前言
线上情况:
- 线上Redis集群,多个Twemproxy代理(nutcracker),LVS DR路由均衡调度
- 客户端使用Jedis操作Redis集群,一个程序进程实例使用原先1024个工作线程处理请求,若干个进程实例
- 一天超过22亿次请求,网络一般情况下,一天超过上万个连接失败异常
- 运维同学告知,LVS压力较大
改进工作:
- 工作线程由原先1024改用16个
- 每个线程每次最多操作1000个Redis命令批量提交
实际效果:
- 一天不到一亿次的请求量
- LVS压力大减
- CPU压力降低到原先1/3以下
- 单个请求抽样调研平均减少1-90毫秒时间(尤其是跨机房处理)
Redis支持批量提交
原生支持批量操作方式
一般命令前缀若添加上m字符串,表示支持多个、批量命令提交了。
显式的...
MSET key value [key value ...]
MSETNX key value [key value ...]
HMGET key field [field ...]
HMSET key field value [field value ...]
一般方式的...
HDEL key field [field ...]
SREM key member [member ...]
RPUSH key value [value ...]
......
更多,请参考:http://redis.cn/commands.html
pipeline管道方式
官方文档:http://redis.io/topics/pipelining
- Redis Client把所有命令一起打包发送到Redis Server,然后阻塞等待处理结果
- Redis Server必须在处理完所有命令前先缓存起所有命令的处理结果
- 打包的命令越多,缓存消耗内存也越多
- 不是打包的命令越多越好
- 实际环境需要根据命令执行时间等各种因素选择合并命令的个数,以及测试效果等
Java队列支持
一般业务、接入前端请求量过大,生产者速度过快,这时候使用队列暂时缓存会比较好一些,消费者直接直接从队列获取任务,通过队列让生产者和消费者进行分离这也是业界普通采用的方式。
监控队列
有的时候,若可以监控一下队列消费情况,可以监控一下,就很直观。同事为队列添加了一个监控线程,清晰明了了解队列消费情况。
示范
示范使用了Redis Pipeline,线程池,准备数据,生产者-消费者队列,队列监控等,消费完毕,程序关闭。
/**
* 以下测试在Jedis 2.6下测试通过
*
* @author nieyong
*
*/
public class TestJedisPipeline {
private static final int NUM = 512;
private static final int MAX = 1000000; // 100W
private static JedisPool redisPool;
private static final ExecutorService pool = Executors.newCachedThreadPool();
protected static final BlockingQueue<String> queue = new ArrayBlockingQueue<String>(
MAX); // 100W
private static boolean finished = false;
static {
JedisPoolConfig config = new JedisPoolConfig();
config.setMaxActive(64);
config.setMaxIdle(64);
try {
redisPool = new JedisPool(config, "192.168.192.8", 6379, 10000,
null, 0);
} catch (Exception e) {
System.err.println("Init msg redis factory error! " + e.toString());
}
}
public static void main(String[] args) throws InterruptedException {
System.out.println("prepare test data 100W");
prepareTestData();
System.out.println("prepare test data done!");
// 生产者,模拟请求100W次
pool.execute(new Runnable() {
@Override
public void run() {
for (int i = 0; i < MAX; i++) {
if (i % 3 == 0) {
queue.offer("del_key key_" + i);
} else {
queue.offer("get_key key_" + i);
}
}
}
});
// CPU核数*2 个工作者线程
int threadNum = 2 * Runtime.getRuntime().availableProcessors();
for (int i = 0; i < threadNum; i++)
pool.execute(new ConsumerTask());
pool.execute(new MonitorTask());
Thread.sleep(10 * 1000);// 10sec
System.out.println("going to shutdown server ...");
setFinished(true);
pool.shutdown();
pool.awaitTermination(1, TimeUnit.MILLISECONDS);
System.out.println("colse!");
}
private static void prepareTestData() {
Jedis redis = redisPool.getResource();
Pipeline pipeline = redis.pipelined();
for (int i = 0; i < MAX; i++) {
pipeline.set("key_" + i, (i * 2 + 1) + "");
if (i % (NUM * 2) == 0) {
pipeline.sync();
}
}
pipeline.sync();
redisPool.returnResource(redis);
}
// queue monitor,生产者-消费队列监控
private static class MonitorTask implements Runnable {
@Override
public void run() {
while (!Thread.interrupted() && !isFinished()) {
System.out.println("queue.size = " + queue.size());
try {
Thread.sleep(500); // 0.5 second
} catch (InterruptedException e) {
break;
}
}
}
}
// consumer,消费者
private static class ConsumerTask implements Runnable {
@Override
public void run() {
while (!Thread.interrupted() && !isFinished()) {
if (queue.isEmpty()) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
}
continue;
}
List<String> tasks = new ArrayList<String>(NUM);
queue.drainTo(tasks, NUM);
if (tasks.isEmpty()) {
continue;
}
Jedis jedis = redisPool.getResource();
Pipeline pipeline = jedis.pipelined();
try {
List<Response<String>> resultList = new ArrayList<Response<String>>(
tasks.size());
List<String> waitDeleteList = new ArrayList<String>(
tasks.size());
for (String task : tasks) {
String key = task.split(" ")[1];
if (task.startsWith("get_key")) {
resultList.add(pipeline.get(key));
waitDeleteList.add(key);
} else if (task.startsWith("del_key")) {
pipeline.del(key);
}
}
pipeline.sync();
// 处理返回列表
for (int i = 0; i < resultList.size(); i++) {
resultList.get(i).get();
// handle value here ...
// System.out.println("get value " + value);
}
// 读取完毕,直接删除之
for (String key : waitDeleteList) {
pipeline.del(key);
}
pipeline.sync();
} catch (Exception e) {
redisPool.returnBrokenResource(jedis);
} finally {
redisPool.returnResource(jedis);
}
}
}
}
private static boolean isFinished(){
return finished;
}
private static void setFinished(boolean bool){
finished = bool;
}
}
代码作为示范。若线上则需要处理一些异常等。
小结
若能够批量请求进行合并操作,自然可以节省很多的网络带宽、CPU等资源。有类似问题的同学,不妨考虑一下。