向一些寄存器中送入不同的值来实现的。中断10h是用于各种字符串操作,我们把子功能号13h送到ah中,用于指明要打印一个字符串。al寄存器中的0说明了光标返回的起始位置,0表示调用函数后光标返回到下一行的行首。如果al为1则表示光标位于最后一个字符处。

显存被分成了几页,在同一时刻只能显示其中的一页。bh指明的是页号;bl则指明要显示字符的颜色;cx指明要显示字符串的长度;dx指明光标的位置(即起始的行和列)。所有相关寄存器初始化完成以后,就可以调用BIOS中断10h了。

get_key 使用中断16h的子功能00h,从屏幕得到下一个字符。

clrscr 该函数使用了中断10h的另外一个子功能06h,用于输出开始前清屏。初始化时给al中送入0。寄存器cx和dx指明要清屏的屏幕范围,在本例中是整个屏幕。寄存器bh指明屏幕填充的颜色,在本例中是黑色。

◆ 其它内容

程序一开始是一条短跳转指令,跳到begin_boot处。在实模式下,在此打印一个棕色的“A”,并且设置一个GDT。切换到保护模式,并且打印一个白色的“A”。这两种模式使用的都是自己的寻址方法。

在实模式下,使用段寄存器gs指示显存位置,我们使用的是CGA显卡(默认基址是0xb8000)。在代码中是不是漏了一个0呢?没有,因为实模式下会提供一个附加的0。这种方式也被80386继承下来了。A的ASCⅡ是0x41,0x06指明了需要一个棕色的字符。该显示会一直持续直至按下任意键。下面要在屏幕上显示一句话,告诉使用者下面马上要进入保护模式了。

启动到保护模式,在进行切换时不希望此时有中断的影响,故要关闭所有的中断(使用cli来实现)。然后对GDT初始化。在整个切换过程中,对4个描述符进行了初始化。这些描述符对代码段(code_gdt)、数据和堆栈段(data_gdt),以及为了访问显存而对显示段进行初始化。此外,还会对一个空描述符进行初始化。

GDT的基址要加载至GDTR系统寄存器之中。gdtr段的第一个字加载的是GDT的大小,在下一个双字中则加载的是基址。然后,lgdt指令把把gdt段加载至GDTR寄存器中。现在已经做好了切换到保护模式前的所有准备。最后一件事情就是把CR0寄存器的PE位置1。不过,即使这样还没有处于保护模式状态之下。

设置了PE位以后,还需要通过执行JMP指令来清除处理器指令预取队列。在80386中,使用指令前总是先将其从内存中取出,并且进行解码和寻址。然而,当进入保护模式以后,预取指令信息(它还处于实地址模式)就无效了。使用JMP指令的目的就是强迫处理器放弃无效的信息。

现在,已经在保护模式下了。那么,如何检测是在保护模式状态之下呢?让我们来看一看屏幕上这个白色的字母A。在这里,使用了数据段选择符(datase1)对数据段和附加段进行了初始化,使用显示段选择符(videose1)对gs进行了初始化。告示的字符“A”其ASCⅡ值和属性位于[gs:0000]处,也就是b8000:0000处。循环语句使得该字符一直在屏幕上显示,直至重新启动系统。


下一步要做的事


现在,这个操作系统已经工作在保护模式下了,但是实际上它并不实现什么具体的功能。你可以在这个基础上为它增加各种操作系统所具有的功能。我们自己动手写操作系统到此也就告一段落。

任何技术,只要掌握了方法则都能举一反三,“师傅领进门,修行在个人”。天极网上关于系统优化的文章相当多,但这次讲的内容和其它优化文章比起来,还是有较大的不同。各位如果在阅读下面的内容时,遇到技术疑难,都可以在天极网的操作系统栏目的相关文章中寻找到答案——学会查询资料,也是提高的必要技巧之一呢。

  一个操作系统,必定是建立在硬件基础上的。而硬件,则可大致分为CPU、主板、内存、外存几个部分。关于CPU超频、内存在BIOS中的设置,开启硬盘的DMA66支持等等的介绍已经相当多,在此我就不赘述了。

  一个操作系统的使用,依次会涉及到硬盘引导、操作系统引导、载入基本操作系统、定义临时目录、定义虚拟内存盘、载入系统服务、载入自定义服务、定义GUI这几个步骤,这是不管Windows、Linux还是Freebsd等操作系统都是如此。也就是说,我们如果能尽量优化上面每个步骤,则就能把系统的性能提升起来。接下来,就让我们一起把每个步骤做到最优。

  1、硬盘引导

  从硬盘的0磁道开始的第一个扇区处读取信息,以载入操作系统引导程序,在这一步上,由于系统能读取的只是一个扇区的数据资料,只有512Kb,因此不能直接将操作系统的引导程序放入其中,而只能读入一个很小巧的程序,再由那个程序来引导操作系统,以Windows为例,在这一步被读入的是IO.SYS和MSDOS.SYS(安装了Win98后有这个)。由于一般来说这个程序都是由各个基础操作系统所默认的,因此一般没有办法进行自定义优化。不过值得一提的是如果使用的是Windows98系统,那么通过定制MSDOS.SYS文件,可以在速度上达到一定的提高,让我们打开瞧瞧:

  [Paths]

  WinDir=C:\Windows;Windows所在的目录

  WinBootDir=C:\Windows ;引导目录

  HostWinBootDrv=C ;引导盘(建议这三个别改动)

  [Options]

  BootMulti=1;是否按f8出菜单,以及是否f4/f2快捷功能菜单有效,值得注意,美萍等管理软件之所以能屏蔽启机时候按f8/f4/f2无效果就是在这里动的手脚

  BootGUI=1;是否图形引导

  DoubleBuffer=1;双倍缓冲,建议设置为1

  AutoScan=1;是否每次启机检查硬盘,这对非法关机后修复磁盘很有帮助,不过如果对自己的Win98很有信心,不妨设置成0

  WinVer=4.10.2222;Windows的版本号

  BootWin=1;以Windows方式引导

  DrvSpace=1;(这个选项功能不明)

  DblSpace=1;这个选项功能不明)

  LOGO=1;是否显示开机画面,事实上Windows的启机画面载入大概会花费1秒左右的时间,既然我们想优化,那么就设置成0吧

  BootDelay=0;引导延迟,设置成0最快

  DisableLog=0;不记录引导时候的log,如果追求速度,可以设置成1

  2、操作系统引导

  Windows2000/XP的Boot、Linux和Freebsd的LILO、Grub都是非常出色的操作系统引导程序。如果想优化,就把自己最常使用的操作系统设置为默认项目,并将默认的启动时间修改为1秒。以Windows2k/xp为例,可以用记事本等文字编辑工具打开系统盘根目录下的boot.ini文件(注意,这个文件本身是系统+隐藏属性),其中有一行为timeout=xx,其中这里的xx,就是系统在引导系统时候的等待时间。为了达到减少时间的目的,我们可以写成timeout=1,注意别写timeout=0,这表示无限等待,直到用户手工选定了为止。同样的,在grub中有一个menu.lst文件,其中的timeout参数的值与上面提到的Windows系统中boot.ini的timeout参数作用、设置方法上完全一样(这也是天缘提倡地学好一个操作系统贵在了解其原理和工作流程,自然就会一通百通的道理。)

  3、载入基本操作系统

  这一部分中,操作系统将自身的程序、连接文件载入,由于载入的是基本文件,在Windows中就是Windows的内核,而在UNIX中,则可以把这步理解为内核的载入。由于Windows的内核是保密的,因此没有办法擅自修改,而在UNIX中,则可以利用重新生成内核的命令,尝试去掉自己不需要的驱动、设备支持和功能来缩减内核的功能并减少启动时间。这也就是为什么人们很看好Linux在嵌入式行业发展的原因——由于内核完全可以定制,所以可以只保留需要的功能,整个内核可以做得非常小巧。Ok,回过来,因为内核程序速度非常快,所需要的时间本身就很少,而关于定制Linux的内核,可以参考天极网的相关文章。各位朋友切记一点:“由于操作系统所在的分区本身就时常进行读写操作,因此最好为操作系统单独划分一个分区,而把临时目录、暂存盘、文件、游戏、备份等放到其他分区去。”这一点是我们进行下面的优化步骤的大前提,以下我们的几步操作,都是以此为大前提来进行的。

  4、定义临时目录

  由于操作系统在执行一些烦琐的运算、解压缩文件的时候,都是先将文件临时放在某个目录下,在任务执行完后再删除。Windows下默认是放在操作系统下的temp目录中,UNIX下默认是放在/tmp中。如果我们能想办法提高其读写速度,则就能在这步中达到优化的效果。由于硬盘的物理形态因素,导致硬盘在内区读写速度会比外区更快一些,因此考虑将临时目录放在靠近磁盘内区物理位置的地方。在Windows、UNIX等大多数操作系统情况下,都是越分在前面的分区越靠近内区,越分在后面的分区越靠近外区。UNIX下可在划分了/boot后,马上划分/tmp分区;在Windows下由于根据第3条中提到的尽量减少操作系统所在分区的读写操作,因此我们将临时目录建在D盘,针对Win9x和2000的方法略有出入:

  Win9x:

  1.在D盘下新建立一个目录temp;

  2.用记事本打开c:\autoexec.bat(如没有,可自行建立一个),输入以下两行;

  @set temp=d:\temp

  @ set tmp=d:\temp

  Win2000/XP:

  1.在D盘下新建立一个目录temp;

  2.打开“控制面板”——“属性”——“高级”;

  3.在“系统变量”这里,将temp和tmp的值,都改为d:\temp;

  好了,重新启机之后,就生效了。不过由于Windows仍然有某些程序的默认临时目录不是我们所指定的temp目录,所以还需要手工指定一下。以IE为例:“工具”——“Internet选项”——“Internet临时文件”这里的“设置”——“移动文件夹”,将临时目录指定成我们的d:\temp就行了。

  值得一提的是,不管是Windows也好,UNIX也好,相当一部分用了临时文件后没有清除它,因此可以定期每周把d:\temp清空。在UNIX下对于这样的定期命令可以通过cron来完成。

  5、定义虚拟内存盘

  我们的操作系统在调用程序,相关的资源文件的时候,都需要将程序由速度较慢的外存,调用到速度较快的内存中之后再进行操作。由于外存的价格相对内存为低,因此大多数用户在内存不够充裕的条件下,一般会选择用外存硬盘来虚拟内存使用。需要说明的是,这只是在技术上的虚拟内存,并不能真正使这部分硬盘的读写速度有任何提升。因此在资金允许的情况下,建议用户能够升级到512M内存为比较适合。天缘常常见到很多用户盲目追求高速cpu,而忽略了对内存的需求。事实上只有类似Photoshop、3D MAX、WinAMP等需要即时演算、解码操作(图形类的渲染大多可以通过显卡来完成来减轻cpu负担),大多数常用的办公软件、第三方工具其实对CPU并没有很大的消耗,而是需要大量高速内存的支持。按照我们上一步中的知识,自然虚拟内存盘的读写速度也应该是越快越好了?所以很多书上在介绍unux安装的时候,会建议swap分区靠前;而Windows下,我们则可以指定把虚拟目录放到d盘下去。同样,针对Win9x和Win2k/xp有两种方式来完成。

  Win 9x: 

  1.打开“控制面板”——“属性”——“性能”——“虚拟内存”;

  2.将虚拟内存指定为自定义,选择d盘;

  3.重新启动计算机;

  Win 2k:

  1.打开“控制面板”——“属性”——“高级”——“性能选项”;

  2.在这里,如果您的机器是自己用,就选“应用程序”,如果是提供Ftp或者Web服务,就选择“后台服务”。(由此可见,微软是为了节约开发成本,将Win2k的pro/server/advance server三种版本用同样的构架搭建出来的)

  3.选中“虚拟内存”这里的“更改”

  4.将c盘的虚拟内存去掉,将d盘的虚拟内存根据需要进行适当设置;

  5.重新启动计算机;

  恩,经过这么一来。当计算机发现内存不够的时候,就会在d盘下建立虚拟磁盘来模拟内存使用了。虚拟出来的内存是一个在Win9x下名为Win386.swp,Win2k下名为pagefile.sys的文件。别忘记将原来的c盘下的同名文件删除,以增加c盘的可用空间哟。当然,硬盘的读写速度是远远不及内存的,因此这只是权宜之计,添置更多的物理内存才是正解。

  6、载入系统服务

  在这一步中,系统将会载入基本的服务。例如Win2k下的“控制面版”——“控制工具”——“服务”中的项目;UNIX下也类似。在这里,一般来说我们不能对服务的内部进行改造以增加效率,但是我们只选择需要的服务,而关闭不必要的服务。在这里,个人用户和服务器管理员都要记住的一条定律会起作用“可开可不开的一定不开,可用可不用的一定不用”,这样不但会减少系统的启动时间、增加系统的可用内存、并且也尽量地避免了安全漏洞。记得前辈曾经指点过我:“服务器提供的服务越多,则可能存在的漏洞也越多,越容易被攻击”。但是不管在w2k还是在UNIX中,默认打开的一些服务是我们所不需要的,甚至是危险的。以Win2k为例,“远程控制注册表”、“dhcp服务器”等等这些功能居然都是默认开着的,而UNIX下的不少操作系统默认时候“sendmail”、“smaba”也是开着的。

  所以,根据自己的选择,恰当的选择必要的服务。这一步会相当消耗时间,而且也会遇到对某些服务的疑问,但性能的提升也具有最大潜力。值得一提的是,一些后台运行的程序也将自己添加到其中,常见的例如杀毒软件,以及令人讨厌的冲击波病毒。关于详细的介绍,天极网上介绍操作系统的一些文章中都有详细描述,我在这里一一写出,就有骗稿费的嫌疑了。

  7、载入自定义服务

  之所以要把这一步与上面的一步分开,一来是因为他们存放的启动文件位置有差异,二来有的系统服务是必须启动的,如果不启动则连操作系统也无法按照常规方式运行起来。例如Win2k服务中的“Logical Disk Manager(逻辑磁盘管理器监视狗服务)”就是专门对硬盘进行管理的。自定义的服务项目,在Windows中,存在注册表的run系列键中(Software\Microsoft\Windows\CurrentVersion\Run、Software\Microsoft\Windows\CurrentVersion\Runonce、SOFTWARE\Microsoft\Windows\CurrentVersion\Run、SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce、SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnceEx、SOFTWARE\Microsoft\Windows\CurrentVersion\RunServices);而在UNIX则是用特定位置的文本文件来保存,例如redhat下是/etc/rc.local文件,一行一条shell命令,非常简单明了。一般来说,这一部分的服务即使全部去掉,也不会影响系统的启动,但有的操作系统“原装”服务可以令我们使用的时候更得心应手。同时在这里,也是很多Windows木马藏身的地方。

  在自定义服务中,可以将自己不需要,或者很少用到的一些服务去掉(例如天缘就把音量调节的服务去掉了,因为我从来都喜欢直接摆弄音响);也可以把自己每次启动系统都要运行的一些程序加入进去(例如天缘在Linux下的fvwm启动就加在/etc/rc.local中)。合理的使用它,选择恰当的程序去掉无用的程序,也可以达到相当好的性能优化目的。顺便为Windows的朋友们推荐一个我很喜欢的注册表编辑工具,名字是RegHance,非常简单方便。

  8、定义GUI

  在这里,为什么特别提到GUI呢?Windows的用户可能比较有疑惑,因为Windows的图形界面是嵌入内核的,不过在UNIX下则是独立的。在这一部分上,由于操作系统的独立性,因此要详细地讲解不大可能。我只给出一个思路:“尽量缩减无用的资源消耗”。例如:控制GUI的加载字体数量。事实的确如此,任何载入的资源都会消耗掉系统的内存,由于中文的特殊性(文字众多,非字母组合),导致一个中文字库比一个英文字库大上很多,自然消耗的内存也大了很多(现在明白了为什么传呼机、手机、嵌入系统等等rom/ram受限的场合一般采用英语了吧?因为它总共就26个字母,在这点上,的确比汉字具有优越性。同样的道理从我们所用的键盘也能体现出来)。

  天缘认识几个从事艺术行业的朋友,经常习惯将用到的字体都放在Font目录中,其实这样在每次启动的时候都会载入到内存中(顺便一提,我们曾经试过,Win98下Font目录Copy字体到400m左右就无法再增加了)会严重地影响到启动速度。值得采纳的做法是将一些不常用的字体Copy到其他目录中备用,在需要的时候再调入到Font目录中,然后重新计算机就可以了。虽然的确是烦琐了一点,不过在有钱购买1G的内存前,节约几百M的内存也是很有必要的。类似的道理,UNIX管理员都知道在服务器上不需要跑xWindows就不要跑的道理。以上的小例子希望可以帮助大家开动自己的脑筋,好好想想其他值得优化的地方。

  当文章写到这里,已是接近尾声。油然想起当我告诉原野编辑我要写操作系统优化的时候他对我说的:“介绍系统优化的文章已经很多了呀。”这句略带警醒的话。是的,Windows平台下、UNIX平台下介绍系统优化的文章数不胜数;“超级兔子”、“优化大师”、“webmin”这些优秀的系统设置/优化工具不断更新。但正如“鞋子只有自己买的才最合脚”这个道理一样,天缘尝试将自己优化系统的心得总结与大家分享。IT行业日新月异,新的操作系统层出不穷,掌握了一个优化软件,或许在新的操作系统面前依然束手无策。学习学习,不在于学其形,贵在学其神。明白了操作系统优化的原理,依照着以上的8个环节,针对自己的机器情况进行思考分析,那么即使面对的是一个全新的操作系统,也能很快地将其优化,提高自己工作、学习、娱乐的效率。中国人的习俗,春节吃鱼代表“年年有余”。而授人予鱼不如授人以渔,希望这篇小文能帮助大家把自己爱机的潜力充分发挥到极致。 
主要特点:
----------
多配置启动菜单
全面的支持中英文长文件名
支持NTFS驱动器
各种光驱支持
RAMDISK 虚拟磁盘
中文汉字操作系统
方便的文件管理
较强通用性和稳定性
许多实用的小工具

---------
已写文件列表
---------
aspi2dos.sys 18,802 实模式的 Adaptec CD-ROM 驱动程序
aspi4dos.sys 8,913 实模式的 Adaptec CD-ROM 驱动程序
aspi8dos.sys 22,077 实模式的 Adaptec CD-ROM 驱动程序
aspi8u2.sys 24,001 实模式的 Adaptec CD-ROM 驱动程序
aspicd.sys 10,002 实模式的 Adaptec CD-ROM 驱动程序
ASPIDISK.SYS 6,499 SCSI驱动器驱动程序
ASPIOHCI.SYS 16,001 Iomega公司出的OHCI接口的USB驱动器的驱动程序
ASPIUHCI.SYS 16,624 Iomega公司出的UHCI接口的USB驱动器的驱动程序
Attrib.com 5,277 XATTRIB.COM查看、设置文件/目录属性
AUTOEXEC.BAT 3,991 自动批处理文件
CABFIND.COM 2,609 在CAB包中搜索文件的工具
CCD.EXE 1,110 目录快速转换工具
Cdrom.bat 2,133 安装通用光驱驱动程序
Choice.com 510 选择命令,返回按键的ERRORLEVEL值
Cmos.com 630 清除/保存COMOS信息
Command.com 94,292 MS-DOS 7.1 命令解释程序
Config.sys 2,523 启动配置文件,加载设备驱动程序
CP936UNI.TBL 15,505 DOSLFN 0.32n 简体中文代码页
CtMouse.exe 4,898 鼠标驱动程序CTMOUSE v1.9,可驱动COM和PS2口鼠标
Debug.com 14,593 V0.95c 程序调试命令
Deltree.com 3,069 V1.2c 删除整个目录,从FREEDOS中补充的外部命令
DI1000DD.SYS 8,483 Motto Hairu中的USB硬盘的驱动程序
Doskey.com 4,640 V1.5 命令行记忆程序,Tab/Shift+Tab 选择文件或目录
Doslfn.com 11,020 V0.32n,DOS中文/英文长文件名驱动程序
DOSVER.COM 2,156 V2.11 实用的设置DOS版本号的工具
DRVLOAD.COM 1,716 加载驱动程序的工具
Ebd98.cab 159,944 包含实用程序的 Cab压缩包
ECHO.SYS 194 在CONFIG.SYS中显示字符文字的程序
Edit.exe 46,338 V2.0.026 全屏幕文本编辑器,可以编辑二进制文件
EDIT.HLP 1,971 EDIT的帮助文件
escape.exe 1,087 在任何时候都可以按F12键退回到DOS方式下,以防止死机
Extract.exe 49,133 解压CAB压缩包
Fdisk.exe 66,937 SPFDisk V2000-03kc 分区及启动管理(Boot Manager)程序
FINDCD.EXE 3,128 最好用的光驱查找工具 (作者: Wengier).
Findramd.exe 2,464 查找虚拟盘的工具
Himem.sys 10,306 XMS 内存管理程序
Ifshlp.sys 2,784 增强的文件管理驱动程序,支持WIN的VFAT系统(Windows必需)
Io.sys 213,977 系统引导文件
Killer.exe 2,435 killr100可以自动截获非法指令,防止死机
Key.com 977 KPUSH.COM V2.0 键盘ASCII表查询及清理工具
LFNXLAT.386 867 为DOSLFN长文件名驱动程序提供Win 3.x下的长文件名支持
Low.exe 29,491 硬盘低级格式化程序
LOWDMA.SYS 662 提供软盘的ISA DMA UMB支持
MCD.BAT 180 建立多层目录
More.com 1,295 小巧的分屏显示工具
mousclip.exe 4,456 V1.10 很实用的在DOS下用鼠标复制/粘帖的工具
Msdos.sys 122 引导选项信息(路径、多层引导等等)
Msdos.sy_ 1,661 win98系统启动配置文件msdos.sys备份.
Ne.exe 36,148 V1.24.2! 仿照PCTOOLS5的文件管理工具,十六进制编器.
Nset.com 974 从输出中取得变量以设置,FINDCD -a|NSET CDROM=$1
NTFSDOS.EXE 26,507 V3.02R DOS的NTFS驱动程序
Off.com 451 Shutdown 非常好的命令行ATX电源重新启动/软关机程序
QF.EXE 23,313 FDISK和FORMAT加速,可节省时间
readme.txt 6,077 本说明文件
Reboot.com 16 重新启动计算机
RESET.COM 588 重新启动DOS系统
Shsucdx.exe 6,800 v1.4b 光驱驱动程序,可取代MSCDEX
Sm.exe 13,272 磁盘缓冲工具SMARTDRV
SORT.COM 1,630 小巧的排序工具
SRCBOOT.COM 2,590 保存/恢复/比较磁盘的启动扇区的小工具
SRCFAT.COM 2,715 保存/恢复/比较磁盘的文件分配表(FAT)的小工具
SRCMBR.COM 2,516 保存/恢复/比较磁盘的主引导记录(MBR)的小工具
SUBST.COM 1,469 小巧的设置虚拟驱动器的程序
Sys.com 9,321 DOS系统文件传输程序
tw.bat 1,241 启动天汇中文DOS汉字系统
Tway.cab 253,936 天汇3.1中文DOS汉字操作系统压缩包
Umbpci.sys 5,684 v3.45,很有用的UMB驱动程序,可以提供高达160多K的UMB
USBASPI.SYS 15,480 Motto Hairu中的USB驱动程序
USBCD.SYS 5,509 Motto Hairu中的USB/SCSI光驱的驱动程序
Vc.bat 446 启动DOS下的文件管理器Volkov Commander的启动程序
Vc.cab 80,260 V4.99.08 很实用的文件管理器,支持FAT32和长文件名
Vers.com 1,500 修改DOS版本号工具
Vide-cdd.sys 6,192 ATAPI CD-ROM 驱动器的通用设备驱动程序,占用内存只有5K
Xcopy.exe 16,442 V1.1 加强的COPY命令,可复制整个目录
xdel.exe 1,651 删除文件和目录树,谨用!
XFIND.COM 1,992 在文件中查找字符的工具
XMSDSK.EXE 11,627 V1.9i 虚拟存盘工具,占很少的内存
xren.com 128 文件或目录改名

78 file(s) 1,224,004 bytes

------------------
EBD98.CAB中的文件
------------------
format.bat 550 21:41 磁盘格式化
Format98.com 49,655 6:22 磁盘格式化工具(WIN98)
Mem.exe 32,306 22:22 内存查看工具(WIN98)
Scandisk.exe 245,924 18:54 磁盘扫描程序(WINME)
Scandisk.ini 7,329 17:00 磁盘扫描程序配置文件

-----------------
TWAY.CAB中的文件
-----------------
Key.com 12,712 加载中文输入法
quit.com 7 系统退出程序(兼容UCDOS, TWAY系统)
Qw.exe 5,632 区位码查看程序
Tw.bat 730 启动天汇汉字系统
tway.exe 204,531 系统主程序
Tway.ini 6,599 TWAY 3.1 系统初始化配置文件

DataPY.MB 24,238 拼音、双拼输入法
DataPY000.DT 12,008 拼音自造词编码文件(系统自动生成)
DataWB.MB 33,136 五笔输入法
DataWB000.DT 12,008 拼音自造词编码文件(系统自动生成)

----------------
FINDCD使用说明 *****以下内容已做更正,感谢Wengier指出*****
----------------
FINDCD 0: 设置光驱数目;
FINDCD 2: 设置第2个光驱的盘符;不加参数则设置第1个光驱的盘符;
FINDCD /N:只在屏幕上显示,而不设置环境变量;
FINDCD /Q:不在屏幕上显示,而只设置环境变量;
FINDCD /S:全部设置模式
FINDCD /?:帮助;

==========
工具下载:
1、UMBPCI.SYS v3.45 :
http://www.uwe-sieber.de/files/umbpci_e.zip
2、NE.EXE V1.24.2!:
http://member.netease.com/~lihailin/(推荐)
3、Doslfn.com V0.32n :
http://www-user.tu-chemnitz.de/~heha/hs_freeware/doslfn.zip

上一期,我讲述了如何在软盘的启动扇区写一些代码,然后再从软盘启动的过程。制作好一个启动扇区,在切换到保护模式之前,我们还应该知道如何使用BIOS中断。BIOS中断是一些由BIOS提供的、为了使操作系统的创建更容易的低级程序。在本文中,我们将学习处理BIOS的中断。

为什么要用BIOS


BIOS会把启动扇区拷贝至RAM中,并且执行这些代码。除此之外,BIOS还要做很多其它的事情。当一个操作系统刚开始启动时,系统中并没有显卡驱动、软盘驱动等任何驱动程序。因此,启动扇区中不可能包含任何一个驱动程序,我们要采取其它的途径。这个时候,BIOS就可以帮助我们了。BIOS中包含有各种可以使用的程序,包括检测安装的设备、控制打印机、计算内存大小等用于各种目的的程序。这些程序就是所说的BIOS中断。

如何调用BIOS中断


在一般的程序设计语言中,函数的调用是一件非常容易的事情。比如在C语言中,如果有一个名为display的程序,它带有两个参数,其中参数noofchar表示显示的字符数,参数attr表示显示字符的属性。那么要调用它,只需给出程序的名称即可。对于中断的调用,我们使用的是汇编语言中的int指令。

比如,在C语言中要显示一些东西时,使用的指令如下所示:

display(nofchar,attr);


而使用BIOS时,要实现相同功能使用的指令如下:

int 0x10


如何传递参数


在调用BIOS中断之前,我们需要先往寄存器中送一些特定的值。假设要使用BIOS的中断13h,该中断的功能是把数据从软盘传送至内存之中。在调用该中断之前,要先指定拷贝数据的段地址,指定驱动器号、磁道号、扇区号,以及要传送的扇区数等等。然后,就要往相应的寄存器送入相应的值。在进行下面的步骤前,读者有必要对这一点有比较明确地认识。

此外,一个比较重要的事实是同一个中断往往可以实现各种不同的功能。中断所实现的确切功能取决于所选择的功能号,功能号一般都存在ah寄存器之中。比如中断13h可以用于读磁盘、写磁盘等功能,如果把3送入ah寄存器中,那么中断选择的功能就是写磁盘;如果把2送入ah寄存器中,选择的功能则是读磁盘等。

我们要做的事情


这次我们的源代码由两个汇编语言程序和一个C程序组成。第一个汇编文件是引导扇区的代码。在引导扇区中,我们写的代码是要把软盘中第二扇区拷贝至内存段的0x500处(地址是0x5000,即偏移地址为0)。这时我们需要使用BIOS的中断13h。这时启动扇区的代码就会把控制权转移至0x500处。在第二个汇编文件中,代码会使用BIOS中断10h在屏幕上显示一个信息。C程序实现的功能则是把可执行的文件1拷贝至启动扇区,把可执行的文件2拷贝至软盘的第二扇区。

启动扇区代码


使用中断13h,启动扇区把软盘第二扇区里的内容加载至内存的0x5000处(段地址为0x500)。下面的代码是用于实现这一目的的代码,将其保存至文件sbect.s中。

LOC1=0x500
entry start
start:
  mov ax,#LOC1
  mov es,ax
  mov bx,#0 
  mov dl,#0 
  mov dh,#0 
  mov ch,#0 
  mov cl,#2 
  mov al,#1 
  mov ah,#2 
  int 0x13
  jmpi 0,#LOC1


上面代码第一行类似于一个宏。接下去的两行则是把值0x500加载至es寄存器中,这是软盘上第二扇区代码将拷贝到的地方(第一扇区是启动扇区)。这时,把段内的偏移设为0。

接下来把驱动器号送入dl寄存器中,其中磁头号送入dl寄存器中,磁道号送入ch寄存器中,扇区号送入cl寄存器中,扇区数送入al寄存器之中。我们想要实现的功能是把扇区2、磁道号为0、驱动器号为0的内容送至段地址0x500处。所有这些参数都和1.44MB的软盘相对应。

把2送入ah寄存器中,是选择了由中断13h提供的相应功能,即实现从软驱转移数据的功能。

最后调用中断13h,并且转至偏移为0的段地址0x500处。

第二个扇区的代码


第二个扇区中的代码如下所示(把这些代码保存至文件sbect2.s之中):

entry start
start:
  mov     ah,#0x03                
  xor     bh,bh
  int     0x10

  mov     cx,#26                  
  mov     bx,#0x0007              
  mov     bp,#mymsg
  mov     ax,#0x1301              
  int     0x10

loop1:  jmp     loop1
mymsg:
  .byte  13,10
  .ascii “Operating System is Loading......”


上面代码将被加载至段地址为0x500处,并且被执行。在这段代码中,使用了中断10h来获取目前的光标位置,然后显示信息。

从第3行到第5行用于得到目前光标的位置,在此中断10h选用的是功能3。然后,清除了bh寄存器的内容,并把字符串送至ch寄存器中。在bx中,我们送入了页码及显示的属性。此处,我们想要在黑背景上显示白色的字符。然后,把要显示字符的地址送到bp之中,信息由两个字节组成,其值分别为13的10,它们分别对应回车和LF(换行)的ASCⅡ值。接下来是一个由29个字符组成的串;在下面实现的功能是输出字符串然后移动光标;最后是调用中断,然后进入循环。

C程序代码


C程序的源代码如下所示,将其存储为write.c文件。

#include  /* unistd.h needs this */
#include     /* contains read/write */
#include 
int main()
{
  char boot_buf[512];
  int floppy_desc, file_desc;
  file_desc = open(“./bsect”, O_RDONLY);
  read(file_desc, boot_buf, 510);
  close(file_desc);
  boot_buf[510] = 0x55;
  boot_buf[511] = 0xaa;
  floppy_desc = open(“/dev/fd0”, O_RDWR);
  lseek(floppy_desc, 0, SEEK_SET);
  write(floppy_desc, boot_buf, 512);
  file_desc = open(“./sect2”, O_RDONLY);
  read(file_desc, boot_buf, 512);
  close(file_desc);
  lseek(floppy_desc, 512, SEEK_SET);
  write(floppy_desc, boot_buf, 512);
  close(floppy_desc);
}


在上一期中,我曾经介绍过如何操作能启动的软盘。现在这一个过程稍微有点不同,首先把由bsect.s编译出来的可执行文件bsect拷贝至软盘的启动扇区。然后再把由sect2.s产生的可执行文件sect2拷贝至软盘的第二个扇区。

把上述文件置于同一目录之下,然后分别对其进行编译,方法如下所示:

as86 bsect.s -o bsect.o
ld86 -d bsect.o -o bsect


对sect2.s文件重复以上的操作,得出可执行文件sect2。编译write.c,插入软盘后执行write文件,命令如下所示:

cc write.c -o write
./write


下一步我们要做的事情


从软盘启动以后,可以看到显示出来的字符串。这是使用了BIOS中断来完成的。下一期要做的事情是在这个操作系统中实现实模式向保护模式的转换。
posted on 2005-11-21 15:08 天外飞仙 阅读(1962) 评论(0)  编辑  收藏 所属分类: 其它

只有注册用户登录后才能发表评论。


网站导航: