posts - 97,  comments - 93,  trackbacks - 0
Problem Statement

Let's say you have a binary string such as the following:
011100011
One way to encrypt this string is to add to each digit the sum of its adjacent digits. For example, the above string would become:
123210122
In particular, if P is the original string, and Q is the encrypted string, then Q[i] = P[i-1] + P[i] + P[i+1] for all digit positions i. Characters off the left and right edges of the string are treated as zeroes.
An encrypted string given to you in this format can be decoded as follows (using 123210122 as an example):
Assume P[0] = 0.
Because Q[0] = P[0] + P[1] = 0 + P[1] = 1, we know that P[1] = 1.
Because Q[1] = P[0] + P[1] + P[2] = 0 + 1 + P[2] = 2, we know that P[2] = 1.
Because Q[2] = P[1] + P[2] + P[3] = 1 + 1 + P[3] = 3, we know that P[3] = 1.
Repeating these steps gives us P[4] = 0, P[5] = 0, P[6] = 0, P[7] = 1, and P[8] = 1.
We check our work by noting that Q[8] = P[7] + P[8] = 1 + 1 = 2. Since this equation works out, we are finished, and we have recovered one possible original string.
Now we repeat the process, assuming the opposite about P[0]:
Assume P[0] = 1.
Because Q[0] = P[0] + P[1] = 1 + P[1] = 0, we know that P[1] = 0.
Because Q[1] = P[0] + P[1] + P[2] = 1 + 0 + P[2] = 2, we know that P[2] = 1.
Now note that Q[2] = P[1] + P[2] + P[3] = 0 + 1 + P[3] = 3, which leads us to the conclusion that P[3] = 2. However, this violates the fact that each character in the original string must be '0' or '1'. Therefore, there exists no such original string P where the first digit is '1'.
Note that this algorithm produces at most two decodings for any given encrypted string. There can never be more than one possible way to decode a string once the first binary digit is set.
Given a String message, containing the encrypted string, return a String[] with exactly two elements. The first element should contain the decrypted string assuming the first character is '0'; the second element should assume the first character is '1'. If one of the tests fails, return the string "NONE" in its place. For the above example, you should return {"011100011", "NONE"}.
Definition

Class:
BinaryCode
Method:
decode
Parameters:
String
Returns:
String[]
Method signature:
String[] decode(String message)
(be sure your method is public)


Constraints
-
message will contain between 1 and 50 characters, inclusive.
-
Each character in message will be either '0', '1', '2', or '3'.
Examples
0)

"123210122"
Returns: { "011100011",  "NONE" }
The example from above.
1)

"11"
Returns: { "01",  "10" }
We know that one of the digits must be '1', and the other must be '0'. We return both cases.
2)

"22111"
Returns: { "NONE",  "11001" }
Since the first digit of the encrypted string is '2', the first two digits of the original string must be '1'. Our test fails when we try to assume that P[0] = 0.
3)

"123210120"
Returns: { "NONE",  "NONE" }
This is the same as the first example, but the rightmost digit has been changed to something inconsistent with the rest of the original string. No solutions are possible.
4)

"3"
Returns: { "NONE",  "NONE" }

5)

"12221112222221112221111111112221111"
Returns:
{ "01101001101101001101001001001101001",
  "10110010110110010110010010010110010" }

This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.
 1 /**
 2  *
 3  * @author Nicky Qu
 4  * All Rights Reserved. Oct.23th,2007.
 5  */
 6 public class BinaryCode {
 7 
 8     private char[] temp;
 9     private String originalCode0="00";
10     private String originalCode1="01";
11 
12     public String[] decode(String message) {
13         temp = message.toCharArray();
14          originalCode0 = Run(temp,originalCode0);
15          originalCode1 = Run(temp,originalCode1);
16         return new String[]{originalCode0,originalCode1};
17     }
18 
19     private String Run(char[] temp,String deEncryptedCode) {
20         int p_i = 0,p_i_1 = 0;
21         int p_i_add_1 = 0;
22       for(int i =0;i<temp.length;i++){
23           p_i_1 =  Character.getNumericValue(deEncryptedCode.charAt(i));
24           p_i =  Character.getNumericValue(deEncryptedCode.charAt(i+1));
25           p_i_add_1 =Character.getNumericValue(temp[i]) - p_i - p_i_1;
26           boolean just = (i==temp.length-1&& (p_i_add_1 != 0);
27           if(p_i_add_1 < 0||p_i_add_1>2||just){
28               return "NONE";
29           }              
30           deEncryptedCode = deEncryptedCode+ p_i_add_1;          
31       }
32         return deEncryptedCode.substring(1,deEncryptedCode.length()-1);
33     }
34 }

posted on 2007-10-23 13:34 wqwqwqwqwq 阅读(1049) 评论(1)  编辑  收藏 所属分类: Data Structure && Algorithm

FeedBack:
# re: A Q of Encrypting String
2007-10-23 19:57 | 曲强 Nicky
public class BinaryCode {

private String[] result;
private int[] q;
private int[] p;

public String[] decode(String message) {
result = new String[]{"", ""};
q = new int[message.length()];
for (int i = 0; i < q.length; i++) {
q[i] = Integer.parseInt(String.valueOf(message.charAt(i)));
}
for (int j = 0; j < 2; j++) {
p = new int[q.length];
p[0] = j;
result[j] += p[0];
for (int i = 1; i < q.length; i++) {
if (i == 1) {
p[1] = q[0] - p[0];
} else {
p[i] = q[i - 1] - p[i - 2] - p[i - 1];
}
if (p[i] > 1 || p[i] < 0) {
result[j] = "NONE";
break;
}
result[j] += p[i];
}
for (int i = 0; i < p.length; i++) {
if (i == 0 && i == p.length - 1) {
if (p[i] != q[i]) {
result[j] = "NONE";
break;
}
} else if (i == 0) {
if (0 + p[i] + p[i + 1] != q[i]) {
result[j] = "NONE";
break;
}
} else if (i == p.length - 1) {
if (p[i - 1] + p[i] + 0 != q[i]) {
result[j] = "NONE";
break;
}
} else {
if (p[i - 1] + p[i] + p[i + 1] != q[i]) {
result[j] = "NONE";
break;
}
}
}
}
return result;
}
}  回复  更多评论
  

只有注册用户登录后才能发表评论。


网站导航:
 
<2007年10月>
30123456
78910111213
14151617181920
21222324252627
28293031123
45678910




常用链接

留言簿(10)

随笔分类(95)

随笔档案(97)

文章档案(10)

相册

J2ME技术网站

java技术相关

mess

搜索

  •  

最新评论

阅读排行榜

校园梦网网络电话,中国最优秀的网络电话