错误的按日期分区例子
最直观的方法,就是直接用年月日这种日期格式来进行常规的分区:
CODE:
-
mysql> create table rms (d date)
-
-> partition by range (d)
-
-> (partition p0 values less than ('1995-01-01'),
-
-> partition p1 VALUES LESS THAN ('2010-01-01'));
上面的例子中,就是直接用"Y-m-d"的格式来对一个table进行分区,可惜想当然往往不能奏效,会得到一个错误信息:
ERROR 1064 (42000): VALUES value must be of same type as partition function near '),
partition p1 VALUES LESS THAN ('2010-01-01'))' at line 3
上述分区方式没有成功,而且明显的不经济,老练的DBA会用整型数值来进行分区:
CODE:
-
mysql> CREATE TABLE part_date1
-
-> ( c1 int default NULL,
-
-> c2 varchar(30) default NULL,
-
-> c3 date default NULL) engine=myisam
-
-> partition by range (cast(date_format(c3,'%Y%m%d') as signed))
-
-> (PARTITION p0 VALUES LESS THAN (19950101),
-
-> PARTITION p1 VALUES LESS THAN (19960101) ,
-
-> PARTITION p2 VALUES LESS THAN (19970101) ,
-
-> PARTITION p3 VALUES LESS THAN (19980101) ,
-
-> PARTITION p4 VALUES LESS THAN (19990101) ,
-
-> PARTITION p5 VALUES LESS THAN (20000101) ,
-
-> PARTITION p6 VALUES LESS THAN (20010101) ,
-
-> PARTITION p7 VALUES LESS THAN (20020101) ,
-
-> PARTITION p8 VALUES LESS THAN (20030101) ,
-
-> PARTITION p9 VALUES LESS THAN (20040101) ,
-
-> PARTITION p10 VALUES LESS THAN (20100101),
-
-> PARTITION p11 VALUES LESS THAN MAXVALUE );
-
Query OK, 0 rows affected (0.01 sec)
搞定?接着往下分析
CODE:
-
mysql> explain partitions
-
-> select count(*) from part_date1 where
-
-> c3> date '1995-01-01' and c3 <date '1995-12-31'\G
-
*************************** 1. row ***************************
-
id: 1
-
select_type: SIMPLE
-
table: part_date1
-
partitions: p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11
-
type: ALL
-
possible_keys: NULL
-
key: NULL
-
key_len: NULL
-
ref: NULL
-
rows: 8100000
-
Extra: Using where
-
1 row in set (0.00 sec)
万恶的mysql居然对上面的sql使用全表扫描,而不是按照我们的日期分区分块查询。原文中解释到MYSQL的优化器并不认这种日期形式的分区,花了大量的篇幅来引诱俺走上歧路,过分。
正确的日期分区例子
mysql优化器支持以下两种内置的日期函数进行分区:
看个例子:
CODE:
-
mysql> CREATE TABLE part_date3
-
-> ( c1 int default NULL,
-
-> c2 varchar(30) default NULL,
-
-> c3 date default NULL) engine=myisam
-
-> partition by range (to_days(c3))
-
-> (PARTITION p0 VALUES LESS THAN (to_days('1995-01-01')),
-
-> PARTITION p1 VALUES LESS THAN (to_days('1996-01-01')) ,
-
-> PARTITION p2 VALUES LESS THAN (to_days('1997-01-01')) ,
-
-> PARTITION p3 VALUES LESS THAN (to_days('1998-01-01')) ,
-
-> PARTITION p4 VALUES LESS THAN (to_days('1999-01-01')) ,
-
-> PARTITION p5 VALUES LESS THAN (to_days('2000-01-01')) ,
-
-> PARTITION p6 VALUES LESS THAN (to_days('2001-01-01')) ,
-
-> PARTITION p7 VALUES LESS THAN (to_days('2002-01-01')) ,
-
-> PARTITION p8 VALUES LESS THAN (to_days('2003-01-01')) ,
-
-> PARTITION p9 VALUES LESS THAN (to_days('2004-01-01')) ,
-
-> PARTITION p10 VALUES LESS THAN (to_days('2010-01-01')),
-
-> PARTITION p11 VALUES LESS THAN MAXVALUE );
-
Query OK, 0 rows affected (0.00 sec)
以to_days()函数分区成功,我们分析一下看看:
CODE:
-
mysql> explain partitions
-
-> select count(*) from part_date3 where
-
-> c3> date '1995-01-01' and c3 <date '1995-12-31'\G
-
*************************** 1. row ***************************
-
id: 1
-
select_type: SIMPLE
-
table: part_date3
-
partitions: p1
-
type: ALL
-
possible_keys: NULL
-
key: NULL
-
key_len: NULL
-
ref: NULL
-
rows: 808431
-
Extra: Using where
-
1 row in set (0.00 sec)
可以看到,mysql优化器这次不负众望,仅仅在p1分区进行查询。在这种情况下查询,真的能够带来提升查询效率么?下面分别对这次建立的part_date3和之前分区失败的part_date1做一个查询对比:
CODE:
-
mysql> select count(*) from part_date3 where
-
-> c3> date '1995-01-01' and c3 <date '1995-12-31';
-
+----------+
-
| count(*) |
-
+----------+
-
| 805114 |
-
+----------+
-
1 row in set (4.11 sec)
-
-
mysql> select count(*) from part_date1 where
-
-> c3> date '1995-01-01' and c3 <date '1995-12-31';
-
+----------+
-
| count(*) |
-
+----------+
-
| 805114 |
-
+----------+
-
1 row in set (40.33 sec)
可以看到,分区正确的话query花费时间为4秒,而分区错误则花费时间40秒(相当于没有分区),效率有90%的提升!所以我们千万要正确的使用分区功能,分区后务必用explain验证,这样才能获得真正的性能提升。